يعرض 1 - 19 نتائج من 19 نتيجة بحث عن '"González-Márquez, Luis Carlos"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    مصطلحات موضوعية: Vegetation cover, NDVI, NDMI, Remote sensing, Water contamination

    جغرافية الموضوع: The Guájaro reservoir, Colombia

    وصف الملف: 14 páginas; application/pdf

    Relation: International Journal of Environmental Science and Technology; Alcaldía de Repelón-Atlántico (2016) Información General. http://www.repelon-atlantico.gov.co/informacion_general.shtml#geografa; Alcaldía de Repelón-Atlántico (2017) Información General. http://www.repelonatlantico.gov.co/index.shtml?apc¼gbxx2760911&sh_itm=98bd43dd20b101b40297b595248a69a4&add_disc=1; Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW (2008) Diferences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environ Sci Technol 42(3):822–830. https://doi.org/10.1021/es0716103; Aljahdali MO, Munawar S, Khan WR (2021) Monitoring mangrove forest degradation and regeneration: landsat time series analysis of moisture and vegetation indices at rabigh lagoon. Red Sea Forests 12(52):1–19. https://doi.org/10.3390/f12010052; Anthony A, Atwood J, August P, Byron C, Cobb S, Foster C, FryC, Gold A, Hagos K, Heffner L, Kellogg DQ, Lellis-Dibble K, Opaluch JJ, Oviatt C, Pfeifer-Herbert A, Rohr N, Smith L, Smythe T, Swift J, Vinhateiro N (2009) Coastal lagoons and climate change: ecological and social ramifcations in US Atlantic and Gulf coast ecosystems. Ecol Soc 14(1):8; Bai J, Ouyang H, Xiao R, Gao GJ, H, Cui B, Huang L, (2010) Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China. Aust J Soil Res 48(8):730–736. https://doi.org/10.1071/SR09171; Becker W, Ló T, Johann J, Mercante E (2021) Statistical features for land use and land cover classifcation in Google Earth Engine. Remote Sens Appl Soc Environ. https://doi.org/10.1016/j.rsase. 2020.100459; Bu H, Meng W, Zhang Y, Wan J (2014) Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol Ind 41:187–197. https://doi.org/10.1016/j.ecolind.2014.02.003; Camara M, Jamil NR, Abdullah AFB (2019) Impact of land uses on water quality in Malaysia: a review. Ecol Process 8:10. https://doi. org/10.1186/s13717-019-0164-x; Chu HJ, Liu CY, Wang CK (2013) Identifying the relationships between water quality and land cover changes in the Tseng–Wen reservoir watershed of Taiwan. Int J Environ Res Public Health 10:478–489. https://doi.org/10.3390/ijerph10020478; CRA-Corporación Autónoma Regional del Atlántico (2007) Documentación del estado de las cuencas hidrográfcas en el Departamento del Atlántico. https://www.crautonoma.gov.co/atencion-al-publi co/transparencia-y-acceso-a-informacion-publica/planeacion/ plan-de-ordenamiento-y-manejo-de-las-cuencas-hidrografcas; CRA-Corporación Autónoma Regional del Atlántico (2012) Actualización del Manual de Operaciones del Hidrosistema al cual pertenece el Embalse el Guájaro y llevar a cabo el diseño de las estructuras y sistemas para disminuir la vulnerabilidad de la zona ante eventos climatológicos extremos. Protocolo de operación de las compuertas del embalse el Guájaro. Convenio 003 de 2012, Colombia; CRA-Corporación Autónoma Regional del Atlántico (2014) Diagnóstico inicial para el ordenamiento del embalse El Guájaro y la Ciénaga de Luruaco, Barranquilla, Atlántico. http://www.craut onoma.gov.co/documentos/recurrico/6_Diagn%C3%B3stico% 20Ordenamiento%20.pdf; Foga S, Scaramuzza PL, Guo S, Zhu Z, Dilley RD, Beckmann T, Schmidt GL, Dwyer JL, Joseph Hughes M, Laue B (2017) Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens Environ 194:379–390; Glibert PM, Manager R, Sobota DJ, Bouwman L (2014) The HaberBosch-Harmful algal bloom (HB-HAB) link. Environ Res Lett 9(10):1–13. https://doi.org/10.1088/17489326/9/10/105001. 