يعرض 1 - 20 نتائج من 172 نتيجة بحث عن '"Glycerol Derivatives"', وقت الاستعلام: 0.65s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal

    المصدر: Sedghi , R , Shahbeik , H , Rastegari , H , Rafiee , S , Peng , W , Nizami , A S , Gupta , V K , Chen , W H , Lam , S S , Pan , J , Tabatabaei , M & Aghbashlo , M 2022 , ' Turning biodiesel glycerol into oxygenated fuel additives and their effects on the behavior of internal combustion engines : A comprehensive systematic review ' , Renewable and Sustainable Energy Reviews , vol. 167 , 112805 . https://doi.org/10.1016/j.rser.2022.112805

    وصف الملف: application/vnd.openxmlformats-officedocument.wordprocessingml.document

  4. 4
    Academic Journal

    المؤلفون: Usme Contreras, Juan Diego

    المساهمون: Romero Malagón, Eduard Ricardo, LABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍA

    وصف الملف: application/pdf

    Relation: [1] M. Valdivia, J. L. Galan, J. Laffarga, and J. L. Ramos, “Biofuels 2020: Biorefineries based on lignocellulosic materials,” Microb. Biotechnol., vol. 9, no. 5, pp. 585–594, 2016, doi:10.1111/1751-7915.12387; [2] B. Satari, K. Karimi, and R. Kumar, Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: A review, vol. 3, no. 1. Royal Society of Chemistry, 2019; [3] B. Abdullah et al., “Fourth generation biofuel: A review on risks and mitigation strategies,” Renew. Sustain. Energy Rev., vol. 107, no. November 2018, pp. 37–50, 2019, doi:10.1016/j.rser.2019.02.018; [4] H. A. Alalwan, A. H. Alminshid, and H. A. S. Aljaafari, “Promising evolution of biofuel generations. Subject review,” Renew. Energy Focus, vol. 28, no. 00, pp. 127–139, 2019, doi:10.1016/j.ref.2018.12.006; [5] D. Kumari and R. Singh, “Pretreatment of lignocellulosic wastes for biofuel production: A critical review,” Renew. Sustain. Energy Rev., vol. 90, no. May 2017, pp. 877–891, 2018, doi:10.1016/j.rser.2018.03.111; [6] D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. Kumar Sharma, and A. Jhalani, “A review on feedstocks, production processes, and yield for different generations of biodiesel,” Fuel, vol. 262, no. October, p. 116553, 2020, doi:10.1016/j.fuel.2019.116553; [7] J. A. Posada-Duque and C. A. Cardona-Alzate, “Análisis de la refinación de glicerina obtenida como coproducto en la producción de biodiesel,” Ing. y Univ., vol. 14, no. 1, pp. 9–28, 2010, doi: 0123-2126; [8] C. J. A. Mota, B. Peres Pinto, and A. L. de Lima, Glycerol. Cham: Springer International Publishing, 2017; [9] C. A. G. Quispe, C. J. R. Coronado, and J. A. Carvalho, “Glycerol: Production, consumption, prices, characterization and new trends in combustion,” Renew. Sustain. Energy Rev., vol. 27, pp. 475–493, 2013, doi:10.1016/j.rser.2013.06.017; [10] R. Christoph, B. Schmidt, U. Steinberner, W. Dilla, and R. Karinen, “Glycerol,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012; [11] R. Ciriminna and M. Pagliaro, “Sustainable Production of Glycerol,” in Encyclopedia of Inorganic and Bioinorganic Chemistry, Chichester, UK: John Wiley & Sons, Ltd, 2016, pp. 1–8; [12] M. Pagliaro, Mario; Rossi, The Future of Glycerol. Cambridge: Royal Society of Chemistry, 2010; [13] P. J. Linstrom and W. G. Mallard, “NIST Chemistry WebBook, NIST Standard Reference Database Number 69,” National Institute of Standards and Technology, Gaithersburg MD, 20899, 2018; [14] K. Schumann and K. Siekmann, “Soaps,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2000; [15] P. S. Kong, M. K. Aroua, and W. M. A. W. Daud, “Conversion of crude and pure glycerol into derivatives: A feasibility evaluation,” Renew. Sustain. Energy Rev., vol. 63, pp. 533–555, 2016, doi:10.1016/j.rser.2016.05.054; [16] X. Luo, X. Ge, S. Cui, and Y. Li, “Value-added processing of crude glycerol into chemicals and polymers,” Bioresour. Technol., vol. 215, pp. 144–154, 2016, doi:10.1016/j.biortech.2016.03.042; [17] O. Gómez De Miranda Jiménez De Aberasturi, “Síntesis De Carbonato De Glicerol a Partir De Glicerol Y Derivados De Co2 Y Glicerol,” Universidad del País Vasco. Tecnalia. 2012; [18] OleoLine (R) HB International SA, “Glycerine market report,” Hong Kong, 2017. https://www.oleoline.com/products/Crude-Glycerine-Market-Report-7.html; [19] Ö. D. Bozkurt, F. M. Tunç, N. Bağlar, S. Çelebi, İ. D. Günbaş, and A. Uzun, “Alternative fuel additives from glycerol by etherification with isobutene: Structure–performance relationships in solid catalysts,” Fuel Process. Technol., vol. 138, no. 2015, pp. 780–804, Oct. 2015, doi:10.1016/j.fuproc.2015.06.047; [20] Kusch-Brandt, Urban Renewable Energy on the Upswing: A Spotlight on Renewable Energy in Cities in REN21’s “Renewables 2019 Global Status Report,” vol. 8, no. 3. 