يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"Global superconvergence"', وقت الاستعلام: 0.61s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Computers and Mathematics with Applications

    Relation: Wei, Yabing, Lü, Shujuan, Wang, Fenling, Liu, F., & Zhao, Yanmin (2022) Global superconvergence analysis of nonconforming finite element method for time fractional reaction-diffusion problem with anisotropic data. Computers and Mathematics with Applications, 119, pp. 159-173.; https://eprints.qut.edu.au/239921/; Faculty of Science; School of Mathematical Sciences

  3. 3
    Academic Journal

    المؤلفون: Lin, Qun, Huang, Hung-Tsai, Li, Zi-Cai

    المصدر: Mathematics of Computation, 2008 Oct 01. 77(264), 2061-2084.

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المؤلفون: Zhang, Tie, Zhang, Shuhua

    وصف الملف: application/pdf

    Relation: mr:MR3396481; zbl:Zbl 06486926; reference:[1] Babuška, I., Banerjee, U., Osborn, J. E.: Superconvergence in the generalized finite element method.Numer. Math. 107 (2007), 353-395. Zbl 1129.65075, MR 2336112, 10.1007/s00211-007-0096-8; reference:[2] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K.: Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations.Numer. Methods Partial Differ. Equations 12 (1996), 347-392. Zbl 0854.65089, MR 1388445, 10.1002/num.1690120303; reference:[3] Babuška, I., Whiteman, J. R., Strouboulis, T.: Finite Elements. An Introduction to the Method and Error Estimation.Oxford University Press, Oxford (2011). Zbl 1206.65246, MR 2857237; reference:[4] Bank, R. E., Rose, D. J.: Some error estimates for the box method.SIAM J. Numer. Anal. 24 (1987), 777-787. Zbl 0634.65105, MR 0899703, 10.1137/0724050; reference:[5] Bergam, A., Mghazli, Z., Verfürth, R.: A posteriori estimates of a finite volume scheme for a nonlinear problem.Numer. Math. French 95 (2003), 599-624. Zbl 1033.65095, MR 2013121; reference:[6] Bi, C.: Superconvergence of finite volume element method for a nonlinear elliptic problem.Numer. Methods Partial Differ. Equations 23 (2007), 220-233. Zbl 1119.65105, MR 2275467, 10.1002/num.20173; reference:[7] Bi, C., Ginting, V.: Two-grid finite volume element method for linear and nonlinear elliptic problems.Numer. Math. 108 (2007), 177-198. Zbl 1134.65077, MR 2358002, 10.1007/s00211-007-0115-9; reference:[8] Brandts, J. H.: Analysis of a non-standard mixed finite element method with applications to superconvergence.Appl. Math., Praha 54 (2009), 225-235. Zbl 1212.65441, MR 2530540, 10.1007/s10492-009-0014-8; reference:[9] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489-505. Zbl 1042.65081, MR 1987941, 10.1093/imanum/23.3.489; reference:[10] Brandts, J., Křížek, M.: Superconvergence of tetrahedral quadratic finite elements.J. Comput. Math. 23 (2005), 27-36. Zbl 1072.65137, MR 2124141; reference:[11] Cai, Z.: On the finite volume element method.Numer. Math. 58 (1991), 713-735. Zbl 0731.65093, MR 1090257, 10.1007/BF01385651; reference:[12] Chatzipantelidis, P., Ginting, V., Lazarov, R. D.: A finite volume element method for a nonlinear elliptic problem.Numer. Linear Algebra Appl. 12 (2005), 515-546. MR 2150166, 10.1002/nla.439; reference:[13] Chen, Z.: Superconvergence of generalized difference method for elliptic boundary value problem.Numer. Math., J. Chin. Univ. 3 (1994), 163-171. Zbl 0814.65102, MR 1325662; reference:[14] Chen, L.: A new class of high order finite volume methods for second order elliptic equations.SIAM J. Numer. Anal. 47 (2010), 4021-4043. Zbl 1261.65109, MR 2585177, 10.1137/080720164; reference:[15] Chen, Z., Li, R., Zhou, A.: A note on the optimal $L^2$-estimate of the finite volume element method.Adv. Comput. Math. 16 (2002), 291-303. Zbl 0997.65122, MR 1894926, 10.1023/A:1014577215948; reference:[16] Chou, S.