105001; González-Márquez LC, Torres-Bejarano F, Rodríguez-Cuevas C, Torregroza-Espinosa AC, Sandoval-Romero JA (2018) Estimation of water quality parameters using Landsat 8 images: application to Playa Colorada Bay, Sinaloa, Mexico. Appl Geomat 10(2):147– 158. https://doi.org/10.1007/s12518-018-0211-9; González-Márquez LC, Torres-Bejarano FM, Torregroza-Espinosa AC, Hansen-Rodríguez IR (2018) Rodríguez-Gallegos HB (2018) Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia. J S Am Earth Sci 82:231–238. https://doi.org/10.1016/j.jsames.2018.01.004; Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27. https://doi.org/10. 1016/j.rse.2017.06.031; Gorgoglione A, Gregorio J, Ríos A, Alonso J, Chreties C, Fossati M (2020) Infuence of Land Use/Land Cover on Surface-Water Quality of Santa Lucía River, Uruguay. Sustain MDPI 12(11):4692. https://doi.org/10.3390/su12114692; Haidaryy A, Amiri BJ, Adamowski J, Fohrer N, Nakane K (2013) Assessing the impacts of four land use types on water quality of Wetlands in Japan. Water Resour Manag 27(7):2217–2229. https://doi.org/10.1007/s11269-013-0284-5; Hamid A, Bhat SU, Jehangir A (2020) Local determinants infuencing stream water quality. Appl Water Sci 10(24):1–16. https://doi.org/ 10.1007/s13201-019-1043-4; Hefer P, Prud’homme M (2016) Fertilizer outlook 2016–2010. In: 84th International Fertilizer Industry Association Annual Conference. Moscow (Russia), 30 May–1 June 2016. https://www. fertilizer.org/images/Library_Downloads/2016_IFa_Moscow_ Sum mary.pdf; Hull V, Mocenni C, Falcucci M, Marchettini N (2000) A trophodynamic model for the lagoon of Fogliano (Italy) with ecological dependent modifying parameters. Ecol Model 134:153–167; Hur J, Lee BM, Lee TH, Park DH (2010) Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fuorescence spectra. Sensors 10(4):2460–2471; IGAC-Instituto Geográfco Agustín Codazzi (2008) Estudio general de suelos y zonifcación de tierras. Departamento del Atlántico. Imprenta Nacional de Colombia, Bogotá, 324; Issaka S, Ashraf M (2017) Impact of soil erosion and degradation on water quality: a review. Geol Ecol Landsc 1(1):1–11. https:// doi.org/10.1080/24749508.2017.1301053; Jiménez PAL, Alemany VE, Alberola MC, Solano FJM (2003) Metodología para la calibración de modelos de calidad de aguas. Ingeniería Del Agua 10(4):501–516; Jin Z, Azzari G, You C, Di Tommaso S, Aston S, Burke M, Lobell D (2019) Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens Environ. https:// doi.org/10.1016/j.rse.2019.04.016; Larrahondo-Molina M (1992) Aprovechamiento acuícola de embalsesen Colombia. In: Juárez JR, Varsi E (eds) Avances en el manejo yaprovechamiento acuícola de embalses en América Latina y el Caribe. Proyecto Aquila II. FAO, Organización de las Naciones Unidaspara la Agricultura y la Alimentación, Roma, p 172. https://www.fao.org/3/ab488s/AB488S04.htm; Lassaletta L, Billen G, Grizzetti B, Garnier J, Leach AM, Galloway JN (2014) Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118(1–3):225–241. https://doi.org/10.1007/s10533-013-9923-4; Lastovicka J, Svec P, Paluba D, Kobliuk N, Svoboda J, Hladky R, Stych P (2020) Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sens 12:1914. https://doi.org/10.3390/rs12121914; Li K, Zhang L, Li Y, Zhang L, Wang X (2015) A three-dimensional water quality model to evaluate the environmental capacity of nitrogen and phosphorus in Jiaozhou Bay, China. Mar Pollut Bull 91(1):306–316. https://doi.org/10.1016/j.marpolbul.2014. 11.020; Lopes FB, Andrade EM, Meireles ACM, Becker H, Batista AA (2014) Assessment of the water quality in a large reservoir in semiarid region of Brazil. Revista Brasileira De Engenharia Agrícola Ambiental 18:437–445; Malik S, Pal SC, Das B, Chakrabortty R (2019) Assessment of vegetation status of Sali River basin, a tributary of Damodar River in Bankura District, West Bengal, using satellite data. Environ Dev Sustain 22:5651–5685. https://doi.org/10.1007/ s10668-019-00444-y; Martínez-Mera E, Torregroza-Espinosa A, Castañeda-Valbuena D, Crissien-Borrero T, Torres-Bejarano F (2018) El Distrito de Riego de Repelón. Editorial Universitaria de la Costa, Educosta, Diagnóstico y Evaluación Ambiental de la Actividad Agrícola. Primera Edición, p 208; Martínez-Mera E, Torregroza-Espinosa AC, Crissien-Borrero TC, Marrugo Negrete JL, González-Márquez LC (2019) Evaluation of contaminants in agricultural soils in an Irrigation District in Colombia. Heliyon 5:e02217. https://doi.org/10.1016/j.heliyon. 