-
1Dissertation/ Thesis
المؤلفون: Tangarife Patiño, Ana María
المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Traducció i Ciències del llenguatge
Thesis Advisors: Lorente, Mercè
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Reconocimiento de entidades nombradas, Grafos de conocimiento, Ontologías, Terminología, Conflictos armados, Reconeixement d'entitats anomenades, Grafs de coneixement, Ontologies, Terminologia, Conflictes armats, Named entity recognition, Knowledge graphs, Terminology, Armed conflicts
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/692191
-
2Academic Journal
المؤلفون: Massiris, Miguel, Delrieux, Claudio
المصدر: JAIIO, Jornadas Argentinas de Informática; Vol. 10 Núm. 4 (2024): CAIS - Congreso Argentino de Informática y Salud; 36-40 ; JAIIO, Jornadas Argentinas de Informática; Vol. 10 No. 4 (2024): CAIS - Argentine Congress on Informatic and Health; 36-40 ; 2451-7496
مصطلحات موضوعية: Grafos de Conocimiento, Procesamiento de Lenguaje Natural, Origen de la Salud y Enfermedad en el Desarrollo (DOHAD)
وصف الملف: application/pdf
-
3Academic Journal
المؤلفون: Bughio, Kulsoom S., Cook, David M., Shah, Afaq
المصدر: Research, Society and Development; Vol. 13 No. 6; e11313646080 ; Research, Society and Development; Vol. 13 Núm. 6; e11313646080 ; Research, Society and Development; v. 13 n. 6; e11313646080 ; 2525-3409
مصطلحات موضوعية: Ciberataque, IoMT, Internet de las cosas médicas, Vulnerabilidades, Grafos de conocimiento, Razonamiento automatizado, Modelado semántico, Cyberattack, Vulnerabilities, Internet of medical things, Knowledge graphs, Automated reasoning, Semantic modelling, Internet das coisas médicas, Grafos de conhecimento, Raciocínio automatizado, Modelagem semântica
وصف الملف: application/pdf
Relation: https://rsdjournal.org/index.php/rsd/article/view/46080/36653; https://rsdjournal.org/index.php/rsd/article/view/46080
-
4Conference
المؤلفون: Zárate, Marcos Daniel, Buckle, Carlos Ezequiel, Mazzanti, Renato, Lewis, Mirtha Noemí, Delrieux, Claudio, Nuñez, Gustavo, Ceballos, Darío
مصطلحات موضوعية: Ciencias Informáticas, Grafos de conocimiento, Web Semántica, Datos oceanográficos, Big Data
وصف الملف: application/pdf
-
5Conference
المؤلفون: Zàrate, Marcos, Buckle, Carlos, Mazzanti, Renato, Lewis, Mirtha Noemí, Nuñez, Gustavo, Ceballos, Darío
مصطلحات موضوعية: Ciencias Informáticas, Grafos de conocimiento, Datos abiertos enlazados, Grandes volúmenes de datos, Datos oceanográficos
وصف الملف: application/pdf; 153-156
-
6Conference
مصطلحات موضوعية: Ciencias Informáticas, ontología de requerimientos, grafos de conocimiento, shapes
وصف الملف: application/pdf; 904-909
-
7Conference
مصطلحات موضوعية: Ciencias Informáticas, observatorio inmobiliario, grafos de conocimiento, ontologías, web semántica
وصف الملف: application/pdf; 939-944
-
8Academic Journal
المؤلفون: Revenko, Artem, Martín-Chozas, Patricia
مصطلحات موضوعية: Information Extraction, Knowledge Graphs, Semantic Web, Legal Domain, Extracción de Información, Grafos de Conocimiento, Web Semántica, Dominio Jurídico
Relation: https://doi.org/10.26342/2022-69-9; info:eu-repo/grantAgreement/EC/H2020/825182; Procesamiento del Lenguaje Natural. 2022, 69: 105-116. https://doi.org/10.26342/2022-69-9; http://hdl.handle.net/10045/127407
-
9Conference
المؤلفون: Costilla, Patricio, Montiel, Raúl, Roa, Jorge
مصطلحات موضوعية: Ciencias Informáticas, Expansión de consultas, Grafos de conocimiento, Análisis de información desestructurada, Recuperación de información
وصف الملف: application/pdf; 55-62
-
10Dissertation/ Thesis
المؤلفون: Gonzalez Victoria, Jorge Wilfredo
المساهمون: Vargas Cirilo, Hernán Roger
المصدر: Universidad Peruana de Ciencias Aplicadas (UPC) ; Repositorio Académico - UPC
مصطلحات موضوعية: Grafo, Teoría de Grafos, Grafos de Conocimiento, Ontología, Semántica, Graph, Graph Theory, Knowledge Graphs, Ontology, Semantics, https://purl.org/pe-repo/ocde/ford#2.02.00, https://purl.org/pe-repo/ocde/ford#2.02.04
وصف الملف: application/pdf; application/epub; application/msword
Relation: http://hdl.handle.net/10757/683164; 000000012196144X
الاتاحة: http://hdl.handle.net/10757/683164
-
11Dissertation/ Thesis
المؤلفون: Soto Fernández, Mariano
المساهمون: Guerrero Contreras, Gabriel José, Ingeniería Informática
مصطلحات موضوعية: Procesamiento del lenguaje natural, Textos largos, Grafos de conocimiento
