-
1Academic Journal
المؤلفون: Liu, Liping, Křížek, Michal, Lin, Tao, Zhang, Shuhua
المصدر: SIAM Journal on Numerical Analysis, 2005 Jan 01. 42(4), 1729-1744.
URL الوصول: https://www.jstor.org/stable/4101333
-
2Academic Journal
المؤلفون: Wei, Yabing, Lü, Shujuan, Wang, Fenling, Liu, F., Zhao, Yanmin
المصدر: Computers and Mathematics with Applications
مصطلحات موضوعية: Anisotropic nonconforming FEM, Global superconvergence, L2-1 scheme, Time fractional reaction-diffusion equation
Relation: Wei, Yabing, Lü, Shujuan, Wang, Fenling, Liu, F., & Zhao, Yanmin (2022) Global superconvergence analysis of nonconforming finite element method for time fractional reaction-diffusion problem with anisotropic data. Computers and Mathematics with Applications, 119, pp. 159-173.; https://eprints.qut.edu.au/239921/; Faculty of Science; School of Mathematical Sciences
الاتاحة: https://eprints.qut.edu.au/239921/
-
3Academic Journal
المؤلفون: Lin, Qun, Huang, Hung-Tsai, Li, Zi-Cai
المصدر: Mathematics of Computation, 2008 Oct 01. 77(264), 2061-2084.
URL الوصول: https://www.jstor.org/stable/40234601
-
4Academic Journal
المؤلفون: Hung-tsai Huanga, Zi-cai Lib, Qun Line
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://web.math.isu.edu.tw/huanght/files/research/2008_jcam_2008_07_v217(9-27).pdf.
مصطلحات موضوعية: Bilinear elements, Rotated bilinear element, The extension of rotated bilinear element, Wilson’s element, Eigenvalue problem, Extrapolation, Global superconvergence
وصف الملف: application/pdf
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.512.3402; http://web.math.isu.edu.tw/huanght/files/research/2008_jcam_2008_07_v217(9-27).pdf
-
5Academic Journal
المؤلفون: Qun Lin, Shu Hua Zhang, Shuhua Zhang
المساهمون: The Pennsylvania State University CiteSeerX Archives
مصطلحات موضوعية: integrodifferential equations, global superconvergence, immediate analysis MSC 2000, 65B05, 65N30
وصف الملف: application/pdf
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.1597; http://dml.cz/bitstream/handle/10338.dmlcz/134341/AplMat_42-1997-1_1.pdf
-
6Academic Journal
المؤلفون: Zhang, Tie, Zhang, Shuhua
مصطلحات موضوعية: keyword:finite volume method, keyword:nonlinear elliptic problem, keyword:local and global superconvergence in the $W^{1,\infty }$-norm, keyword:a posteriori error estimator, msc:65M15, msc:65M60
وصف الملف: application/pdf
Relation: mr:MR3396481; zbl:Zbl 06486926; reference:[1] Babuška, I., Banerjee, U., Osborn, J. E.: Superconvergence in the generalized finite element method.Numer. Math. 107 (2007), 353-395. Zbl 1129.65075, MR 2336112, 10.1007/s00211-007-0096-8; reference:[2] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K.: Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations.Numer. Methods Partial Differ. Equations 12 (1996), 347-392. Zbl 0854.65089, MR 1388445, 10.1002/num.1690120303; reference:[3] Babuška, I., Whiteman, J. R., Strouboulis, T.: Finite Elements. An Introduction to the Method and Error Estimation.Oxford University Press, Oxford (2011). Zbl 1206.65246, MR 2857237; reference:[4] Bank, R. E., Rose, D. J.: Some error estimates for the box method.SIAM J. Numer. Anal. 24 (1987), 777-787. Zbl 0634.65105, MR 0899703, 10.1137/0724050; reference:[5] Bergam, A., Mghazli, Z., Verfürth, R.: A posteriori estimates of a finite volume scheme for a nonlinear problem.Numer. Math. French 95 (2003), 599-624. Zbl 1033.65095, MR 2013121; reference:[6] Bi, C.: Superconvergence of finite volume element method for a nonlinear elliptic problem.Numer. Methods Partial Differ. Equations 23 (2007), 220-233. Zbl 1119.65105, MR 2275467, 10.1002/num.20173; reference:[7] Bi, C., Ginting, V.: Two-grid finite volume element method for linear and nonlinear elliptic problems.Numer. Math. 108 (2007), 177-198. Zbl 1134.65077, MR 2358002, 10.1007/s00211-007-0115-9; reference:[8] Brandts, J. H.: Analysis of a non-standard mixed finite element method with applications to superconvergence.Appl. Math., Praha 54 (2009), 225-235. Zbl 1212.65441, MR 