2019.e02217; Meneses BM, Reis R, Vale MJ, Saraiva R (2015) Land use and land cover changes in Zêzere watershed (Portugal)-Water quality implications. Sci Total Environ 527–528:439–447. https://doi. org/10.1016/j.scitotenv.2015.04.092; Masocha M, Murwira A, Magadza CHD, Hirji R, Dube T (2017) Remote sensing of surface water quality in relation to catchment condition in Zimbabwe. Phys Chem Earth Parts A/B/C 100:13–18. https://doi.org/10.1016/j.pce.2017.02.013; Ministerio de Ambiente y Desarrollo Sostenible (MinAmbiente) (1984) Decreto 1594. Usos del agua y residuos líquidos; Ngoye E, Machiwa JF (2004) The infuence of land-use patterns in the Ruvu river watershed on water quality in the river system. Phys Chem Earth Parts a/b/c 29(15–18):1161–1166. https://doi. org/10.1016/j.pce.2004.09.002; Parson TR, Maitia Y, Lalli CM (1984) A manual of chemical and biological methods for sea water analysis. Pergamonn Press, Oxford, p 135; Quamrul A, Benson B, Visser J, Gang D (2016) Response of estuarine phytoplankton to nutrient and spatio temporal pattern of physicochemical water quality parameters in little Vermilion Bay. Louisiana Ecol Inf 32:79–90; Rodrigues V, Estrany J, Ranzini M, de Cicco V, Martín-Benito JM, Hedo J, Lucas-Borja ME (2018) Efects of land use and seasonality on stream water qualityin a small tropical catchment: the headwater of Córrego Água Limpa, SãoPaulo (Brazil). Sci Total Environ 622–623:1553–1561.https://doi.org/10.1016/J.SCITO TENV.2017.10.028; Romero-Sierra P, Rivas D, Almazán-Becerril A, Hernández-Terrones L (2018) Hydrochemistry and hydrodynamics of a Mexican Caribbean Lagoon: Nichupté Lagoon System. Estuar Coast Shelf Sci 215:185–198; Ruíz-Cabarcas AC, Pabón-Caicedo JD (2013) Efecto de los fenómenos del niño y la niña en la precipitación y su impacto en la producción agrícola del departamento del Atlántico. Colombia Cuadernos De Geografía 22(2):35–54; Sahana M, Dutta S, Sajjad H (2018) Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. Int J Urban Sci 23(2):205–225. https://doi.org/10.1080/12265934.2018.1488604; Shi P, Zhang Y, Li Z, Li P, Xu G (2017) Infuence of land use and land cover patterns on seasonal water quality at multi-spatial scales. CATENA 151:182–190. https://doi.org/10.1016/j.catena.2016. 12.017; Sidi Almouctar MA, Wu Y, Kumar A et al (2021) Spatiotemporal analysis of vegetation cover changes around surface water based on NDVI: a case study in Korama basin, Southern Zinder. Niger Appl Water Sci 11:4. https://doi.org/10.1007/s13201-020-01332-x; Sliva L, Williams DD (2001) Bufer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res 35(14):3462–3472. https://doi.org/10.1016/s0043- 1354(01)00062-8; Spalevic V, Barovic G, Vujacic D, Curovic M, Behzadfar M, Djurovic N, Dudic B, Billi P (2020) The impact of land use changes on soil erosion in the river Basin of Miocki Potok. Montenegro Water 12(2973):1–28. https://doi.org/10.3390/w12112973; Srilert C, Satika B (2018) Impacts of land-use changes on watershed discharge and water quality in a large intensive agricultural area in Thailand. Hydrol Sci J 63(9):1386–1407. https://doi.org/10.1080/ 02626667.2018.1506128; Susilowati S, Sutrisno J, Masykuri M, Maridi M (2018) Dynamics and factors that afects DO-BOD concentrations of Madiun River. AIP Conf Proc 2049:020052. https://doi.org/10.1063/1.5082457; Torregroza-Espinosa AC, Martínez-Mera E, Castañeda-Valbuena D, González-Márquez LC, Torres-Bejarano F (2018) Contamination level and spatial distribution of heavy metals in water and sediments of El Guájaro reservoir, Colombia. Bull Environ Contam Toxicol 101:61–67. https://doi.org/10.1007/s00128-018-2365-x; Torres-Bejarano F, Padilla Coba J, Rodríguez-Cuevas C, Ramírez-León H, Cantero-Rodelo R (2016) La modelación hidrodinámica para la gestión hídrica del embalse del Guájaro, Colombia. Revista Internacional De Métodos Numéricos Para Cálculo y Diseño En Ingeniería 32(3):163–172. https://doi.org/10.1016/j.rimni.2015. 