وصف الملف: application/zip
Relation: http://hdl.handle.net/10498/33501
الاتاحة: http://hdl.handle.net/10498/33501
-
12Dissertation/ Thesis
المؤلفون: Paneque Romero, Manuel
المساهمون: Roldán-García, María del Mar, García-Nieto, José Manuel, Lenguajes y Ciencias de la Computación
مصطلحات موضوعية: Datos masivos, Lingüística computacional - Semántica, Grafos, Teoría de, Ontología, Web Semántica, Big data, Análisis de datos, Grafos de Conocimiento
Relation: https://hdl.handle.net/10630/31034
الاتاحة: https://hdl.handle.net/10630/31034
-
13Academic Journal
المصدر: Contaduría y administración, ISSN 0186-1042, Vol. 68, Nº. 3, 2023, pags. 317-348
مصطلحات موضوعية: integración de grafos de conocimiento, reutilización de grafos, grafos de conocimiento biomédico, Integration of knowledge graphs, reuse of graphs, biomedical knowledge graphs
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=8958196; (Revista) ISSN 0186-1042
-
14Academic Journal
المؤلفون: Franco-Salvador, Marc
مصطلحات موضوعية: Cross-language, Cross-domain, Knowledge graphs, Plagiarism detection, Information retrieval, Text classification, Sentiment analysis, Translingüe, Transdominio, Grafos de conocimiento, Detección de plagio, Recuperación de información, Clasificación de texto, Análisis del sentimiento, Lenguajes y Sistemas Informáticos
Relation: https://doi.org/10.26342/2019-62-15; Procesamiento del Lenguaje Natural. 2019, 62: 111-114. doi:10.26342/2019-62-15; http://hdl.handle.net/10045/89938
-
15Dissertation/ Thesis
المؤلفون: Sola Espinosa, Fernando Luis
المساهمون: Hernández Salmerón, Inmaculada Concepción, Ayala Hernández, Daniel
مصطلحات موضوعية: Knowledge Graphs, Graph Neural Networks, Attributive embeddings, Deep graph embeddings, Machine Learning, Grafos de Conocimiento, Redes Neuronales de Grafos, Embeddings Atributivos, Embeddings profundos de grafos
Relation: https://idus.us.es/handle//11441/148087
-
16Dissertation/ Thesis
المؤلفون: Uribe Rendón, Andrea
المساهمون: Guzmán Luna, Jaime Alberto, Sistemas Inteligentes Web (Sintelweb), Guzmán Luna, Jaime Alberto 0000-0003-4737-1119, Uribe Rendón, Andrea 0000-0002-1601-0313, URIBE RENDÓN, ANDREA
مصطلحات موضوعية: 000 - Ciencias de la computación, información y obras generales::001 - Conocimiento, información y obras generales::003 - Sistemas, información y obras generales::005 - Programación, programas, datos de computación, 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería, Aprendizaje automático (Inteligencia artificial), Procesamiento electrónico de datos en la educación, Profesionales de información, Machine learning, Education - Data processing, Information professionals, Aprendizaje ontológico, Transformadores, Incrustación de grafos de conocimiento, Reglas de asociación, E-recruitment, Tecnologías de la información, Redes profesionales, Ontological learning, Transformers, Knowledge Graph Embedding, Association rules, Information Technology, Professional social networks
وصف الملف: xx, 218 p{aginas; application/pdf
Relation: RedCol; LaReferencia; [Python Software Foundation,Ludovico Fabbri, 2022] Python Software Founda- tion,Ludovico Fabbri (2022). https://pypi.org/project/linkedin-jobs-scraper/#us age.; Alfonso-Hermelo et al., 2019a] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019a). Automatically learning a human-resource ontology from professional social-network data. In Canadian Conference on Artificial Intelligence, pages 132–145. Springer.; [Alfonso-Hermelo et al., 2019b] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019b). Automatically learning a human-resource ontology from professional social-network data. In Canadian Conference on Artificial Intelligence, pages 132–145. Springer.; [Alfonso-Hermelo et al., 2019c] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019c). Automatically Learning a Human-Resource Ontology from Professional Social-Network Data, pages 132–145. Springer, Cham.; [Apostolico and Galil, 1997] Apostolico, A. and Galil, Z., editors (1997). Pattern Matching Algorithms. Oxford University Press.; [Arendt et al., 2023] Arendt, L., Ga-lecka-Burdziak, E., Nu´n˜ez, F., Pater, R., and Usabiaga,C. (2023). Skills requirements across task-content groups in poland: What online job offers tell us. Technological Forecasting and Social Change, 187:122245.; [Arnal et al., 