2019; [21] Oleoline, “Crude Glycerine Market Report :: Oleoline,” Hong Kong, 2019. https://www.oleoline.com/products/Crude-Glycerine-Market-Report-7.html; 22; 23; 24; [25] A. Dibenedetto, A. Angelini, M. Aresta, J. Ethiraj, C. Fragale, and F. Nocito, “Converting wastes into added value products : from glycerol to glycerol carbonate , glycidol and epichlorohydrin using environmentally friendly synthetic routes,” Tetrahedron, vol. 67, no. 6, pp. 1308–1313, 2011, doi:10.1016/j.tet.2010.11.070; [26] A. Hejna, P. Kosmela, K. Formela, Ł. Piszczyk, and J. T. Haponiuk, “Potential applications of crude glycerol in polymer technology–Current state and perspectives,” Renewable and Sustainable Energy Reviews, vol. 66. pp. 449–475, 2016, doi:10.1016/j.rser.2016.08.020; [27] M. Anitha, S. K. Kamarudin, and N. T. Kofli, “The potential of glycerol as a value-added commodity,” Chem. Eng. J., vol. 295, pp. 119–130, 2016, doi:10.1016/j.cej.2016.03.012; [28] H. Zhang and M. W. Grinstaff, “Recent Advances in Glycerol Polymers : Chemistry and Biomedical Applications,” pp. 1906–1924, 2014; [29] X. P. Ye and S. Ren, “Value-Added Chemicals from Glycerol,” Soy-Based Chem. Mater., pp. 43–80, 2014, doi:10.1021/bk-2014-1178.ch003; [30] A. Bevilacqua, V. Aragão-leoneti, S. Valle, W. Borges, and D. Oliveira, “Glycerol as a by-product of biodiesel production in Brazil : Alternatives for the use of unre fi ned glycerol,” Renew. Energy, vol. 45, pp. 138–145, 2012, doi:10.1016/j.renene.2012.02.032; [31] E. S. Vasiliadou and A. A. Lemonidou, “Glycerol transformation to value added C 3 diols : reaction mechanism , kinetic ,” vol. 4, no. December, 2015, doi:10.1002/wene.159; [32] Y. Zheng, X. Chen, and Y. Shen, “Commodity Chemicals Derived from Glycerol, an Important Biorefinery Feedstock,” Chem. Rev., vol. 110, no. 3, pp. 1807–1807, Mar. 2010, doi:10.1021/cr100058u; [33] X. Li and Y. Zhang, “Highly Efficient Process for the Conversion of Glycerol to Acrylic Acid via Gas Phase Catalytic Oxidation of an Allyl Alcohol Intermediate,” ACS Catal., vol. 6, no. 1, pp. 143–150, 2016, doi:10.1021/acscatal.5b01843; [34] H. Liu et al., “Hydrogenolysis of Glycerol to 1 , 2-Propanediol over Ru – Cu Bimetals Supported on Different Supports,” vol. 40, no. 3, pp. 318–324, 2012, doi:10.1002/clen.201000227; [35] A. Gonzalez-Garay, M. Gonzalez-Miquel, and G. Guillen-Gosalbez, “High-Value Propylene Glycol from Low-Value Biodiesel Glycerol: A Techno-Economic and Environmental Assessment under Uncertainty,” ACS Sustain. Chem. Eng., vol. 5, no. 7, pp. 5723–5732, Jul. 2017, doi:10.1021/acssuschemeng.7b00286; [36] B. Katryniok, S. Paul, and F. Dumeignil, “Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein,” ACS Catal., vol. 3, no. 8, pp. 1819–1834, Aug. 2013, doi:10.1021/cs400354p; [37] L. G. Possato, T. F. Chaves, W. H. Cassinelli, S. H. Pulcinelli, C. V Santilli, and L. Martins, “The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites,” Catal. Today, vol. 289, pp. 20–28, 2017, doi:10.1016/j.cattod.2016.08.005; [38] L. Liu, X. P. Ye, and J. J. Bozell, “A Comparative Review of Petroleum-Based and Bio-Based Acrolein Production,” ChemSusChem, vol. 5, no. 7, pp. 1162–1180, Jul. 2012, doi:10.1002/cssc.201100447; [39] A. Martin, U. Armbruster, and H. Atia, “Recent developments in dehydration of glycerol toward acrolein over heteropolyacids,” Eur. J. Lipid Sci. Technol., vol. 114, no. 1, pp. 10–23, Jan. 2012, doi:10.1002/ejlt.201100047; [40] M. K. Munshi, S. T. Lomate, R. M. Deshpande, V. H. Rane, and A. A. Kelkar, “Synthesis of acrolein by gas-phase dehydration of glycerol over silica supported Bronsted acidic ionic liquid catalysts,” J. Chem. Technol. Biotechnol., vol. 85, no. 10, pp. 1319–1324, Oct. 2010, doi:10.1002/jctb.2434; [41] G. P. Fernandes and G. D. Yadav, “Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide as catalyst,” Catal. Today, no. March, pp. 1–8, 2017, doi:10.1016/j.cattod.2017.08.021; [42] J. Hu et al., “Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2(phen)/KI,” Appl. Catal. A Gen., vol. 386, no. 1–2, pp. 188–193, Sep. 2010, doi:10.1016/j.apcata.2010.07.059; [43] Y. Yi, Y. Shen, J. Sun, B. Wang, F. Xu, and R. Sun, “Basic ionic liquids promoted the synthesis of glycerol 1 , 2 ‐ carbonate from glycerol,” Chinese J. Catal., vol. 35, no. 5, pp. 757–762, 2014, doi:10.1016/S1872-2067(14)60036-X; [44] G. Olga, A. Pesquera-rodr, and C. Ram, “Solvent-free synthesis of glycerol carbonate and glycidol from 3-chloro-1 , 2-propanediol and potassium ( hydrogen ) carbonate a Jos e,” no. March, pp. 1663–1670, 2010, doi:10.1002/jctb.2478; [45] P. P. Florez-rodriguez, A. J. Pamphile-adrián, and F. B. Passos, “Glycerol conversion in the presence of carbon dioxide on alumina supported nickel catalyst,” Catal. Today, vol. 237, pp. 38–46, 2014, doi:10.1016/j.cattod.2013.12.026; [46] Y. Sun, X. Tong, Z. Wu, J. Liu, Y. Yan, and S. Xue, “A Sustainable Preparation of Glycerol Carbonate from Glycerol and Urea Catalyzed by Hydrotalcite-Like Solid Catalysts,” vol. 300384, pp. 263–268, 2014, doi:10.1002/ente.201300135; [47] M. L. Tao, H. Y. Guan, X. H. Wang, Y. C. Liu, and R. F. Louh, “Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esterification,” Fuel Process. Technol., vol. 138, pp. 355–360, 2015, doi:10.1016/j.fuproc.2015.06.021; [48] A. M. Borreguero, A. De Lucas, J. F. Rodríguez, and D. Sim, “Valorization of crude glycerol as a novel transesteri fi cation agent in the glycolysis of polyurethane foam waste,” vol. 121, pp. 126–136, 2015, doi:10.1016/j.polymdegradstab.2015.09.001; [49] S. Guidi, R. Calmanti, M. No??, A. Perosa, and