2530540, 10.1007/s10492-009-0014-8; reference:[9] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489-505. Zbl 1042.65081, MR 1987941, 10.1093/imanum/23.3.489; reference:[10] Brandts, J., Křížek, M.: Superconvergence of tetrahedral quadratic finite elements.J. Comput. Math. 23 (2005), 27-36. Zbl 1072.65137, MR 2124141; reference:[11] Cai, Z.: On the finite volume element method.Numer. Math. 58 (1991), 713-735. Zbl 0731.65093, MR 1090257, 10.1007/BF01385651; reference:[12] Chatzipantelidis, P., Ginting, V., Lazarov, R. D.: A finite volume element method for a nonlinear elliptic problem.Numer. Linear Algebra Appl. 12 (2005), 515-546. MR 2150166, 10.1002/nla.439; reference:[13] Chen, Z.: Superconvergence of generalized difference method for elliptic boundary value problem.Numer. Math., J. Chin. Univ. 3 (1994), 163-171. Zbl 0814.65102, MR 1325662; reference:[14] Chen, L.: A new class of high order finite volume methods for second order elliptic equations.SIAM J. Numer. Anal. 47 (2010), 4021-4043. Zbl 1261.65109, MR 2585177, 10.1137/080720164; reference:[15] Chen, Z., Li, R., Zhou, A.: A note on the optimal $L^2$-estimate of the finite volume element method.Adv. Comput. Math. 16 (2002), 291-303. Zbl 0997.65122, MR 1894926, 10.1023/A:1014577215948; reference:[16] Chou, S.-H., Kwak, D. Y., Li, Q.: $L^p$ error estimates and superconvergence for covolume or finite volume element methods.Numer. Methods Partial Differ. Equations 19 (2003), 463-486. Zbl 1029.65123, MR 1980190, 10.1002/num.10059; reference:[17] J. Douglas, Jr., T. Dupont: A Galerkin method for a nonlinear Dirichlet problem.Math. Comp. 29 (1975), 689-696. Zbl 0306.65072, MR 0431747, 10.1090/S0025-5718-1975-0431747-2; reference:[18] J. Douglas, Jr., T. Dupont, J. Serrin: Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form.Arch Ration. Mech. Anal. 42 (1971), 157-168. Zbl 0222.35017, MR 0393829, 10.1007/BF00250482; reference:[19] Ewing, R. E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials.SIAM J. Numer. Anal. 39 (2002), 1865-1888. Zbl 1036.65084, MR 1897941, 10.1137/S0036142900368873; reference:[20] Hlaváček, I., Křížek, M.: On a nonpotential nonmonotone second order elliptic problem with mixed boundary conditions.Stab. Appl. Anal. Contin. Media 3 (1993), 85-97.; reference:[21] Hlaváček, I., Křížek, M., Malý, J.: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 184 (1994), 168-189. MR 1275952, 10.1006/jmaa.1994.1192; reference:[22] Huang, J., Li, L.: Some superconvergence results for the covolume method for elliptic problems.Commun. Numer. Methods Eng. 17 (2001), 291-302. Zbl 0987.65109, MR 1832578, 10.1002/cnm.403; reference:[23] Křížek, M., Neittaanmäki, P.: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications.Mathematical Modelling: Theory and Applications 1 Kluwer Academic Publishers, Dordrecht (1996). MR 1431889; reference:[24] Lazarov, R. D., Mishev, I. D., Vassilevski, P. S.: Finite volume methods for convection-diffusion problems.SIAM J. Numer. Anal. 33 (1996), 31-55. Zbl 0847.65075, MR 1377242, 10.1137/0733003; reference:[25] Li, R.: Generalized difference methods for a nonlinear Dirichlet problem.SIAM J. Numer. Anal. 24 (1987), 77-88. Zbl 0626.65091, MR 0874736, 10.1137/0724007; reference:[26] Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods.Pure and Applied Mathematics Marcel Dekker, New York (2000). Zbl 0940.65125, MR 1731376; reference:[27] Lin, Q., Zhu, Q. D.: The Preprocessing and Postprocessing for the Finite Element Methods.Chinese Shanghai Sci. & Tech. Publishing Shanghai (1994).; reference:[28] Lv, J., Li, Y.: $L^2$ error estimates and superconvergence of the finite volume element methods on quadrilateral meshes.Adv. Comput. Math. 37 (2012), 393-416. Zbl 1255.65198, MR 2970858, 10.1007/s10444-011-9215-2; reference:[29] Schmidt, T.: Box schemes on quadrilateral meshes.Computing 51 (1993), 271-292. Zbl 0787.65075, MR 1253406, 10.1007/BF02238536; reference:[30] Süli, E.: Convergence of finite volume schemes