2001] Arnal, E., Ok, W., and Torres, R. (2001). Knowledge, work organisation and economic growth. In Internet, economic growth and globalization, pages 327–376. Springer.; [Arroyo Mesa, 2022] Arroyo Mesa, L. (2022). Tendencias actuales en la búsqueda y selección de personal en el ámbito empresarial.; [Asim et al., 2018a] Asim, M. N., Wasim, M., Khan, M. U. G., Mahmood, W., and Abbasi, H. M. (2018a). A survey of ontology learning techniques and applications. Database, 2018. bay101.; [Asim et al., 2018b] Asim, M. N., Wasim, M., Khan, M. U. G., Mahmood, W., and Abbasi, H. M. (2018b). A survey of ontology learning techniques and applications. Database : the journal of biological databases and curation, 2018.; [Balachander and Moh, 2018] Balachander, Y. and Moh, T.-S. (2018). Ontology based si- milarity for information technology skills. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 302–305.; [Bechhofer et al., 2004] Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuin- ness, D. L., Patel-Schneider, P. F., Stein, L. A., et al. (2004). Owl web ontology language reference. W3C recommendation, 10(2):1–53.; [Bernaras et al., 1996] Bernaras, A., Laresgoiti, I., and Corera, J. M. (1996). Building and reusing ontologies for electrical network applications. In European Conference on Artificial Intelligence.; [BERNERS-LEE et al., 2001] BERNERS-LEE, T., HENDLER, J., and LASSILA, 2001). The semantic web. Scientific American, 284(5):34–43.; [Borst, 1999] Borst, W. N. (1999). Construction of engineering ontologies for knowledge sharing and reuse. CKL.; [Brencic and Norris, 2010] Brencic, V. and Norris, J. B. (2010). Do employers change job offers in their online job ads to facilitate search? Economics Letters, 108(1):46–48.; [Brewster et al., 2004] Brewster, C., Alani, H., Dasmahapatra, S., and Wilks, Y. (2004). Data driven ontology evaluation. International Conference on Language Resources and Evaluation, Lisbon, Portugal.; [Bui et al., 2021] Bui, T.-C., Le, V.-D., To, H.-T., and Cha, S. K. (2021). Generative pre- training for paraphrase generation by representing and predicting spans in exemplars. In 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), pages 83–90. IEEE.; [Cañete et al., 2020] Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., and Pérez, J. (2020). Spanish pre-trained bert model and evaluation data. In PML4DC at ICLR 2020.; [CB Insights Research, 2020] CBInsights Research (3deAbrilde2020) https://www.cbinsights.com/research/hr-tech/f.; [Cer et al., 2018] Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John, R. S., Cons- tant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., et al. (2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175.; [Chala, 2018] Chala, S. A. (2018). Bidirectional job matching through unsupervised feature learning. In Master’s thesis. OPUS Siegen Master’s thesis, Universit¨at Siegen, URN 467–12858.; [Chen and Gu, 2021] Chen, J. and Gu, J. (2021). Adol: a novel framework for automatic domain ontology learning. The Journal of Supercomputing, 77(1):152–169.; [Chiatti and Daga, 2022] Chiatti, A. and Daga, E. (2022). Neuro-symbolic learning for dealing with sparsity in cultural heritage image archives: an empirical journey.; [Chow and Chapman, 2013] Chow, S. and Chapman, D. (2013). Gamifying the employee recruitment process. In Proceedings of the First International Conference on Gameful Design, Research, and Applications, pages 91–94.; [Coggle, 2021] Coggle (2021). Dataset validator relevant for iot ontologies. https:// coggle.it/diagram/WZ8ANCiQegABugPa/t/how-to-validate-ontologies.; [Cordero Mena and Yunga Tucto, 2022] Cordero Mena, K. I. and Yunga Tucto, C. M. (2022). Diseño y desarrollo de un chatbot usando redes neuronales y procesamiento de lenguaje natural orientado a entidades bancarias. B.S. thesis.; [Cormen et al., 2022] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to algorithms. MIT press.; [Costabello et al., 2023] Costabello, L., Janik, A., Bayram, E., and Pai, S. (2023). Knowledge graph embeddings for nlp: From theory to practice.; [Costabello et al., 2019] Costabello, L., Pai, S., Van, C. L., McGrath, R., McCarthy, N., and Tabacof, P. (2019). AmpliGraph: a Library for Representation Learning on Knowledge Graphs.; [Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.; [Dong et al., 