M. Selva, “Thermal (catalyst-free) transesterification of diols and glycerol with dimethyl carbonate: A flexible reaction for batch and continuous-flow applications,” ACS Sustain. Chem. Eng., vol. 4, no. 11, pp. 6144–6151, 2016, doi:10.1021/acssuschemeng.6b01633; [50] J. R. Ochoa-Gómez et al., “Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization,” Appl. Catal. A Gen., vol. 366, no. 2, pp. 315–324, Sep. 2009, doi:10.1016/j.apcata.2009.07.020; [51] K. Y. Nandiwale, S. E. Patil, and V. V Bokade, “Glycerol Etherification using n -Butanol to Produce Oxygenated Additives for Biodiesel Fuel over H-Beta Zeolite Catalysts,” Energy Technol., vol. 2, no. 5, pp. 446–452, May 2014, doi:10.1002/ente.201300169; [52] M. Pagliaro, “C3-Mononmers,” in Glycerol, Amsterdam: Elsevier, 2017, pp. 23–57; [53] A. S. Dukhanin, V. Y. Shilo, V. B. Nikitin, and G. N. Engalycheva, “Mechanisms of the vasodilator effect of nitroglycerin and chlorpromazine and specificities of their interaction in a model of isolated rat thoracic aorta,” Bull. Exp. Biol. Med., vol. 118, no. 3, pp. 972–975, Sep. 1994, doi:10.1007/BF02445788; [54] M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, and C. Della Pina, “Minireviews Glycerol Chemistry From Glycerol to Value-Added Products,” no. May 2002, pp. 4434–4440, 2007, doi:10.1002/anie.200604694; [55] J. A. Hernández Mora, J. C. Acevedo Páez, C. F. Valdés Rentería, and F. R. Posso Rivera, “Evaluación de rutas alternativas de aprovechamiento de la glicerina obtenida en la producción de biodiésel: una revisión,” Ing. y Desarro., vol. 33, no. 1, pp. 126–148, 2015, doi:10.14482/inde.33.1.5573; [56] G. Hammer et al., “Natural Gas,” in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 2003, no. Ieo 2003, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, p. Vol 24. 177-223; [57] M. B. Viana, A. V. Freitas, R. C. Leitão, G. A. S. Pinto, and S. T. Santaella, “Anaerobic digestion of crude glycerol: a review,” Environ. Technol. Rev., vol. 1, no. 1, pp. 81–92, 2012, doi:10.1080/09593330.2012.692723; [58] S. Nartker, M. Ammerman, J. Aurandt, M. Stogsdil, O. Hayden, and C. Antle, “Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry,” Waste Management, vol. 34, no. 12. pp. 2567–2571, 2014, doi:10.1016/j.wasman.2014.08.017; [59] Y.-Y. T. Julio-César Pérez Angulo, Manuel-E Cabarcas Simancas, Jesus Archila Castro, “‘ Gas To Liquids – Gtl ,’” CT&F-Ciencia,Tecnología y Futuro, vol. 3, no. 1. pp. 7–23, 2005; [60] “BioMCN.” [Online]. Available: https://www.biomcn.eu/process/; [61] H. Hiller, R. Reimert, and H.-M. Stönner, “Gas Production, 1. Introduction,” in Ullmann’s Encyclopedia of Industrial Chemistry, no. Ref 1, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011, pp. 335–340; [62] R. R. Soares, D. A. Simonetti, and J. A. Dumesic, “Glycerol as a source for fuels and chemicals by low-temperature catalytic processing,” Angew. Chemie - Int. Ed., vol. 45, no. 24, pp. 3982–3985, 2006, doi:10.1002/anie.200600212; [63] M. E. Dry, “Fischer-Tropsch Synthesis - Industrial,” in Encyclopedia of Catalysis, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010; [64] F. Bastan, M. Kazemeini, and A. S. Larimi, “Aqueous-phase reforming of glycerol for production of alkanes over Ni/Ce x Zr 1-x O 2 nano-catalyst: Effects of the support’s composition,” Renew. Energy, vol. 108, pp. 417–424, Aug. 2017, doi:10.1016/j.renene.2017.02.076; [65] E. Yu, Ruey; Van Scott, “ENLARGEMENT OF MUCOCUTANEOUS OR CUTANEOUS ORGANS AND SITES WITH TOPICAL COMPOSITIONS,” 2005; [66] T. Fukuoka et al., “Synthesis and Interfacial Properties of Monoacyl Glyceric Acids as a New Class of Green Surfactants,” J. Oleo Sci., vol. 61, no. 6, pp. 343–348, 2012, doi:10.5650/jos.61.343; [67] C. Zhu, S. Chiu, J. P. Nakas, and C. T. Nomura, “Bioplastics from Waste Glycerol Derived from Biodiesel Industry,” pp. 1–13, 2013, doi:10.1002/app.39157; [68] A. Milne, Jill C.; Jirousek, Michael R.; Bemis, Jean E.; Vu, Chi B.; Ting, “FATTY ACID AMIDES, COMPOSITIONS AND METHODS OF USE,” US2013059801 (A1), 2013; [69] E. B. Wechter, William J.; Schwartz, “R-NSAID esters and their use,” 2004. US20040067914A1; [70] P. Philippe, Michel; Malle, Gerard; Barbarat, “PROCESS FOR STRAIGHTENING KERATIN FIBRES WITH A HEATING MEANS AND DENATURING AGENTS,” 2010. US2010028280 (A1); [71] L. Voisin, Sébastien; Feuillette, “COSMETIC COMPOSITION COMPRISING AT LEAST ONE ELASTOMERIC POLYURETHANE AND AT LEAST ONE CATIONIC POLYMER. US2012/0128616A1.2012; [72] H. Habe, T. Fukuoka, D. Kitamoto, and K. Sakaki, “Biotechnological production of d-glyceric acid and its application,” Appl. Microbiol. Biotechnol., vol. 84, no. 3, pp. 445–452, 2009, doi:10.1007/s00253-009-2124-3; [73] Black Magic 3D, “PLA Plastic Resin Pellets for 3D Printing (3 lb/ 1.36 kg),” amazon.com. [Online]. Available: https://www.amazon.com/Plastic-Pellets-3D-Printing-Natural/dp/B015QLIGHG; [74] M. Rossi, Michele; Biela, Serena; Comotti, “PROCESS AND CATALYST FOR THE PREPARATION OF ALDONIC ACIDS,”WO2005/993072A1. 