-H., Kwak, D. Y., Li, Q.: $L^p$ error estimates and superconvergence for covolume or finite volume element methods.Numer. Methods Partial Differ. Equations 19 (2003), 463-486. Zbl 1029.65123, MR 1980190, 10.1002/num.10059; reference:[17] J. Douglas, Jr., T. Dupont: A Galerkin method for a nonlinear Dirichlet problem.Math. Comp. 29 (1975), 689-696. Zbl 0306.65072, MR 0431747, 10.1090/S0025-5718-1975-0431747-2; reference:[18] J. Douglas, Jr., T. Dupont, J. Serrin: Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form.Arch Ration. Mech. Anal. 42 (1971), 157-168. Zbl 0222.35017, MR 0393829, 10.1007/BF00250482; reference:[19] Ewing, R. E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials.SIAM J. Numer. Anal. 39 (2002), 1865-1888. Zbl 1036.65084, MR 1897941, 10.1137/S0036142900368873; reference:[20] Hlaváček, I., Křížek, M.: On a nonpotential nonmonotone second order elliptic problem with mixed boundary conditions.Stab. Appl. Anal. Contin. Media 3 (1993), 85-97.; reference:[21] Hlaváček, I., Křížek, M., Malý, J.: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 184 (1994), 168-189. MR 1275952, 10.1006/jmaa.1994.1192; reference:[22] Huang, J., Li, L.: Some superconvergence results for the covolume method for elliptic problems.Commun. Numer. Methods Eng. 17 (2001), 291-302. Zbl 0987.65109, MR 1832578, 10.1002/cnm.403; reference:[23] Křížek, M., Neittaanmäki, P.: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications.Mathematical Modelling: Theory and Applications 1 Kluwer Academic Publishers, Dordrecht (1996). MR 1431889; reference:[24] Lazarov, R. D., Mishev, I. D., Vassilevski, P. S.: Finite volume methods for convection-diffusion problems.SIAM J. Numer. Anal. 33 (1996), 31-55. Zbl 0847.65075, MR 1377242, 10.1137/0733003; reference:[25] Li, R.: Generalized difference methods for a nonlinear Dirichlet problem.SIAM J. Numer. Anal. 24 (1987), 77-88. Zbl 0626.65091, MR 0874736, 10.1137/0724007; reference:[26] Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods.Pure and Applied Mathematics Marcel Dekker, New York (2000). Zbl 0940.65125, MR 1731376; reference:[27] Lin, Q., Zhu, Q. D.: The Preprocessing and Postprocessing for the Finite Element Methods.Chinese Shanghai Sci. & Tech. Publishing Shanghai (1994).; reference:[28] Lv, J., Li, Y.: $L^2$ error estimates and superconvergence of the finite volume element methods on quadrilateral meshes.Adv. Comput. Math. 37 (2012), 393-416. Zbl 1255.65198, MR 2970858, 10.1007/s10444-011-9215-2; reference:[29] Schmidt, T.: Box schemes on quadrilateral meshes.Computing 51 (1993), 271-292. Zbl 0787.65075, MR 1253406, 10.1007/BF02238536; reference:[30] Süli, E.: Convergence of finite volume schemes for Poisson's equation on nonuniform meshes.SIAM J. Numer. Anal. 28 (1991), 1419-1430. Zbl 0802.65104, MR 1119276, 10.1137/0728073; reference:[31] Wahlbin, L. B.: Superconvergence in Galerkin Finite Element Methods.Lecture Notes in Mathematics 1605 Springer, Belin (1995). Zbl 0826.65092, MR 1439050, 10.1007/BFb0096835; reference:[32] Wu, H., Li, R.: Error estimates for finite volume element methods for general second-order elliptic problems.Numer. Methods Partial Differ. Equations 19 (2003), 693-708. Zbl 1040.65091, MR 2009589, 10.1002/num.10068; reference:[33] Zhang, T.: Finite Element Methods for Partial Differential-Integral Equations.Chinese Science Press, Beijing (2012).; reference:[34] Zhang, T., Lin, Y. P., Tait, R. J.: On the finite volume element version of Ritz-Volterra projection and applications to related equations.J. Comput. Math. 20 (2002), 491-504. Zbl 1013.65143, MR 1931591; reference:[35] Zhu, Q. D., Lin, Q.: The Superconvergence Theory of Finite Elements.Chinese Hunan Science and Technology Publishing House Changsha (1989). MR 1200243