2020] Dong, H., Wang, W., Coenen, F., and Huang, K. (2020). Knowledge base enrichment by relation learning from social tagging data. Information Sciences, 526:203–220.; [Ebiele et al., 2022] Ebiele, M., McKenna, L., Bendechache, M., and Brennan, R. (2022). Multi-label classification using bert and knowledge graphs with a limited training dataset.; [Ehrlinger and Wo, 2016] Ehrlinger, L. and W¨oß, W. (2016). Towards a definition of know- ledge graphs. SEMANTiCS (Posters, Demos, SuCCESS), 48(1-4):2.; [Erd et al., 2022] Erd, R., Feddoul, L., Lachenmaier, C., and Mauch, M. J. (2022). Evaluation of data augmentation for named entity recognition in the German legal domain.; [Europass, 2017] Europass (22 de Mayo de 2017). https://europa.eu/europass/es/euro pean-qualifications-framework-eqf.; [europass Union Europea, 2022] europass Union Europea (2022). europass. https:// europa.eu/europass/es/find-courses.; [European Commission, 2022] European Commission (27 de Enero de 2022).https://ec.europa.eu/esco/lod/static/model.html.; [European Commission website, 2022] European Commission website (27 de Enero de 2022).https://esco.ec.europa.eu/es/about-esco/what-esco.; [Fajcıkova et al., 2018] Fajcıkova, A., Urbancova, H., and Fejfarova, M. (2018). New trends in the recruitment of employees in Czech ICT organizations. Scientific Papers of the University of Pardubice, Series D: Faculty of Economics and Administration, 26:39–49.; [Faliagka et al., 2012] Faliagka, E., Tsakalidis, A., and Tzimas, G. (2012). An integrated e-recruitment system for automated personality mining and applicant ranking. Internet research; Feng et al., 2020] Feng, F., Yang, Y., Cer, D., Arivazhagan, N., and Wang, W. (2020).Language-agnostic bert sentence embedding. arXiv preprint arXiv:2007.01852.; [Fensel et al., 2020] Fensel, D., S¸im¸sek, U., Angele, K., Huaman, E., K¨arle, E., Panasiuk, O., Toma, I., Umbrich, J., Wahler, A., Fensel, D., et al. (2020). Introduction: what is a knowledge graph? Knowledge graphs: Methodology, tools and selected use cases, pages 1–10.; [Fensel et al., 2001] Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D. L., and Patel-Schneider, P. F. (2001). Oil: An ontology infrastructure for the semantic web. IEEE intelligent systems, 16(2):38–45.; [Fraga, 2016] Fraga, D. C. (2016). Métodos y técnicas para la evaluación del aprendizaje de ontologías de dominio.; [Gao and Chen, 2020] Gao, W. and Chen, Y. (2020). Approximation analysis of ontology learning algorithm in linear combination setting. Journal of Cloud Computing, 9(1):1–10.; [Garceia-Sanchez et al., 2006] García-Sánchez, F., Marteinez-Béjar, R., Contreras, L., Fernández-Breis, J. T., and Castellanos-Nieves, D. (2006). An ontology-based intelligent system for recruitment. Expert Systems with Applications, 31(2):248–263.; [Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge acquisition, 5(2):199–220.; [Guarino, 1997] Guarino, N. (1997). Understanding, building and using ontologies. International journal of human-computer studies, 46(2-3):293–310.; [Gusfield, 1997] Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press.; [Harzallah et al., 2002] Harzallah, M., Leclere, M., and Trichet, F. (2002). Commoncv: modeling the competencies underlying a curriculum vitae. In Proceedings of the 14th international conference on Software engineering and knowledge engineering, pages 65–71.; [Hogan et al., 2021] Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., et al. (2021). Knowledge graphs. ACM Computing Surveys (Csur), 54(4):1–37.; [Howard and Ruder, 2018] Howard, J. and Ruder, S. (2018). Universal language model fine- tuning for text classification. arXiv preprint arXiv:1801.06146.; [Hsu et al., 2021] Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., and Mohamed, A. (2021). Hubert: Self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:3451–3460.; [Hubert et al., 2022] Hubert, N., Monnin, P., Brun, A., and Monticolo, D. (2022). Knowledge graph embeddings for link prediction: Beware of semantics! In DL4KG@ ISWC 2022: Workshop on Deep Learning for Knowledge Graphs, held as part of ISWC 2022: the 21st International Semantic Web Conference.; [HuntersAmericas, 2023] HuntersAmericas (2023). Las fallas en los perfiles de puesto y el impacto de sus resultados. http://www.hlghunters.com/blog/ 