2012; [75] C. Rizescu et al., “N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid,” Green Chem., vol. 19, no. 8, pp. 1999–2005, 2017, doi:10.1039/c7gc00473g; [76] C. Rizescu et al., “RuCl 3 Supported on N-Doped Graphene as a Reusable Catalyst for the One-Step Glucose Oxidation to Succinic Acid,” ChemCatChem, 2017, doi:10.1002/cctc.201700383; [77] S. Sato, D. Kitamoto, and H. Habe, “Chemical mutagenesis of Gluconobacter frateurii to construct methanol-resistant mutants showing glyceric acid production from methanol-containing glycerol,” J. Biosci. Bioeng., vol. 117, no. 2, pp. 197–199, 2014, doi:10.1016/j.jbiosc.2013.07.004.; [78] S. Gil, M. Marchena, C. M. Fernández, L. Sánchez-Silva, A. Romero, and J. L. Valverde, “Catalytic oxidation of crude glycerol using catalysts based on Au supported on carbonaceous materials,” Appl. Catal. A Gen., vol. 450, pp. 189–203, 2013, doi:10.1016/j.apcata.2012.10.024; [79] H. Kimura, “Poly ( ketomalonate ) by Catalytic Oxidation of Glycerol ( 4 ) Anionic Polymerization,” J. Polym. Sci. Part A Polym. Chem., vol. 36, no. March, pp. 195–205, 1998; [80] C. Cavazza and P. Cavazza, “Esters of L-carnitine and acyl L-carnitine with hydoxy acids for producing pharmcaeutical compositions for treating dermatoses,” US5627212A, 1997; [81] P. N. Amaniampong et al., “Unraveling the mechanism of the oxidation of glycerol to dicarboxylic acids over a sonochemically synthesized copper oxide catalyst,” Green Chem., vol. 20, no. 12, pp. 2730–2741, 2018, doi:10.1039/c8gc00961a; [82] A. P. Znaiden, M. C. Cheney, C. S. Slavtcheff, and S. H. Cho, “Cosmetic compositions for reducing or preventing signs of cellulite,” US5536499A, 1996; [83] P. M. Bizot, B. R. Bailey, and P. D. Hicks, “Use of tartronic acid as an oxygen scavenger,” US5750037A, 1996; [84] K. E. Guima, L. M. Alencar, G. C. Da Silva, M. A. G. Trindade, and C. A. Martins, “3D-Printed Electrolyzer for the Conversion of Glycerol into Tartronate on Pd Nanocubes,” ACS Sustain. Chem. Eng., vol. 6, no. 1, pp. 1202–1207, 2018, doi:10.1021/acssuschemeng.7b03490; [85] “Sigma Aldrich - Merck.” [Online]. Available: https://www.sigmaaldrich.com/us-export.html; [86] “Alfa Aesar.” [Online]. Available: https://www.alfa.com/es; [87] B. Katryniok et al., “Selective catalytic oxidation of glycerol: perspectives for high value chemicals,” Green Chem., vol. 13, no. 8, p. 1960, 2011, doi:10.1039/c1gc15320j; [88] J. Cai et al., “Catalytic oxidation of glycerol to tartronic acid over Au/HY catalyst under mild conditions,” Cuihua Xuebao/Chinese J. Catal., vol. 35, no. 10, pp. 1653–1660, 2014, doi:10.1016/S1872-2067(14)60132-7; [89] S. J. Moore, “Method for the treatment of cyanide poisoning,” US5674904A, 1997; [90] D. Boeckh, A. Funhof, M. Kroner, and H. Hartmann, “Condensation products that contain N,O-acetal or carboxamide structures, preparation thereof, use thereof, and condensation products that contain acetal-lactone structures,” US5488095 A, 1996; [91] A. R. Khokhar, Z. H. Siddik, and R. A. Newman, “Water soluble 1,2-diaminocyclohexane platinum (IV) complexes as antitumor agents,” US5318962A, 1994; [92] J. B. Bartolone, C. M. Penksa, U. Santhanam, and B. D. Lang, “Lactate dehydrogenase inhibitors in cosmetic compositions,” US5595730A, 1997; [93] T. Natsuume and T. Ueda, “Stabilized ferrous compound composition,” US4652435A, 1987; [94] D. Basavaiah and V. V. L. Gownswari, “Diethyl Ketomalonate: A Fast Reacting Substrate for Baylis-Hillman Reaction,” Synth. Commun., vol. 19, no. 13–14, pp. 2461–2465, Aug. 1989, doi:10.1080/00397918908052648; [95] K. Burg, R. Kern, and H. Schmidt, “Thermoplastic moulding compositions based on poly (oxymethylene),” US3980734A, 1972; [96] W. T. Brande, A Manual of Chemistry Vol. 3. London: John W.Parker, west Strand, 1841.; [97] R. K. Freier, Data for Inorganic and Organic Compounds. Daten Fur Anorganische Und Organische Verbindungen, Reprint 20. De Gruyter, 2011; [98] W. F. Allen, “The Preparation and Pyrolytic Molecular Rearrangment of the 8-Ethers of Caffeine; and Their Conversion to 8-Methyl and 8-Ethylcaffeine,” Michigan State College, 1932; [99] I. Remsen and C. A. Rouillu, American Chemical Journal, Volumen 5, pp. 67. 1884; [100] E. Seelig, “Ueber Glycerinderivate,” Berichte der Dtsch. Chem. Gesellschaft, vol. 24, no. 2, pp. 3466–3471, Jul. 1891, doi:10.1002/cber.189102402207; [101] S. Tani, M. Koga, and M. Izumi, “PRODUCTION METHOD OF KETOMALONC ACID COMPOUND,” US9499469B2. 2016; [102] R. Ciriminna and M. Pagliaro, “One-Pot Homogeneous and Heterogeneous Oxidation of Glycerol to Ketomalonic Acid Mediated by TEMPO,” Adv. Synth. Catal., vol. 345, no. 3, pp. 383–388, 2003, doi:10.1002/adsc.200390043; [103] Z. C. Hu, Y. G. Zheng, and Y. C. Shen, “Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor,” Bioresour. Technol., vol. 102, no. 14, pp. 7177–7182, 2011, doi:10.1016/j.biortech.2011.04.078; [104] L. Xin, Z. Zhang, Z. Wang, and W. Li, “Simultaneous Generation of Mesoxalic Acid and Electricity from Glycerol on a Gold Anode Catalyst in Anion-Exchange Membrane Fuel Cells,” ChemCatChem, vol. 4, no. 8, pp. 1105–1114, 2012, doi:10.1002/cctc.201200017; [105] T. A. Meyer, “Apparatus and method for sunless tanning,” WO 94/04130, 1994; [106] T. B. Crook and A. F. Stephens, “Cosmetic compositions,” US7326405B2, 