  7. 7
  8. 8
  9. 9
    Academic Journal

    المؤلفون: Azari, Hossein, Zhang, Shuhua

    وصف الملف: application/pdf

    Relation: mr:MR2530544; zbl:Zbl 1212.35498; reference:[1] Alvarez, C., Conca, C., Friz, L., Kavian, O., Ortega, J. H.: Identification of immersed obstacles via boundary measurements.Inverse Probl. 21 (2005), 1531-1552. Zbl 1088.35080, MR 2173409; reference:[2] Azari, H., Allegretto, W., Lin, Y., Zhang, S.: Numerical procedures for recovering a time dependent coefficient in a parabolic differential equation.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 11 (2004), 181-199. Zbl 1055.35132, MR 2049776; reference:[3] Azari, H., Li, Ch., Nie, Y., Zhang, S.: Determination of an unknown coefficient in a parabolic inverse problem.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 665-674. Zbl 1059.35161, MR 2077110; reference:[4] Azari, H., Zhang, S.: Identifying a time dependent unknown coefficient in a parabolic inverse problem.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms. Suppl. 12b (2005), 32-43. MR 2269155; reference:[5] Cannon, J. R., Yin, H.-M.: A class of nonlinear non-classical parabolic equations.J. Differ. Equations 79 (1989), 266-288. Zbl 0702.35120, MR 1000690, 10.1016/0022-0396(89)90103-4; reference:[6] Cannon, J. R., Yin, H.-M.: Numerical solutions of some parabolic inverse problems.Numer. Methods Partial Differ. Equations 6 (1990), 177-191. Zbl 0709.65105, MR 1051841, 10.1002/num.1690060207; reference:[7] Canuto, B., Kavian, O.: Determining coefficients in a class of heat equations via boundary measurements.SIAM J. Math. Anal. 32 (2001), 963-986 (electronic). Zbl 0981.35096, MR 1828313, 10.1137/S003614109936525X; reference:[8] J. Douglas, Jr., B. F. Jones, Jr.: The determination of a coefficient in a parabolic differential equation. II. Numerical approximation.J. Math. Mech. 11 (1962), 919-926. Zbl 0112.32603, MR 0153988; reference:[9] B. F. Jones, Jr.: The determination of a coefficient in a parabolic differential equation. I. Existence and uniqueness.J. Math. Mech. 11 (1962), 907-918. Zbl 0112.32602, MR 0153987; reference:[10] Keung, Y. L., Zou, J.: Numerical identification of parameters in parabolic systems.Inverse Probl. 14 (1998), 83-100. Zbl 0894.35127, MR 1607632; reference:[11] Khachfe, R. A., Jarny, Y.: Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques.Numer. Heat Transfer, Part B: Fundamentals 37 (2000), 45-67. 10.1080/104077900275549; reference:[12] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Publishers Baoding (1996), Chinese.; reference:[13] Lin, Q., Zhu, Q.: The Preprocessing and Postprocessing for the Finite Element Method.Shanghai Scientific & Technical Publishers Shanghai (1994), Chinese.; reference:[14] Prilepko, A. I., Orlovskii, D. G.: Determination of the parameter of an evolution equation and inverse problems of mathematical physics I.Differ. Equations 21 (1985), 96-104. MR 0777788; reference:[15] Ramm, A. G.: An inverse problem for the heat equation.J. Math. Anal. Appl. 264 (2001), 691-697. Zbl 0987.35164, MR 1876759, 10.1006/jmaa.2001.7781; reference:[16] Ramm, A. G.: A non-overdetermined inverse problem of finding the potential from the spectral function.Int. J. Differ. Equ. Appl. 3 (2001), 15-29. Zbl 1048.35137, MR 1852465; reference:[17] Ramm, A. G.: Inverse problems for parabolic equations applications.Aust. J. Math. Anal. Appl. 2 (2005), Art. 10 (electronic). Zbl 1162.35384, MR 2174516; reference:[18] Ramm, A. G., Koshkin, S. V.: An inverse problem for an abstract evolution equation.Appl. Anal. 79 (2001), 475-482. Zbl 1020.35120, MR 1880954, 10.1080/00036810108840973; reference:[19] Xiong, X. T., Fu, C. L., Li, H. F.: Central difference schemes in time and error estimate on a non-standard inverse heat conduction problem.Appl. Math. Comput. 157 (2004), 77-91. Zbl 1068.65117, MR 2085525, 10.1016/j.amc.2003.08.028