for Poisson's equation on nonuniform meshes.SIAM J. Numer. Anal. 28 (1991), 1419-1430. Zbl 0802.65104, MR 1119276, 10.1137/0728073; reference:[31] Wahlbin, L. B.: Superconvergence in Galerkin Finite Element Methods.Lecture Notes in Mathematics 1605 Springer, Belin (1995). Zbl 0826.65092, MR 1439050, 10.1007/BFb0096835; reference:[32] Wu, H., Li, R.: Error estimates for finite volume element methods for general second-order elliptic problems.Numer. Methods Partial Differ. Equations 19 (2003), 693-708. Zbl 1040.65091, MR 2009589, 10.1002/num.10068; reference:[33] Zhang, T.: Finite Element Methods for Partial Differential-Integral Equations.Chinese Science Press, Beijing (2012).; reference:[34] Zhang, T., Lin, Y. P., Tait, R. J.: On the finite volume element version of Ritz-Volterra projection and applications to related equations.J. Comput. Math. 20 (2002), 491-504. Zbl 1013.65143, MR 1931591; reference:[35] Zhu, Q. D., Lin, Q.: The Superconvergence Theory of Finite Elements.Chinese Hunan Science and Technology Publishing House Changsha (1989). MR 1200243
-
7
المؤلفون: Ningning Yan, Zi-Cai Li
المصدر: Journal of Computational and Applied Mathematics. 142(2):251-285
مصطلحات موضوعية: Hermite polynomials, Applied Mathematics, Mathematical analysis, Mixed boundary condition, Superconvergence, Global superconvergence, Finite element method, Domain (mathematical analysis), Biharmonic equation, Bi-cubic Hermite elements, Computational Mathematics, Singularity, Boundary value problem, Mathematics
-
8
المؤلفون: Hermann Brunner, Ningning Yan
المصدر: Journal of Computational and Applied Mathematics. 67:185-189
مصطلحات موضوعية: Collocation, Applied Mathematics, Mathematical analysis, Gauss, 010103 numerical & computational mathematics, Superconvergence, Global superconvergence, Computer Science::Numerical Analysis, 01 natural sciences, Integral equation, Volterra integral equation, Mathematics::Numerical Analysis, 010101 applied mathematics, Computational Mathematics, symbols.namesake, Computer Science::Computational Engineering, Finance, and Science, Iterated function, Collocation method, symbols, Iterated collocation solutions, Orthogonal collocation, Volterra integral equations of the second kind, 0101 mathematics, Mathematics
-
9Academic Journal
المؤلفون: Azari, Hossein, Zhang, Shuhua
مصطلحات موضوعية: keyword:inverse problem, keyword:global superconvergence, keyword:finite element method, msc:35K10, msc:35R30, msc:65M06, msc:65M32, msc:65M60, msc:76R50
وصف الملف: application/pdf
Relation: mr:MR2530544; zbl:Zbl 1212.35498; reference:[1] Alvarez, C., Conca, C., Friz, L., Kavian, O., Ortega, J. H.: Identification of immersed obstacles via boundary measurements.Inverse Probl. 21 (2005), 1531-1552. Zbl 1088.35080, MR 2173409; reference:[2] Azari, H., Allegretto, W., Lin, Y., Zhang, S.: Numerical procedures for recovering a time dependent coefficient in a parabolic differential equation.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 11 (2004), 181-199. Zbl 1055.35132, MR 2049776; reference:[3] Azari, H., Li, Ch., Nie, Y., Zhang, S.: Determination of an unknown coefficient in a parabolic inverse problem.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 665-674. Zbl 1059.35161, MR 2077110; reference:[4] Azari, H., Zhang, S.: Identifying a time dependent unknown coefficient in a parabolic inverse problem.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms. Suppl. 12b (2005), 32-43. MR 2269155; reference:[5] Cannon, J. R., Yin, H.-M.: A class of nonlinear non-classical parabolic equations.J. Differ. Equations 79 (1989), 266-288. Zbl 0702.35120, MR 1000690, 10.1016/0022-0396(89)90103-4; reference:[6] Cannon, J. R., Yin, H.