2008; [107] A. S. Brillouet, F. Baranger, and C. Harivel, Anne, “SELF-TANNING COMPOSITION,” WO2007060021A1, 2007; [108] Y. Fu, J. Deng, G. Qingxiang, J. Zhao, and L. Liu, “METHOD FOR PREPARING 4-HYDROXYMETHYLFURFURAL,” EP2495239A1, 2012; [109] R. De La Mettrie, J. Cotteret, A. De Labbey, and M. Maubru, “OXIDATION DYEING COMPOSITION FOR KERATIN FIBRES AND DYEING METHOD USING SAID COMPOSITION,” US2002010966A1, 2002; [110] Z. C. Hu, S. Y. Tian, L. J. Ruan, and Y. G. Zheng, “Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor,” Bioresour. Technol., vol. 233, pp. 144–149, 2017, doi:10.1016/j.biortech.2017.02.096; [111] R. Ciriminna, G. Palmisano, C. Della Pina, M. Rossi, and M. Pagliaro, “One-pot electrocatalytic oxidation of glycerol to DHA,” Tetrahedron Lett., vol. 47, no. 39, pp. 6993–6995, 2006, doi:10.1016/j.tetlet.2006.07.123; [112] Y. Zhang, N. Zhang, Z.-R. Tang, and Y.-J. Xu, “Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water,” Chem. Sci., vol. 4, no. 4, p. 1820, 2013, doi:10.1039/c3sc50285f; [113] K. Ohara, T. Matzunaga, M. Shiraishi, and G. Shinjo, “Insecticidal aerosol,” EP0320908A1, 1989; [114] K. Mehta, L. Panigrahi, U. K. Nayak, and B. Patro, “COMBINATION COMPOSITION COMPRISING BENZOYL PEROXIDE AND ADAPALENE,” US2012252897A1, 2012; [115] C. Boulle and M. Dalko, “2-FLUORO-4-[(3,3,3-TRIFLUORO-2-HYDROXY-2-METHYLPROPANOYL)AMINO]BENZOATE DERIVATIVES; COMPOSITIONS CONTAINING SAME; COSMETIC USES,” WO2009077387A1, 2008; [116] C. J. Sullivan, A. Kuenz, and K.-D. Vorlop, “Propanediols,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018, pp. 1–15.; [117] E. D´hont, P. Jacobs, and B. Sels, “CATALYTIC PROCESS FOR THE PRODUCTION OF OXYGENATED HYDROCARBONS,” WO2008077205A1, 2008; [118] T. A. Werpy, J. G. J. Frye, A. H. Zacher, and M. D. J., “HYDROGENOLYSIS OF 6-CARBON SUGARS AND OTHER ORGANIC COMPOUNDS,” WO03035582A1, 2003; [119] T. Hamai, M. Shimoda, W. Ohkubo, and W. Takao-Taniguchi, “EARLY STRENGTHENING AGENT FOR HYDRAULIC COMPOSITION,” US2011021667A1, 2011; [120] M. J. Monteiro, M. R. Whittaker, C. A. Bell, C. N. L. Urbani, C. A. Bell, and D. E. Lonsdale, “Dendritic molecules,” US2012/59173A1, 2008; [121] W. Chin et al., “ANTIMICROBIAL CATIONIC POLYCARBONATES,” US2014301967A1, 2014; [122] “Sonora Dupont image.” https://www.google.com.co/imgres?imgurl=http%3A%2F%2Fd314gwgjzjoghk.cloudfront.net%2Ffileadmin%2F_processed_%2F8%2F5%2Fcsm_C_DuPont_161203_Sorona_1449_RugDetail_V3_b561c9be02.jpg&imgrefurl=http%3A%2F%2Fsorona.com%2F&docid=4WLxyKaqTJ37nM&tbnid=clRFvwVLo3KQ; [123] Y. Q. Sun et al., “Advances in bioconversion of glycerol to 1,3-propanediol: Prospects and challenges,” Process Biochem., vol. 71, no. May, pp. 134–146, 2018, doi:10.1016/j.procbio.2018.05.009; [124] J. F. Knifton, G. J. Talmadge, L. H. Slaugh, K. D. Allen, P. R. Weider, and J. B. Powell, “ONE-STEP PRODUCTION OF 1,3-PROPANEDIOL FROM ETHYLENE OXDE AND SYNGAS WITH A COBALT-IRON CATALYST,” US6750373B2, 2004; [125] F. Ancillotti and V. Fattore, “Oxygenate fuels: Market expansion and catalytic aspect of synthesis,” Fuel Process. Technol., vol. 57, no. 3, pp. 163–194, 1998, doi:10.1016/S0378-3820(98)00081-2; [126] K. Klepáčová, D. Mravec, A. Kaszonyi, and M. Bajus, “Etherification of glycerol and ethylene glycol by isobutylene,” Appl. Catal. A Gen., vol. 328, no. 1, pp. 1–13, 2007, doi:10.1016/j.apcata.2007.03.031; [127] K. Klepáčová, D. Mravec, and M. Bajus, “Etherification of glycerol with tert-butyl alcohol catalysed by ion-exchange resins,” Chem. Pap., vol. 60, no. 3, pp. 224–230, 2006, doi:10.2478/s11696-006-0040-x; [128] R. S. Karinen and A. O. I. Krause, “New biocomponents from glycerol,” Appl. Catal. A Gen., vol. 306, pp. 128–133, 2006, doi:10.1016/j.apcata.2006.03.047; [129] M. E. Jamróz et al., “Mono-, di-, and tri-tert-butyl ethers of glycerol. A molecular spectroscopic study,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 67, no. 3–4, pp. 980–988, 2007, doi:10.1016/j.saa.2006.09.017; [130] A. Martin and M. Richter, “Oligomerization of glycerol - a critical review,” Eur. J. Lipid Sci. Technol., vol. 113, no. 1, pp. 100–117, 2011, doi:10.1002/ejlt.201000386; [131] U. Chandrakala, R. B. N. Prasad, and B. L. A. Prabhavathi Devi, “Glycerol valorization as biofuel additives by employing a carbon-based solid acid catalyst derived from glycerol,” Ind. Eng. Chem. Res., vol. 53, no. 42, pp. 16164–16169, 2014, doi:10.1021/ie503079m; [132] L. N. Silva, V. L. C. Gonçalves, and C. J. A. Mota, “Catalytic acetylation of glycerol with acetic anhydride,” Catal. Commun., vol. 11, no. 12, pp. 1036–1039, 2010, doi:10.1016/j.catcom.2010.05.007; [133] S. Zhu, Y. Zhu, X. Gao, T. Mo, Y. Zhu, and Y. Li, “Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids,” Bioresour. Technol., vol. 130, pp. 45–51, 2013, doi:10.1016/j.biortech.2012.12.011; [134] L. Wang, Q. Liu, M. Zhou, and G. Xiao, “Synthesis of glycerin triacetate over molding zirconia-loaded sulfuric acid catalyst,” J. Nat. Gas Chem., vol. 21, no. 1, pp. 25–28, 2012, doi:10.1016/S1003-9953(11)60328-9; [135] R. L. Logan, “Method for Making Glycerol Monoesters,” US20100148117A1, 2010; [136] J. Pérez-Pariente, I. Díaz, F. Mohino, and