04.001; Trenberth K (2020) National Center for Atmospheric Research Staf. The Climate Data Guide: Nino SST Indices (Nino 1+2, 3, 3.4, 4; ONI and TNI). Last modifed 21 Jan. https://climatedataguide. ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni; Umwali ED, Kurban A, Isabwe A, Mind’je R, Azadi H, Guo Z, Udahogora M, Nyirarwasa A, Umuhoza J, Nzabarinda V, Gasirabo A, Sabirhazi G, (2021) Spatio-seasonal variation of water quality infuenced by land use and land cover in Lake Muhazi. Sci Rep 11:17376. https://doi.org/10.1038/s41598-021-96633-9; Uninorte-Universidad del Norte (2009) Embalse El Guájaro. Diagnóstico hidráulico y ambiental de las condiciones actuales. Gobernación del Atlántico. Secretaría de Agua Potable y Saneamiento Básico, Barranquilla. p 122; United Nations, Department of Economic and Social Afairs, Population Division (2014) World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352). Available at: https:// population.un.org/wup/publications/fles/wup2014-highlights.pdf; USGS (2021) Landsat Missions. Disponible en: https://www.usgs.gov/ core-science-systems/nli/landsat/landsat-8?qt-science_support_ page_related_con=0#qt-science_support_page_related_con; Vermote E, Justice C, Claverie M, Franch B (2016) Preliminary analysis of the performance of the Landsat 8/OLI land surface refectance product. Remote Sensing of Environment 185, 46–56. doi. org/https://doi.org/10.1016/j.rse.2016.04.008; Wang R, Xu T, Yu L, Zhu J, Li X (2013) Efects of land use types on surface water quality across an anthropogenic disturbance gradient in the upper reach of the Hun River, Northeast China. Environmental Monitoring and Assessment, 185: 4141–4151. http://dx. doi. org/https://doi.org/10.1007/s10661-012-2856-x; Weather Spark (2021) El clima de Repelón, Atlántico. Available at: https://es.weatherspark.com/m/22615/5/Tiempo-promedio-enmayo-en-Repel%C3%B3n-Colombia#Sections-Rain.; Whistler JL (1996) A phenological approach to land cover characterization using Landsat mss data for analysis of nonpoint source pollution. Project Report. U.S. Environmental Protection Agency. pp 59. Available at: http://kufs.ku.edu/media/uploads/work/kars_ report_ 96–1.pdf; Wilson EH, Sader SA (2002) Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens Environ 80(3):385–396. https://doi.org/10.1016/s0034-4257(01)00318-2; 3590; 3577; 20; Torres-Bejarano, F., Torregroza-Espinosa, A.C., Martínez-Mera, E. et al. Impact of land cover changes on water quality: an application to the Guájaro reservoir, Colombia. Int. J. Environ. Sci. Technol. 20, 3577–3590 (2023). https://doi.org/10.1007/s13762-022-04535-8; https://hdl.handle.net/11323/9978; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Report

    مصطلحات موضوعية: Agricultural soils, Irrigation district, Colombia

    وصف الملف: application/pdf

    Relation: Ahumada, I., Mendoza, J., Ascar, L. 1999. Sequential extraction of heavy metals in soils irrigated with wastewater. Commun. Soil Sci. Plant Anal., 30, 1507-1519. https://doi.org/10.1080/00103629909370303 Alcaldía de Repelón-Atlántico. 2016. Información general. [Online] Available at: http://www.repelon-atlantico.gov.co/informacion_general.shtml#geografia [Accessed 15 March 2017]. Alcaldía de Repelón-Atlántico. 