96-fallas-perfiles-puestos.; [Jiménez-Ruiz et al., 2012] Jiménez-Ruiz, E., Grau, B. C., Zhou, Y., and Horrocks, I. (2012). Large-scale interactive ontology matching: Algorithms and implementation. In ECAI, volume 242, pages 444–449.; [Jun, 2011] Jun, Z. (2011). Manufacturing process skill systematization based on ontology technology. In 2011 Third International Conference on Measuring Technology and Mechatronics Automation, volume 2, pages 496–499.; [Kahlawi, 2020] Kahlawi, A. (2020). An ontology driven esco lod quality enhancement.; [Kahlawi, 2020] Kahlawi, A. (2020). An ontology driven esco lod quality enhancement. International Journal of Advanced Computer Science and Applications, 11(3).; [Kasereka, 2020] Kasereka, H. (2020). Importance of web scraping in e-commerce and e-marketing. SSRN Electronic Journal.; [Katyshev and Anikin, 2023] Katyshev, A. and Anikin, A. (2023). Modern approaches for concepts and relations extraction for ontology learning. In Novel & Intelligent Digital Systems Conferences, pages 290–296. Springer.; [Khatiwada et al., 2022] Khatiwada, A., Shirai, S., Srinivas, K., and Hassanzadeh, O. (2022). Knowledge graph embeddings for causal relation prediction. In Workshop on Deep Learning for Knowledge Graphs (DL4KG@ ISWC2022).; [Khder, 2021] Khder, M. A. (2021). Web scraping or web crawling: State of art, techniques, approaches and application. International Journal of Advances in Soft Computing & Its Applications, 13(3).; [Kinsta, Maddy Osman, 2022] Kinsta,MaddyOsman(2022). https://kinsta.com/es/blog/estadisticas-de-linkedin/.; [Kumaran and Sankar, 2013] Kumaran, V. S. and Sankar, A. (2013). Towards an automated system for intelligent screening of candidates for recruitment using ontology mapping (expert). International Journal of Metadata, Semantics and Ontologies, 8(1):56–64.; [Lakzaei and Shamsfard, 2021] Lakzaei, B. and Shamsfard, M. (2021). Ontology learning from relational databases. Information Sciences, 577:280–297.; [LAMY, 2019] LAMY, J.-B. (2019). Consultas sparql owlready2. ://owlready2. readthedocs.io/en/v0.37/sparql.html.; [Lawi et al., 2022] Lawi, A., Mesra, H., and Amir, S. (2022). Implementation of long short-term memory and gated recurrent units on grouped time-series data to predict stock prices accurately. Journal of Big Data, 9(1):1–19.; [le Vrang et al., 2014] le Vrang, M., Papantoniou, A., Pauwels, E., Fannes, P., Vandensteen, D., and De Smedt, J. (2014). Esco: Boosting job matching in europe with semantic interoperability. Computer, 47(10):57–64.; [Lievens et al., 2007] Lievens, F., Van Hoye, G., and Anseel, F. (2007). Organizational identity and employer image: Towards a unifying framework. British Journal of Management, 18:S45–S59.; [LinkedIn Corporation, 2022] LinkedInCorporation(2022).https://www.linkedin.com/feed/.; [Liu et al., 2019] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.; [Lopez-Bassols, 2002] Lopez-Bassols, V. (2002). Ict skills and employment. OECD.; [López Bonilla et al., 2012] López Bonilla, M., Guzmán Luna, J. A., and Durley Torres, I. (2012). Metodologías y métodos para la construcción de ontologías. Scientia Et Technica; [Maedche and Staab, 2001] Maedche, A. and Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent systems, 16(2):72–79.; [Manzano-Macho et al., 2008] Manzano-Macho, D., Gomez-Pérez, A., and Borrajo Millán, D. (2008). Unsupervised and domain independent ontology learning: combining heterogeneous sources of evidence. Sixth International Language Resources and Evaluation (LREC’08).; [Maree et al., 2018] Maree, M., Kmail, A. B., and Belkhatir, M. (2018). Analysis and shortcomings of e-recruitment systems: Towards a semantics-based approach addressing knowledge incompleteness and limited domain coverage. Journal of Information Science, 45(6):713–735.; [McGuinness et al., 2002] McGuinness, D. L., Fikes, R., Hendler, J., and Stein, L. A. (2002). Daml+ oil: an ontology language for the semantic web. IEEE Intelligent Systems, 17(5):72– 80.; [McGuinness et al., 2003] McGuinness, D. L., Fikes, R., Stein, L. A., and Hendler, J. A. (2003). Daml-ont: An ontology language for the semantic web. In Spinning the Semantic Web, pages 65–93.; [McGuinness et al., 2004] McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl web ontology language overview. W3C recommendation, 10(10):2004.; [Mhammedi