E. Sastre, “Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts,” Appl. Catal. A Gen., vol. 254, no. 2, pp. 173–188, 2003, doi:10.1016/S0926-860X(03)00481-2; [137] M. Kotwal, S. S. Deshpande, and D. Srinivas, “Esterification of fatty acids with glycerol over Fe-Zn double-metal cyanide catalyst,” Catal. Commun., vol. 12, no. 14, pp. 1302–1306, 2011, doi:10.1016/j.catcom.2011.05.008; [138] M. O. Sonnati, S. Amigoni, E. P. Taffin de Givenchy, T. Darmanin, O. Choulet, and F. Guittard, “Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications,” Green Chem., vol. 15, no. 2, pp. 283–306, 2013, doi:10.1039/C2GC36525A; [139] C. A. Ordoñez Gomez, “Evaluación nutricional de la glicerina cruda proveniente del biodiesel de aceite de palma en cerdos,” Universidad Nacional de Colombia, 2014; [140] J. H. Teles, N. Rieber, and W. Harder, “Preparation of glyceryl carbonate,” US5359094A1, 1992; [141] J. R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, C. Ramírez-López, and M. Belsué, “A Brief Review on Industrial Alternatives for the Manufacturing of Glycerol Carbonate, a Green Chemical,” Org. Process Res. Dev., vol. 16, no. 3, pp. 389–399, Mar. 2012, doi:10.1021/op200369v; [142] W. K. Teng, G. C. Ngoh, R. Yusoff, and M. K. Aroua, “A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters,” Energy Convers. Manag., vol. 88, pp. 484–497, Dec. 2014, doi:10.1016/j.enconman.2014.08.036; [143] J. R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, C. A. Ramírez-López, J. Nieto-Mestre, B. Maestro-Madurga, and M. Belsué, “Synthesis of glycerol carbonate from 3-chloro-1,2-propanediol and carbon dioxide using triethylamine as both solvent and CO2fixation-activation agent,” Chem. Eng. J., vol. 175, no. 1, pp. 505–511, 2011, doi:10.1016/j.cej.2011.09.081; [144] D. Arntz et al., “Acrolein and Methacrolein,” in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 26, no. 03, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 217–224; [145] “Evonik Industries- A Sucess Story.” [Online]. Available: https://corporate.evonik.de/en/; [146] J. D. J. . Idol, “Process for the manufacture of acrylonitrile,” US2904580A, 1959; [147] D. P. Shashkin, O. V. Udalova, M. D. Shibanova, and O. V. Krylov, “The mechanism of action of a multicomponent Co-Mo-Bi-Fe-Sb-K-O catalyst for the partial oxidation of propylene to acrolein: II. Changes in the phase composition of the catalyst under reaction conditions,” Kinet. Catal., vol. 46, no. 4, pp. 545–549, 2005, doi:10.1007/s10975-005-0107-7; [148] S. Chai, H. Wang, Y. Liang, and B. Xu, “Sustainable production of acrolein : gas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO 2 and SiO 2,” pp. 1087–1093, 2008, doi:10.1039/b805373a; [149] L. Cheng, L. Liu, and X. P. Ye, “Acrolein Production from Crude Glycerol in Sub- and Super-Critical Water,” 2012, doi:10.1007/s11746-012-2189-5; [150] A. S. de Oliveira, S. J. S. Vasconcelos, J. R. de Sousa, F. F. de Sousa, J. M. Filho, and A. C. Oliveira, “Catalytic conversion of glycerol to acrolein over modified molecular sieves: Activity and deactivation studies,” Chem. Eng. J., vol. 168, no. 2, pp. 765–774, 2011, doi:10.1016/j.cej.2010.09.029; [151] Y. T. Kim, K. D. Jung, and E. D. Park, “A comparative study for gas-phase dehydration of glycerol over H-zeolites,” Appl. Catal. A Gen., vol. 393, no. 1–2, pp. 275–287, 2011, doi:10.1016/j.apcata.2010.12.007; [152] S. H. Chai, H. P. Wang, Y. Liang, and B. Q. Xu, “Sustainable production of acrolein: Gas-phase dehydration of glycerol over Nb2O5catalyst,” J. Catal., vol. 250, no. 2, pp. 342–349, 2007, doi:10.1016/j.jcat.2007.06.016; [153] A. Ulgen and W. F. Hoelderich, “Applied Catalysis A : General Conversion of glycerol to acrolein in the presence of WO 3 / TiO 2 catalysts,” "Applied Catal. A, Gen., vol. 400, no. 1–2, pp. 34–38, 2011, doi:10.1016/j.apcata.2011.04.005; [154] K. Omata, S. Izumi, T. Murayama, and W. Ueda, “Hydrothermal synthesis of W – Nb complex metal oxides and their application to catalytic dehydration of glycerol to acrolein,” Catal. Today, vol. 201, pp. 7–11, 2013, doi:10.1016/j.cattod.2012.06.004; [155] L. Tao, S. Chai, Y. Zuo, W. Zheng, Y. Liang, and B. Xu, “Sustainable production of acrolein : Acidic binary metal oxide catalysts for gas-phase dehydration of glycerol,” Catal. Today, vol. 158, no. 3–4, pp. 310–316, 2010, doi:10.1016/j.cattod.2010.03.073; [156] J. Deleplanque, J. L. Dubois, J. F. Devaux, and W. Ueda, “Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts,” Catal. Today, vol. 157, no. 1–4, pp. 351–358, 2010, doi:10.1016/j.cattod.2010.04.012; [157] G. De Tommaso and M. Iuliano, “Acid Base Properties of the Surface of Hydrous Ferric Phosphate in Aqueous Solutions,” J. Chem. Eng. Data, vol. 6, pp. 52–59, 2012, doi:10.1021/je200751e; [158] A. Alhanash, E. F. Kozhevnikova, and I. V Kozhevnikov, “Applied Catalysis A : General Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt,” "Applied Catal. A, Gen., vol. 378, no. 1, pp. 11–18, 2010, doi:10.1016/j.apcata.2010.01.043; [159] N. Lili et al., “Glycerol Dehydration to Acrolein over Activated Carbon- Supported Silicotungstic Acids,” vol. 29, no. 