  10. 10
    Academic Journal
  11. 11
    Dissertation/ Thesis
  12. 12
    Academic Journal

    وصف الملف: application/pdf; 221-233; fulltext

    Relation: Journal of Computational and Applied Mathematics; 18; Křižek, M., Neittaanmäki, P. (1987). On a global superconvergence of the gradient of linear triangular elements. Journal of Computational and Applied Mathematics , 18 (2), 221-233. doi:10.1016/0377-0427(87)90018-5; URN:NBN:fi:jyu-201902201597; http://urn.fi/URN:NBN:fi:jyu-201902201597

  13. 13
    Academic Journal

    المؤلفون: Lin, Qun, Zhang, Shuhua

    وصف الملف: application/pdf

    Relation: mr:MR1426678; zbl:Zbl 0902.65034; reference:[1] D. Arnold, J. Douglas, V. Thomée: Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable.Math. Comp. 36 (1981), 53–63. MR 0595041, 10.1090/S0025-5718-1981-0595041-4; reference:[2] R. Ewing: The approximation of certain parabolic equations backward in time by Sobolev equations.SIAM J. Math. Anal. 6 (1975), 283–294. Zbl 0292.35004, MR 0361447, 10.1137/0506029; reference:[3] R. Ewing: Numerical solution of Sobolev partial differential eqautions.SIAM J. Numer. Anal. 12 (1975), 345–363. MR 0395265, 10.1137/0712028; reference:[4] W. Ford: Galerkin approximation to nonlinear pseudoparabolic partial differential equation.Aequationes Math. 14 (1976), 271–291. MR 0408270, 10.1007/BF01835978; reference:[5] W. Ford, T. Ting: Stability and convergence of difference approximations to pseudoparabolic partial equations.Math. Comp. 27 (1973), 737–743. MR 0366052, 10.1090/S0025-5718-1973-0366052-4; reference:[6] W. Ford, T. Ting: Uniform error estimates for difference approximations to nonlinear pseudoparabolic partial differential equations.SIAM J. Numer. Anal. 11 (1974), 155–169. MR 0423833, 10.1137/0711016; reference:[7] Q. Lin: A new observation in FEM.Proc. Syst. Sci. & Syst. Eng. (1991), Great Wall (H.K.) Culture Publish Co., 389–391.; reference:[8] Q. Lin, N. Yan, A. Zhou: A rectangle test for interpolated finite elements, ibid.217–229.; reference:[9] Q. Lin, S. Zhang: An immediate analysis for global superconvergence for integrodifferential equations.Appl. Math. 42 (1997), 1–21. MR 1426677, 10.1023/A:1022264125558; reference:[10] Y. Lin: Galerkin methods for nonlinear Sobolev equations.Aequations Math. 40 (1990), 54–56. Zbl 0734.65078, MR 1055190, 10.1007/BF02112280; reference:[11] Y. Lin, T. Zhang: Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions.J. Math. Anal. & Appl. 165 (1992), 180–191. MR 1151067, 10.1016/0022-247X(92)90074-N; reference:[12] Y. Lin, V. Thomée, L. Wahlbin: Ritz-Volterra projection on finite element spaces and applications to integrodifferential and related equations.SIAM J. Numer. Anal. 28 (1991), 1047–1070. MR 1111453, 10.1137/0728056; reference:[13] M. Nakao: Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension.Numer. Math. 47 (1985), 139–157. Zbl 0575.65112, MR 0797883, 10.1007/BF01389881; reference:[14] L. Wahlbin: Error estimates for a Galerkin method for a class of model equations for long waves.Numer. Math. 23 (1975), 289–303. Zbl 0283.65052, MR 0388799, 10.1007/BF01438256; reference:[15] M. Wheeler: A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723–759. MR 0351124, 10.1137/0710062; reference:[16] Q. Zhu, Q. Lin: Superconvergence Theory of the Finite Element Methods.Hunan Science Press, 1990.