et al., 2021] Mhammedi, S., El Massari, H., and Gherabi, N. (2021). Cb2onto: Owl ontology learning approach from couchbase. In Intelligent Systems in Big Data, Semantic Web and Machine Learning, pages 95–110. Springer.; [Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26.; [Mnih and Kavukcuoglu, 2013] Mnih, A. and Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-contrastive estimation. Advances in neural information processing systems, 26.; [Neches et al., 1991] Neches, R., Fikes, R. E., Finin, T., Gruber, T., Patil, R., Senator, T., and Swartout, W. R. (1991). Enabling technology for knowledge sharing. AI magazine, 12(3):36–36.; [NERI, 2005] NERI, F. (2005). Evaluation of ontolearn, a methodology for automatic learning of domain ontologies. Ontology Learning from Text: Methods, Evaluation and Appli- cations, 123.; [Nordsieck et al., 2022] Nordsieck, R., Heider, M., Hummel, A., and H¨ahner, J. (2022). A closer look at sum-based embeddings for knowledge graphs containing procedural knowledge. In Alam, M., Buscaldi, D., Cochez, M., Osborne, F., and Recupero, D. R., editors, DL4KG 2022 - Deep Learning for Knowledge Graphs 2022: Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG 2022) co-located with the 21th International Semantic Web Conference (ISWC 2022), virtual conference, online, October 24, 2022, page 7.; [Novalija and Grobelnik, 2018] Novalija, I. and Grobelnik, M. (2018). Towards smart statistics in labour market domain. Slovenian KDD Conference on Data Mining and Data Warehouses (SiKDD), Ljubljana 2018.; [Noy and Mcguinness, 2001] Noy, N. and Mcguinness, D. (2001). Ontology development 101: A guide to creating your first ontology. Knowledge Systems Laboratory, 32.; [OECD, 2004] OECD (2004). Information Technology Outlook 2004. OECD. [OECD, 2010] OECD (2010). OECD Information Technology Outlook 2010. OECD.; [OIT, 2022] OIT (2022). Isco international standard classification of occupations. https://www.ilo.org/public/spanish/bureau/stat/isco/index.htm.; [on Information Technology Curricula, 2017] on Information Technology Curricula, T. G. (2017). Information Technology Curricula 2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology. Association for Computing Machinery, New York, NY, USA.; [Organización internacional del trabajo, 2005] Organización internacional del trabajo (30 de Enero de 2005). https://www.ilo.org/public/spanish/bureau/stat/isco/isco08/ index.htm.; [Organization, 2022] Organization, I. L. (2022). Isco international standard classification of occupations. https://www.ilo.org/public/english/bureau/stat/isco/isco08/ index.htm.; [Park et al., 2018] Park, S. H., Kim, B., Kang, C. M., Chung, C. C., and Choi, J. W. (2018). Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-decoder architecture. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1672–1678. IEEE.; [Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational Linguistics.; [Porzel and Malaka, 2004] Porzel, R. and Malaka, R. (2004). A task-based approach for ontology evaluation. In ECAI Workshop on Ontology Learning and Population, Valencia, Spain, pages 1–6. Citeseer.; [Pouliakas, 2021] Pouliakas, K. (2021). Artificial intelligence and job automation: an EU analysis using online job vacancy data. Publications Office of the European Union.; [Prud’hommeaux and Seaborne, 2007] Prud’hommeaux, E. and Seaborne, A. (2007). SPARQL query language for RDF. Live Draft - version.; [Puduppully and Lapata, 2021] Puduppully, R. and Lapata, M. (2021). Data-to-text generation with Macro Planning. Transactions of the Association for Computational Linguistics, 9:510–527.; [Radevski and Trichet, 2006] Radevski, V. and Trichet, F. (2006). Ontology-based systems dedicated to human resources management: An application in e-recruitment. In Meersman, R., Tari, Z., and Herrero, P., editors, On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, pages 1068–1077, Berlin, Heidelberg. Springer Berlin Heidelberg.; [Radziwon et al., 2014] Radziwon, A., Bilberg, A., Bogers, M., and Madsen, E. S. (2014). The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia engineering, 69:1184-1190.; [Ramos et al., 2009] Ramos, E., NAA, H., and CasaA, R. (2009). Esquema para evaluar ontologías para un dominio de conocimiento. Enlace, 6:57 – 71.; [Raza et al., 2020] Raza, M. A., Raza, B., Jabeen, T., Raza, S., and