3, pp. 212–214, 2008; [160] SOLVAY, “Using Glycerin as renewable feedstock material for the production of Epichlorohydrin,” in sympsium glycerol valorisatie, 2010; [161] V. K. Thakur, M. K. Thakur, and M. R. Kessler, Eds., Handbook of Composites from Renewable Materials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017; [162] P. Krafft, P. Gilbeau, B. Gosselin, and S. Claessens, “Process for producing dichloropropanol from glycerol,” EP1760060A1, 2007; [163] A. Behr, J. Eilting, K. Irawadi, J. Leschinski, and F. Lindner, “Cutting-edge research for a greener sustainable future Improved utilisation of renewable resources : New important derivatives of glycerol,” vol. 10, no. 1, 2008, doi:10.1039/b710561d; [164] B. M. Bell et al., “Glycerin as a renewable feedstock for epichlorohydrin production. The GTE process,” Clean - Soil, Air, Water, vol. 36, no. 8, pp. 657–661, 2008, doi:10.1002/clen.200800067; [165] W. Kruper et al., “Batch, semi-continuous or continuous hydrochlorination of glycerin with reduced volatile chlorinated hydrocarbon by-products and chloracetone levels,” US20080015369A1, 2008; [166] E. Santacesaria, R. Tesser, M. Di Serio, L. Casale, D. Verde, and V. Uni, “New Process for Producing Epichlorohydrin via Glycerol Chlorination,” pp. 964–970, 2010; [167] D. Siano, E. Fiandra, S. Valeria, and Nastasi Serio Mario, “Process for the Production of Alpha, Gamma-Dichlorohydrin From Glycerin and Hydrochloric Acid,” US20090062574A1, 2009; [168] S. Ho, D. Ryul, S. Yul, W. Seob, M. Suk, and I. Kyu, “Journal of Industrial and Engineering Chemistry Direct preparation of dichloropropanol from glycerol and hydrochloric acid gas using heteropolyacid ( HPA ) catalyst by heterogeneous gas phase reaction,” J. Ind. Eng. Chem., vol. 16, no. 5, pp. 662–665, 2010, doi:10.1016/j.jiec.2010.05.012; [169] ManuelitaSA, “Productos derivados de la palma Manuelita,” 2019. [Online]. Available: http://www.manuelita.com/manuelita-productos/derivados-de-palma/; [170] L. J. FISHER, J. D. ERFLE, G. A. LODGE, and F. D. SAUER, “Effects of Propylene Glycol or Glycerol Supplementation of the Diet of Dairy Cows on Feed Intake, Milk Yield and Composition, and Incidence of Ketosis,” Can. J. Anim. Sci., vol. 53, no. 2, pp. 289–296, 1973, doi:10.4141/cjas73-045; [171] C. Ariza et al., Alternativa energética para la alimentación de aves y cerdos. Bogotá: Corpoica, 2012; 172; [173] Ecopetrol S.A, “Glicerina eres, en Diesel te convertirás,” Revista &nnova, 2011; [174] D. Montoya and O. Aragón, “Bioprocesos aplicados a la valorización del glicerol residual en la producción de biodiésel,” Rev. Palmas, vol. 31, no. II, pp. 126–135, 2010; [175] Unimedios, “Aprovechan glicerina del biodiesel para uso industrial,” Agencia de Noticias UN, Bogotá D.C, 2016; [176] D. P. Cárdenas, C. Pulido, Ó. L. Aragón, and F. A. Aristizá-, “Evaluación de la producción de 1,3-propanodiol por cepas nativas de Clostridium sp. mediante fermentación a partir de glicerol USP y glicerol industrial subproducto de la producción de biodiésel,” Rev. Colomb. Ciencias Químicas y Farm., vol. 35, no. 1, pp. 120–137, 2006; [177] G. M. Lari et al., “Environmental and economical perspectives of a glycerol biorefinery,” Energy Environ. Sci., vol. 11, no. 5, pp. 1012–1029, 2018, doi:10.1039/c7ee03116e; [178] A. Almena, L. Bueno, M. Díez, and M. Martín, “Integrated biodiesel facilities : review of glycerol-based production of fuels and chemicals,” Clean Technol. Environ. Policy, vol. 20, pp. 1639–1661, 2018, doi:10.1007/s10098-017-1424-z; 179; [180] S. C. D´Angelo, A. Dall´Ara, C. Mondelli, J. Pérez-Ramírez, and S. Papadokonstantakis, “Techno-Economic Analysis of a Glycerol Biore fi nery ́,” ACS Sustain. Chem. Eng., no. 6, pp. 16563–16572, 2018, doi:10.1021/acssuschemeng.8b03770; [181] K. Christiansen, “PGPR, Polyglycerolpolyricinoleate, E476,” Emuls. Food Technol. Second Ed., vol. 9780470670, pp. 209–230, 2015, doi:10.1002/9781118921265.ch9; [182] MINMINAS, metodología de referencia para el cálculo del valor del ingreso al productor del biocombustible para uso en motores diésel. Colombia, 2019, p. 8; [183] IHS Markit, “Global Methanol,” 2019. [Online]. Available: https://ihsmarkit.com/products/chemical-market-methanol-global.html; [184] C. L. Gargalo, P. Cheali, J. A. Posada, K. V. Gernaey, and G. Sin, “Economic Risk Assessment of Early Stage Designs for Glycerol Valorization in Biorefinery Concepts,” Ind. Eng. Chem. Res., vol. 55, no. 24, pp. 6801–6814, 2016, doi:10.1021/acs.iecr.5b04593; 185; [186] ICA, “PROTECCIÓN SANITARIA DE ESPECIES ACUÍCOLAS // PRODUCTORAS DE ALIMENTOS Y SALES MINERALIZADAS PARA ANIMALES CON REG. ICA VIGENTES A SEPTIEMBRE 2018,” 2017. [Online]. Available: https://www.ica.gov.co/getdoc/b082c759-18c7-47da-bed6-0ebe76b48fe0/acuicolas-(1).aspx; [187] SIC, “CADENA PRODUCTIVA DE ALIMENTOS CONCENTRADOS Y BALANCEADOS PARA LA INDUSTRIA AVÍCOLA Y PORCINA DIAGNÓSTICO DE LIBRE COMPETENCIA,” Bogotá D.C, .https://www.sic.gov.co/recursos_user/documentos/promocion_competencia/Estudios_Economicos/ALIMENTOS BALANCEADOS.pdf 2011; [188] J. D. L. Borbón and J. C. Pareja Arcila, “La industria de los alimentos