2017. Información general. [Online] Available at: http://www.repelonatlantico.gov.co/index.shtml?apc=gbxx2760911&sh_itm=98bd43dd20b101b40297b595248a69a4&add_disc=1. [Accessed 20 November 2017]. Alloway, B.J. 2013. Sources of heavy metals and metalloids in soils. In Heavy metals in soils (Alloway, B.J. Ed.). Trace Metals and Metalloids in Soils and their Bioavailability. Third edition. Springer, 11-50. http://doi.org/10.1007/987-94-007-4470-7 Andrades, M., Martínez, E. 2014. Fertilidad del suelo y parámetros que la definen. Tercera Edición. Universidad de la Rioja. Logroño: España, 34. Angelova, V.R., Akova, V.I., Artinova, N.S., Ivanov, K.I. 2013. The effect of organic amendments on soil chemical characteristics. Bulg. J. Agric. Sci., 19, 5, 958-971. Antoniadis, V., Robinson, J., Alloway, B. 2008. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere, 71, 759–764. http://doi:10.1016/j.chemosphere.2007.10.015 Basta, N.T., Ryan, J.A., Chaney, L. 2005. Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J. Environ. Qual, 34, 49–63. Bautista-Cruz, A., Etchevers-Barra, J., Del Castillo, R. F., Gutiérrez, C. 2004. La calidad del suelo y sus indicadores. Ecosistemas, 13, 2, 90-97. Belmonte-Serrato, F., Romero-Díaz, A., Moreno-Brotóns, J. 2010. Contaminación ambiental por estériles mineros en un espacio turístico en desarrollo, la sierra minera de Cartagena-La Unión (sureste de España). Cuad. Turismo, 25, 11-24. Buchman, M.F. 2008. NOAA Screening Quick Reference Tables. [Online] Available at: 8310https://repository.library.noaa.gov/view/noaa/9327. [Accessed 16 November 2017]. Carrillo, R., Cajuste, L. 1995. Behavior of trace metals in soils of Hidalgo, México. J. Environ. Sci. Health. B., 30, 143-155. Castellanos, J. 2016. Manual para la interpretación de análisis de suelo. [Online] Available at: http://www.fec-chiapas.com.mx/sistema/biblioteca_digital/guia-de-interpretacion-de-analisis-de-suelos-y-aguas-intagri-3.pdf/. [Accessed 28 October 2017]. Cornejo, J., Jamet, P. 2000. Pesticide/soil interactions: some current research methods. Institut National de la Recherche Agronomique (INRA). Paris, Francia. Chen, X., Xia, X., Zhao, Y., Zhang P. 2010. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater., 181, 1-3, 640–646. https://doi.org/10.1016/j.jhazmat.2010.05.060 Climate, Data. 2017. National Center for Environmental Information. [Online] Available at: http://es.climate-data.org/location/50352/. [Accessed 1 March 2017]. CRA – CRADIQUE, Corporación Autónoma Regional del Atlántico y Corporación Autónoma del Canal del Dique. 2002. Ministerio del Medio Ambiente – Colombia. 243p. CRA - Corporación Autónoma Regional del Atlántico. 2014. Diagnóstico inicial para el ordenamiento del embalse El Guájaro y la ciénaga de Luruaco. Barranquilla, Atlántico. De Alba, S., Torri, D.; Borselli, L., Lindstrom, M. 2003. Degradación del suelo y modificación de los paisajes agrícolas por erosión mecánica (Tillage erosion). J. Soil Sci. 10, 3, 93-101. FAO-United Nations Food and Agriculture Organization. 2018. World agriculture: towards 2015/2030. In: Food and agriculture in national and international environments. Available at http://www.fao.org/docrep/004/y3557s/y3557s07.htm. [Accessed 29 January 2019]. Galán-Huertos, E., Romero-Baena, A. 2008. Contaminación de suelos por metales pesados. Macla, 10, 48-60. García, Y., Ramírez, W., Sánchez, S. 2012. Indicadores de la calidad de los suelos: una nueva manera de evaluar este recurso. Pastos y Forrajes, 35, 2, 125-138. Gaw, S. K., Wilkins, A. L., Kim, N. D., Palmer, G. T., Robinson, P. 2006. Trace elements and ΣDDT concentrations in horticultural soils from the Tasman, Waikato and Auckland regions of New Zealand. Sci. Total Environ., 355, 1–3, 31-47 https://doi.org/10.1016/j.scitotenv.2005.02.020 Gilden R. C., Huffling K., B. Sattle. 2010. Pesticides and health risks. J. Obstet. Gynecol. Neonatal Nurs., 39, 1, 103-10. https://doi.org/10.1111/j.1552-6909.2009.01092.x Gimeno-García, E., Andreu, V., Boluda, R. 1996. Incidence of heavy metals in the application of inorganic fertilizers to rice farming soils (Valencia, Spain). In: Rodriguez-Barrueco C. (Eds) Fertilizers and Environment. Dev. Plant Soil Sci. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1586-2_85 Guangwei, D., Xiaobing, L., Stephen, H., Jeffrey, N., Dula, A., Baoshan, X. 2006. Effect of cover crop management on soil organic matter. Geoderma, 130, 3-4, 229-239. https://doi.org/10.1016/j.geoderma.2005.01.019 Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res., 14, 975–1001. Hoskins, B. 2017. Interpreting soil test results for gardens and grounds. Maine Soil Testing Service. University of Maine. [Online] Available at https://extension.umaine.edu/gardening/manual/soils/interpretting-soil-tests/. [Accessed 19 November 2017]. ICA-Instituto Colombiano Agropecuario. [Online] Available at https://www.ica.gov.co/getdoc/b2e5ff99-bd80-45e8-aa7a-e55f0b5b42dc/PLAGUICIDAS-PROHIBIDOS.aspx. [Accessed 19 November 2017]. IDEAM- Instituto de Hidrología, Meteorología y Estudios Ambientales. 2017. Estudio Nacional del Agua. Bogotá a, D.C. 253p. IGAC- Instituto Geográfico Agustín Codazzi. 2006. Métodos Analíticos del Laboratorio de Suelos Sexta edición. Bogotá: Imprenta Nacional de Colombia. 647p. IGAC- Instituto Geográfico Agustín Codazzi. 2008. Estudio general de suelos y zonificación de tierras. Departamento del Atlántico. Bogotá: Imprenta Nacional de Colombia. 324p. Iqbal, J., Saleem, M., Shah, M.H. 2016. Spatial distribution, environmental assessment and source identification of metals content in surface sediments of freshwater reservoir, Pakistan. Chem. Erde-Geochem, 76, 1, 171–177. http://doi.org/10.1016/j.chemer.2016.02.002 Iwata, S., Tabuchi, T., Warkentin, B.P. 1994. Soil-Water Interactions: Mechanisms Applications. Second edition. CRC, Press, New York. 464p. Jaurixje, M., Torres, D., Mendoza, B., Henríquez, M., Contreras, J. 2013. Propiedades físicas y químicas del suelo y su relación con la actividad biológica bajo diferentes manejos en la zona de Quíbor, Estado Lara. Bioagro, 25, 1, 47-56. Jiao, W., Chen, W., Chang, A.C., Page, A.L. 2012. Environmental risks of trace elements associated with long-term phosphate fertilizer applications: a review. Environ. Pollut., 168, 44-53. https://doi.org/10.1016/j.envpol.2012.03.052. Jung, M.C. 2008. Heavy Metal concentrations in soils and factors affecting metal uptake by plants in the Vicinity of a Korean Cu-W Mine. Sensors (Basel), 8, 4, 2413–2423. Kabata-Pendias, A. 2011. Trace elements in soils and plants. Fourth edition. CRC, Press, Boca Ratón, FL, USA., 505p. Kashem, M.A., Singh, B.R. 2001. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycl. Agroecosys., 61, 3, 247-255. https://doi.org/10.1023/A:1013762204510 Kim, H.K., Jang, T.I., Kim, S.M., Park, S.W. 2015. Impact of domestic wastewater irrigation on heavy metal contamination in soil and vegetables. Environ. Earth Sci., 73, 5, 2377-2383. https://doi.org/10.1007/s12665-014-3581-2 Marković, M., Cupać, C., Đurović, R., Milinović, J., Kljajić, P. 2010. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia. Arch. Environ. Contam. Toxicol., 58, 2, 341-51. http://doi.org/10.1007/s00244-009-9359 Marrugo-Negrete, J. Pinedo-Hernández, J., Díez, S. 2017. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res., 154, 380-388. http://dx.doi.org/10.1016/j.envres.2017.01.021. Martínez, E., Fuente, J., Acevedo, E. 2008. Carbono orgánico y propiedades del suelo. J. Soil Sci. Plant Nutr., 8, 1, 68-96. Martínez-Mera, E.A., Torregroza-Espinosa, A.C., Valencia-García, A., Rojas-Gerónimo, L. 2017. Distribution of nitrogen fixing bacterial isolates and its relationship to the physicochemical characteristics of southern agricultural soils of the Atlántico department, Colombia. Soil Environ., 36, 2, 174-181. http://doi.org/10.25252/SE/17/51202 Melo, V.F.; Novais, R.F.; Fontes, M.P.F.; Schaefer, C.E.G.R. 2000. Potassium and magnesium minerals from sand and silt fractions of different soils. Rev. Bras. Cienc. Solo., 24: 269-284. http://dx.doi.org/10.1590/S0100-06832000000200004 Mir-Mohammad, A., Mohammad-Lokman, A., Md.-Saiful, I., Md.-Zillur, R. 2016. Preliminary assessment of heavy metal in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manage., 5, 27-35. https://doi.org/10.1016/j.enmm.2016.01.002 Müller, G. 1981. Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflu¨sse. Chem. Ztg., 6, 157– 64. McKenzie, R. 2013. Soil Salinity - Causes and Management. [Online] Available at http://www.thecropsite.com/articles/1500/soil-salinity-causes-and-management/. [Accessed 12 December 2017]. Narváez, J., Palacio, J., Molina, F. 2012. Environmental persistence of pesticides and their ecotoxicity: A review of natural degradation processes. Gest. Ambiente, 15, 3, 27-38. Narwal, R.P., Singh, B.R., Selbu, B. 1999. Association of Cd, Zn, Cu y Ni with components in naturally heavy metal rich soils studied by parallel and sequential extraction. Commun. Soil Sci. Plant Anal., 30, 1209-1230. https://doi.org/10.1080/00103629909370279 Nederlof, M.M., Van-Riemsdijk, W.H., De Haan, F.A.M. 1993. Effect of pH on the bioavailability of eetals in soils. In: Eijsackers, H.J.P. Hamers T. (Eds) Integrated Soil and Sediment Research: A Basis for Proper Protection. Soil and Environment, Springer, Dordrecht. Novello, O.A., Quintero, C. E. 2009. Contenidos de fósforo total en suelos distrito Villa Eloisa (Santa Fé). Inf. Agronómicas, 41, 11-15. NTC-Norma Técnica Colombiana - 5264. 2008. Calidad de Suelo, Determinación del pH. Bogotá, D. C, Colombia. NTC-Norma Técnica Colombiana - 5889. 2011. Análisis de Suelos, Determinación del Nitrógeno Total. Bogotá, D. C, Colombia. 8p. NTC-Norma Técnica Colombiana - 5268. 2014. Calidad de Suelo. Determinación de la capacidad de intercambio catiónico. Bogotá, D. C, Colombia. 8p. Olsen, S.R., C.V. Cole, F.S. Watanabe., Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture Circ. 939. Poot, A., Gillissen, F., Koelmans, A. 2007. Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system. Environ Pollut., 148, 779–787. http://dx.doi.org/10.1016/j.envpol.2007.01.045 Puga, S., Sosa, M., Lebgue, T., Quintana, C., Campos, A. 2006. Contaminación por metales pesados en el suelo provocado por la industria minera. Ecología Aplicada, 5, 1–2, 149-155. Reichaman, M.S. 2002. The responses of plants to metals toxicity: A review focusing on copper, manganese and zinc. Australian Minerals and Energy Environment Foundation 54p. Melbourne, Australia. Roqueme, J., Pinedo, J., Marrugo, J., Aparicio, A. 2014. Metales pesados en suelos agrícolas del valle medio y bajo del rio Sinú, departamento de Córdoba. Memorias del II Seminario de Ciencias Ambientales Sue-Caribe & VII Seminario Internacional de Gestión Ambiental, 2014. Universidad de Córdoba, Montería. Colombia. Rueda-Saá, G., Rodríguez-Victoria, J.A., Madriñán-Molina, R. 2011. Methods for establishing baseline values for heavy metals in agricultural soils: Prospects for Colombia. AcAg., 60, 3, 203-218. Ruíz-Cabarcas, A.C., Pabón-Caicedo, J.D. 2013. Efecto de los fenómenos del niño y la niña en la precipitación y su impacto en la producción agrícola del departamento del Atlántico, Colombia. Cuad. Geogr., 22, 2, 35–54. Silva S.M., Correa F.J. 2009. Análisis de la contaminación del suelo: revisión de la normativa y posibilidades de regulación económica. Semestre Económico, 12, 23, 13-34 Silveira, M., Alleoni, L., Guilherme, L. 2003. Biosolids and heavy metals in soils. Sci. Agric. (Piracicaba, Braz.), 60, 4, 793–806. http://dx.doi.org/10.1590/S0103-90162003000400029 Simón, M., Peralta, N., Costa, J.L. 2013. Relación entre conductividad eléctrica aparente con propiedades del suelo y nutrientes. Cienc. Suelo, 31, 1, 45-55. Suñer, L., Galantini, J., Rosell, R., Chamadoira. M. 2001. Cambios en el contenido de las formas de fósforo en suelos de la región semiárida pampeana cultivados con trigo. Revista Fac. Agron., 104, 2, 113-119. Sparks, D. L. 2003. Environmental Soil Chemistry. Second edition. CA: Academic Press. San Diego, CA., 352. Takáč, P., Szabová, T., Kozáková, Ľ., Benková, M. 2009. Heavy metals and their bioavailability from soils in the long-term polluted Central Spiš region