Abbas, M. (2020). Using combined list hierarchy and headings of HTML documents for learning domain-specific ontology. International Journal of Advanced Computer Science and Applications, 11(4).; [Reimers and Gurevych, 2019] Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen- tence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.; [Rentzsch and Staneva, 2020] Rentzsch, R. and Staneva, M. (2020). Skills-matching and skills intelligence through curated and data-driven ontologies. In Proceedings of the DELFI Workshops.; [Revenko et al., 2022] Revenko, A., Mireles, V., Breit, A., Bourgonje, P., Schneider, J., Kh- valchik, M., and Rehm, G. (2022). Learning Ontology Classes from Text by Clustering Lexical Substitutes Derived from Language Models1.; [Rohman et al., 2023] Rohman, M. A., Suhartono, S., and Chamidy, T. (2023). Bidirectional gru dengan attention mechanism pada analisis sentiment pln mobile. Techno. Com, 22(2):358–372.; [Ross, 2021] Ross, L. (2021). 25 emerging recruitment trends in 2021. https://vervoe. com/recruitment-trends-2021/.; [Saeeda et al., 2020] Saeeda, L., Med, M., Ledvinka, M., Blaˇsko, M., and Kˇremen, P. (2020). Entity linking and lexico-semantic patterns for ontology learning. In European Semantic Web Conference, pages 138–153. Springer.; [Salas and Salas, 2020] Salas, A. M. D. L. M. and Salas, L. M. (2020). Brecha de habilidades de los jóvenes en el mercado laboral colombiano. Universitas Económica 018139, Universidad Javeriana - Bogotá.; [Salazar et al., 2015] Salazar, O. M., Jaramillo, J. C., Ovalle, D. A., and Guzmán, J. A. (2015). A case-based multi-agent and recommendation environment to improve the e- recruitment process. In International Conference on Practical Applications of Agents and Multi-Agent Systems, pages 389–397. Springer.; [Sanh et al., 2019] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a dis-tilled version of Bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.; [Seedorf and Schader, 2011] Seedorf, S. and Schader, M. (2011). Towards an enterprise software component ontology. In A Renaissance of Information Technology for Sustainability and Global Competitiveness., volume 5.; [Shakya and Paudel, 2019] Shakya, A. and Paudel, S. (2019). Job-candidate matching using esco ontology. Journal of the Institute of Engineering, 15(1):1–13.; [Sibarani et al., 2017] Sibarani, E. M., Scerri, S., Morales, C., Auer, S., and Collarana, D. (2017). Ontology-guided job market demand analysis: A cross-sectional study for the data science field. In Proceedings of the 13th International Conference on Semantic Systems, Semantics2017, page 25–32, New York, NY, USA. Association for Computing Machinery.; [Singto and Mingkhwan, 2013] Singto, P. and Mingkhwan, A. (2013). Semantic searching it careers concepts based on ontology. Journal of Advanced Management Science, 1:103–106.; [Soni and Swaminarayan, 2017] Soni, H. H. and Swaminarayan, P. R. (2017). ”study of semantic web based e-recruitment system: Review”. International Journal of Advanced Research in Computer Science, 8(9).; [So-lek-Borowska and Wilczewska, 2018] So-lek-Borowska, C. and Wilczewska, M. (2018).New technologies in the recruitment process. Economics and Culture, 15:25–33.; [Tong, 2009] Tong, D. Y. K. (2009). A study of e-recruitment technology adoption in Malaysia. Industrial Management & Data Systems.; [Turney, 2002] Turney, P. D. (2002). Mining the web for synonyms: Pmi-ir versus lsa on toefl. Computer information sciences.; [ul haq Dar and Dorn, 2018] ul haq Dar, E. and Dorn, J. (2018). Ontology based classification system for online job offers. In 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pages 1–8. IEEE.; [Van der Velde, 2020] Van der Velde, L. (2020). Within occupation wage dispersion and the task content of jobs. Oxford Bulletin of Economics and Statistics, 82(5):1161–1197.; [Van Hautte et al., 2020] Van Hautte, J., Schelstraete, V., and Wornoo, M. (2020). Leveraging the inherent hierarchy of vacancy titles for automated job ontology expansion. In Proceedings of the 6th International Workshop on Computational Terminology, pages 37–42, Marseille, France. European Language Resources Association.; [Varen Caballero et al., 2019] Varen Caballero, E., Silega Mart´ınez, N., and Rojas Carbo- nell, R. (2019). Ontología