balanceados en Colombia : análisis de la oferta y tendencias del mercado nacional de materias primas,” Universidad de la Salle, 2016; [189] J. Herold, D. Sudhoff, M. Steurenthaler, and H. J. Hasselbach, “METHOD FOR PREPARING METHIONINE,” WO2018114640A1, 2018; [190] E. Morales, J. E.; Ávila, “Necesidades de metionina + cistina para pollos de engorda en iniciación Avances en Investigación Agropecuaria,” Av. en Investig. Agropecu., vol. 8, no. 1, p. 6, 2004; [191] J. Lombana, J. Vega, B. Emyle, and H. Silvia, Análisis del sector biodiésel en Colombia y su cadena de suministro, no. January 2016. Barranquilla: Editorial Universidad del Norte, 2015; [192] I. Gandarias, P. L. Arias, and I. Agirrezabal-Telleria, “Economic assessment for the production of 1,2-Propanediol from bioglycerol hydrogenolysis using molecular hydrogen or hydrogen donor molecules,” Environ. Prog. Sustain. Energy, vol. 35, no. 2, pp. 447–454, Mar. 2016, doi:10.1002/ep.12232; [193] Mincomercio, “Acuerdos Comerciales Vigentes TLC- Colombia,” 2020. [Online]. Available: http://www.tlc.gov.co/acuerdos/vigente. [Accessed: 31-May-2020; [194] H. P. E. (ed. . O’Neil M. J. (ed.) Smith A. (ed.), The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 11th ed. Taylor and Francis, 1996; [195] S. Zhu, Y. Y. Zhu, X. Gao, T. Mo, Y. Y. Zhu, and Y. Li, “Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids,” Bioresour. Technol., vol. 130, pp. 45–51, 2013, doi:10.1016/j.biortech.2012.12.011; [196] L. Wang, Q. Liu, M. Zhou, and G. Xiao, “Synthesis of glycerin triacetate over molding zirconia-loaded sulfuric acid catalyst,” J. Nat. Gas Chem., vol. 21, no. 1, pp. 25–28, 2012, doi:10.1016/S1003-9953(11)60328-9; [197] M. S. Khayoon and B. H. Hameed, “Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst,” Bioresour. Technol., vol. 102, no. 19, pp. 9229–9235, 2011, doi:10.1016/j.biortech.2011.07.035; [198] M. H. Haider et al., “Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein,” J. Catal., vol. 286, pp. 206–213, 2012, doi:10.1016/j.jcat.2011.11.004; [199] P. Lauriol-garbey, S. Loridant, V. Bellière-baca, P. Rey, and J. M. Millet, “Gas phase dehydration of glycerol to acrolein over WO 3 / ZrO 2 catalysts : Improvement of selectivity and stability by doping with SiO 2,” CATCOM, vol. 16, no. 1, pp. 170–174, 2011, doi:10.1016/j.catcom.2011.09.026; 200; 201; [202] M. S. Kathalewar, P. B. Joshi, A. S. Sabnis, and V. C. Malshe, “Non-isocyanate polyurethanes: From chemistry to applications,” RSC Adv., vol. 3, no. 13, pp. 4110–4129, 2013, doi:10.1039/c2ra21938g; [203] U. Romano, R. Tesel, M. M. Mauri, and P. Rebora, “Synthesis of Dimethyl Carbonate from Methanol, Carbon Monoxide, and Oxygen Catalyzed by Copper Compounds,” Ind. Eng. Chem. Prod. Res. Dev., vol. 19, no. 3, pp. 396–403, 1980, doi:10.1021/i360075a021; [204] A. H. Tamboli, A. A. Chaugule, and H. Kim, “Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol,” Chem. Eng. J., vol. 323, pp. 530–544, 2017, doi:10.1016/j.cej.2017.04.112; [205] T. Sakakura, J. C. Choi, and H. Yasuda, “Transformation of carbon dioxide,” Chem. Rev., vol. 107, no. 6, pp. 2365–2387, 2007, doi:10.1021/cr068357u; [206] A. Bansode and A. Urakawa, “Continuous DMC Synthesis from CO 2 and Methanol over a CeO 2 Catalyst in a Fixed Bed Reactor in the Presence of a Dehydrating Agent,” ACS Catal., vol. 4, no. 11, pp. 3877–3880, Nov. 2014, doi:10.1021/cs501221q; [207] Z. Hou, L. Luo, K. Liu, C. Liu, Y. Wang, and L. Dai, “High-yield synthesis of dimethyl carbonate from the direct alcoholysis of urea in supercritical methanol,” Chem. Eng. J., vol. 236, pp. 415–418, 2014, doi:10.1016/j.cej.2013.09.024; [208] R. Piñero, J. García, and M. J. Cocero, “Chemical recycling of polycarbonate in a semi-continuous lab-plant. A green route with methanol and methanol-water mixtures,” Green Chem., vol. 7, no. 5, pp. 380–387, 2005, doi:10.1039/b500461f; [209] S. Holmiere, R. Valentin, P. Maréchal, and Z. Mouloungui, “Esters of oligo-(glycerol carbonate-glycerol): New biobased oligomeric surfactants,” J. Colloid Interface Sci., vol. 487, pp. 418–425, 2017, doi:10.1016/j.jcis.2016.10.072; [210] D. C. Webster, “Cyclic carbonate functional polymers and their applications,” Prog. Org. Coatings, vol. 47, no. 1, pp. 77–86, 2003, doi:10.1016/S0300-9440(03)00074-2; Usme , C., Juan D. (2020) Alternativas de Aprovechamiento del Glicerol. Universidad Nacional de Colombia - Sede Bogotá, Bogotá Colombia; https://repositorio.unal.edu.co/handle/unal/78946

  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
  11. 11
  12. 12
  13. 13

    المساهمون: Amato, Fulvio, Amato, Fulvio [0000-0003-1546-9154]

    المصدر: Repositório Científico de Acesso Aberto de Portugal
    Repositório Científico de Acesso Aberto de Portugal (RCAAP)
    instacron:RCAAP
    Digital.CSIC. Repositorio Institucional del CSIC
    instname

  14. 14
    Academic Journal

    المساهمون: Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS), Organisation Nationale Interprofessionnelle des Graines et Fruits Oléagineux (ONIDOL), ONIDOL

    المصدر: ISSN: 1438-7697.

  15. 15
  16. 16
  17. 17
    Academic Journal
  18. 18
  19. 19
  20. 20