of SR. Plant Soil Environ., 55, 4, 167-172 Tomlinson, D.C., Wilson, D.J., Harris, C.R., Jeffrey D.W. 1980. Problem in heavy metals in estuaries and the formation of pollution index. Helgol. Wiss. Meeres., 33, 1–4, 566–575. Torregroza‑Espinosa, A.C., Martínez‑Mera, E.A., Castañeda‑Valbuena, D., González Márquez, L.C., Torres‑Bejarano, F.M. 2018. Contamination level and spatial distribution of heavy metals in wáter and sediments of El Guájaro Reservoir, Colombia. Bull. Environ. Contam. Toxicol., 101, 61-67. https://doi.org/10.1007/s00128-018-2365-x UPRA–Unidad de Planificación Rural Agropecuaria. 2013. Uso agrícola. En UPRA, Leyenda de usos agropecuarios del suelo. Bogotá: Imprenta Nacional. US-EPA, United States-Environmental Protection Agency. 2007a. SW-846 Test Method 8081B: Organochlorine pesticides by gas chromatography. p 57. US-EPA, United States-Environmental Protection Agency. 2007b. SW-846 Test Method 8141B: Organophosphorus pesticides by gas chromatography. p. 57. US-EPA, United States-Environmental Protection Agency. 2007c. SW-846 Test Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. p. 30. US-EPA, United States-Environmental Protection Agency. 2007d. SW-846 Test Method 7471B: Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique). p. 11. Uzcátegui, J., Araujo, Y., Mendoza, L. 2011. Residuos de plaguicidas organoclorados y su relación con paramétros físicoquímicos en suelos del municipio Pueblo Llano, Estado Mérida. Bioagro, 23, 2, 115-120. Vallejo, P., Vásquez, L., Correa, I., Bernal, G., Alcántara, J., Palacio, J. 2016. Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: spatial distribution of trace metals in the Gulf of Urabá, Colombia. Mar. Pollut. Bull., 111(1-2), 311-320. https://doi.org/10.1016/j.marpolbul.2016.06.093 Wu, G., Wu, J.Y., Shao, H.B. 2012. Hazardous heavy metal distribution in Dahuofang Catchment, Fushun, Liaoning, an important industry city in China: A Case Study. Clean - Soil, Air, Water, 40, 12, 1372–1375. http://doi.org/ 10.1002/clen.201000589 Yacomelo, M. 2014. Riesgo toxicológico en personas expuestas, a suelos y vegetales, con posibles concentraciones de metales pesados, en el sur del Atlántico, Colombia. Tesis Maestría. Universidad Nacional de Colombia. Yap, B.P., Sim, C.H. 2011. Comparisons of various types of normality tests. J. Stat. Comput. Sim., 81, 12, 2141-2155. https://doi.org/10.1080/00949655.2010.520163.ord Weather Online. 2018. Available at https://www.worldweatheronline.com/lang/en-au/repelon-weather-averages/atlantico/co.aspx [Accessed 04 March 2018]. Wuana, R.A., Okieimen, F.E. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Notices. Article ID 402647, 20 pages.; http://hdl.handle.net/11323/5232; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  10. 10
    Academic Journal
  11. 11
    Book

    وصف الملف: application/pdf

    Relation: http://www.iiec.unam.mx/; http://ru.iiec.unam.mx/1885/; http://ru.iiec.unam.mx/1885/4/AgriContAguaImprenta11oct12.pdf; http://ru.iiec.unam.mx/1885/1/AGRIContAgua-IMPRESI%C3%93N-12-10-2012.pdf; http://ru.iiec.unam.mx/1885/3/ANEXO.pdf; Pérez Espejo, Rosario; Aguilar Ibarra, Alonso; Hansen, Anne M.; González Rodríguez, Consuelo; González Márquez, Luis Carlos; Bernal González, Marisela; Santos Baca, Andrea y Jara Durán, Alethya (2012) Agricultura y contaminación del agua. UNAM Instituto de Investigaciones Económicas, México, D.F. ISBN 978-607-02-3550-4 (En Prensa); http://biblioteca.clacso.edu.ar/gsdl/cgi-bin/library.cgi?a=d&c=mx/mx-030&d=1885oai

  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
  19. 19

    المساهمون: Hansen Hansen, Anne Margrethe, Siebe, Christina, Iturbe Argüelles, María del Rosario

    المصدر: Universidad Nacional Autónoma de México
    UNAM
    Repositorio de Tesis DGBSDI, Dirección General de Bibliotecas y Servicios Digitales de Información, UNAM

    مصطلحات موضوعية: Ciencias Físico-Matemáticas e Ingenierías, Suelos

    وصف الملف: application/pdf