para gestionar la información científica de los recursos humanos en proyectos de desarrollo de software. Serie Científica De La Universidad De Las Ciencias Informáticas, 10(9).; [Vashishth et al., 2018] Vashishth, S., Jain, P., and Talukdar, P. (2018). Cesi: Canonicalizing open knowledge bases using embeddings and side information. In Proceedings of the 2018 World Wide Web Conference, pages 1317–1327; [Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L- ., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.; [Vrandecic, 2009] Vrandecic, D. (2009). Ontology evaluation. In Handbook on ontologies, pages 293–313. Springer.; [Vrolijk et al., 2022] Vrolijk, J., Mol, S. T., Weber, C., Tavakoli, M., Kismihok, G., and Pelucchi, M. (2022). Ontojob: Automated ontology learning from labor market data. In 2022 IEEE 16th International Conference on Semantic Computing (ICSC), pages 195–200.; [W3C, 2012] W3C (2012). Owl 2 web ontology language profiles (second edition). https://www.w3.org/TR/owl2-profiles/.; [Wong et al., 2017] Wong, I. A., Wan, Y. K. P., and Gao, J. H. (2017). How to attract and retain Generation Y employees? an exploration of career choice and the meaning of work. Tourism Management Perspectives, 23:140–150.; [World Wide Web Consortium, “Semantic Web - W3C,” W3.org, 2012] World Wide Web Consortium “Semantic Web-W3C,”W3.org(2012). https://www.w3.org/standards/semanticweb/.; [Xu et al., 2020] Xu, Z., Harzallah, M., Guillet, F., and Ichise, R. (2020). Towards a term clustering framework for modular ontology learning. In Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., and Filipe, J., editors, Knowledge Discovery, Knowledge Engineering and Knowledge Management, pages 178–201, Cham. Springer International Publishing.; [Zhou et al., 2021] Zhou, J., Naseem, T., Fernandez Astudillo, R., Lee, Y.-S., Florian, R., and Roukos, S. (2021). Structure-aware fine-tuning of sequence-to-sequence transformers for transition-based AMR parsing. In Proceedings of the 2021 Conference on Empiri- cal Methods in Natural Language Processing, pages 6279–6290, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics; [Zhou, 2007] Zhou, L. (2007). Ontology learning: State of the art and open issues. Information Technology and Management, 8:241–252.; https://repositorio.unal.edu.co/handle/unal/84814; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
17Dissertation/ Thesis
المساهمون: Lladós, Josep
مصطلحات موضوعية: Intel·ligència Artificial, Algoritmes de Detecció de Comunitats, Similitud de Documents, Sistema de Recomanació, Grafs de Coneixement, Inteligencia Artificial, Algoritmos de Detección de Comunidades, Similitud de Documentos, Sistema de Recomendación, Grafos de Conocimiento, Artificial Intelligence, Community Detection Algorithms, Document Similarity, Recommendation System, Knowledge Graphs
وصف الملف: application/pdf
Relation: https://ddd.uab.cat/record/281551; urn:oai:ddd.uab.cat:281551; urn:tfgcv:1673937
الاتاحة: https://ddd.uab.cat/record/281551
-
18
المؤلفون: Revenko, Artem, Martín-Chozas, Patricia
المصدر: RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)مصطلحات موضوعية: Grafos de Conocimiento, Dominio Jurídico, Legal Domain, Knowledge Graphs, Extracción de Información, Information Extraction, Web Semántica, Semantic Web
-
19
المساهمون: Ramos Terrades, Oriol
المصدر: Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelonaمصطلحات موضوعية: Aprenentatge Automàtic, Inductius, Aprendizaje Profundo, Knowledge Graph, Aprenentatge Profund, Inductivos, Statistics, Estadı́stica, Similarity, Enllaç de Registres, Grafs de Coneixement, Machine Learning, Grafos de Conocimiento, Deep Learning, ER, Enlace de Registros, Record Linkage, SImilitud, Aprendizaje Automático, Inductive
وصف الملف: application/pdf
-
20Dissertation/ Thesis
المساهمون: Ramos Terrades, Oriol
مصطلحات موضوعية: Enllaç de Registres, Aprenentatge Automà tic, Aprenentatge Profund, Inductius, EstadıÌstica, Grafs de Coneixement, ER, Similitud, Enlace de Registros, Aprendizaje Automático, Aprendizaje Profundo, Inductivos, Grafos de Conocimiento, Record Linkage, Machine Learning, Deep Learning, Inductive, Statistics, Knowledge Graph, Similarity
وصف الملف: application/pdf
Relation: https://ddd.uab.cat/record/264630; urn:oai:ddd.uab.cat:264630; urn:tfgcv:201366
الاتاحة: https://ddd.uab.cat/record/264630