  14. 14
    Academic Journal

    المؤلفون: Lin, Qun, Zhang, Shuhua

    وصف الملف: application/pdf

    Relation: mr:MR1426677; zbl:Zbl 0902.65090; reference:[1] J. Cannon, Y. Lin: A Galerkin procedure for diffusion equations with boundary integral conditions.Int. J. Eng. Sci. 28 (1990), 579–587. MR 1059777, 10.1016/0020-7225(90)90087-Y; reference:[2] M. Křížek, P. Neittaanmäki: On Finite Element Approximation of Variational Problems and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Essex, 1989. MR 1066462; reference:[3] Q. Lin: A new observation in FEM.Proc. Syst. Sci. & Syst. Eng., Great Wall (H.K.), Culture Publish Co., 1991, pp. 389–391.; reference:[4] Q. Lin, N. Yan, A. Zhou: A rectangle test for interpolated finite elements, ibid.217–229.; reference:[5] Q. Lin, Q. Zhu: The Preprocessing and Postprocessing for the Finite Element Method.Shanghai Scientific & Technical Publishers, 1994.; reference:[6] Y. Lin: Galerkin methods for nonlinear parabolic integrodifferential equations with nonlinear boundary conditions.SIAM J. Numer. Anal. 27 (1990), 608–621. Zbl 0703.65095, MR 1041254, 10.1137/0727037; reference:[7] Y. Lin, T. Zhang: The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type.Applications of Mathematics 36 (1991), no. 2, 123–133. MR 1097696; reference:[8] Y. Lin, V. Thomée, L. Wahlbin: Ritz-Volterra projection on finite element spaces and applications to integrodifferential and related equations.SIAM J. Numer. Anal. 28 (1991), 1047–1070. MR 1111453, 10.1137/0728056; reference:[9] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems.Lect. Notes in Math., 1054, 1984. MR 0744045; reference:[10] V. Thomée, J. Xu, N. Zhang: Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem.SIAM J. Numer. Anal. 26 (1989), 553–573. MR 0997656, 10.1137/0726033; reference:[11] V. Thomée, N. Zhang: Error estimates for semidiscrete finite element methods for parabolic integrodifferential equations.Math. Comp. 53 (1989), 121–139. MR 0969493, 10.2307/2008352; reference:[12] M. Wheeler: A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723–759. MR 0351124, 10.1137/0710062; reference:[13] Q. Zhu, Q. Lin: Superconvergence Theory of the Finite Element Methods.Hunan Science Press, 1990.

  15. 15
  16. 16