-M.: Numerical solutions of some parabolic inverse problems.Numer. Methods Partial Differ. Equations 6 (1990), 177-191. Zbl 0709.65105, MR 1051841, 10.1002/num.1690060207; reference:[7] Canuto, B., Kavian, O.: Determining coefficients in a class of heat equations via boundary measurements.SIAM J. Math. Anal. 32 (2001), 963-986 (electronic). Zbl 0981.35096, MR 1828313, 10.1137/S003614109936525X; reference:[8] J. Douglas, Jr., B. F. Jones, Jr.: The determination of a coefficient in a parabolic differential equation. II. Numerical approximation.J. Math. Mech. 11 (1962), 919-926. Zbl 0112.32603, MR 0153988; reference:[9] B. F. Jones, Jr.: The determination of a coefficient in a parabolic differential equation. I. Existence and uniqueness.J. Math. Mech. 11 (1962), 907-918. Zbl 0112.32602, MR 0153987; reference:[10] Keung, Y. L., Zou, J.: Numerical identification of parameters in parabolic systems.Inverse Probl. 14 (1998), 83-100. Zbl 0894.35127, MR 1607632; reference:[11] Khachfe, R. A., Jarny, Y.: Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques.Numer. Heat Transfer, Part B: Fundamentals 37 (2000), 45-67. 10.1080/104077900275549; reference:[12] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Publishers Baoding (1996), Chinese.; reference:[13] Lin, Q., Zhu, Q.: The Preprocessing and Postprocessing for the Finite Element Method.Shanghai Scientific & Technical Publishers Shanghai (1994), Chinese.; reference:[14] Prilepko, A. I., Orlovskii, D. G.: Determination of the parameter of an evolution equation and inverse problems of mathematical physics I.Differ. Equations 21 (1985), 96-104. MR 0777788; reference:[15] Ramm, A. G.: An inverse problem for the heat equation.J. Math. Anal. Appl. 264 (2001), 691-697. Zbl 0987.35164, MR 1876759, 10.1006/jmaa.2001.7781; reference:[16] Ramm, A. G.: A non-overdetermined inverse problem of finding the potential from the spectral function.Int. J. Differ. Equ. Appl. 3 (2001), 15-29. Zbl 1048.35137, MR 1852465; reference:[17] Ramm, A. G.: Inverse problems for parabolic equations applications.Aust. J. Math. Anal. Appl. 2 (2005), Art. 10 (electronic). Zbl 1162.35384, MR 2174516; reference:[18] Ramm, A. G., Koshkin, S. V.: An inverse problem for an abstract evolution equation.Appl. Anal. 79 (2001), 475-482. Zbl 1020.35120, MR 1880954, 10.1080/00036810108840973; reference:[19] Xiong, X. T., Fu, C. L., Li, H. F.: Central difference schemes in time and error estimate on a non-standard inverse heat conduction problem.Appl. Math. Comput. 157 (2004), 77-91. Zbl 1068.65117, MR 2085525, 10.1016/j.amc.2003.08.028
-
10Academic Journal
المؤلفون: Chien, C.S., Huang, H.T., Jeng, B.W., Li, Z.C.
مصطلحات موضوعية: parameter-dependent problems, Poisson's equation, Adini's elements, continuation methods, finite-dimensional approximation, simplified hybrid combinations, elliptic-equations, global superconvergence, bifurcation problems, nonlinear problems, lagrange elements, poissons-equation, adinis, elements, singularities
Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; International Journal of Bifurcation and Chaos; International Journal of Bifurcation and Chaos, Volume 18, Issue 5, Page(s) 1321-1336.; http://dx.doi.org/10.1142/s0218127408021014; http://hdl.handle.net/11455/69350
-
11Dissertation/ Thesis
المؤلفون: Huang, Hung-Tsai
Thesis Advisors: Chieh-Sen Huang, Tzon-Tzer Lu, Chun-Kong Law, Zi-Cai Li, Chang-Yi Wang, Weichung Wang
مصطلحات موضوعية: global superconvergence, Lagrange elements, singularity, combined methods, posteriori interpolant, Adini¡¦s element, finite element methods, blending curves., elliptic equations
وصف الملف: application/pdf
-
12Academic Journal
المؤلفون: Křižek, Michal, Neittaanmäki, Pekka
مصطلحات موضوعية: global superconvergence for the gradient, post-processing of the Ritz—Galerkin scheme, error estimates, boundary flux
وصف الملف: application/pdf; 221-233; fulltext
Relation: Journal of Computational and Applied Mathematics; 18; Křižek, M., Neittaanmäki, P. (1987). On a global superconvergence of the gradient of linear triangular elements. Journal of Computational and Applied Mathematics , 18 (2), 221-233. doi:10.1016/0377-0427(87)90018-5; URN:NBN:fi:jyu-201902201597; http://urn.fi/URN:NBN:fi:jyu-201902201597
-
13Academic Journal
المؤلفون: Lin, Qun, Zhang, Shuhua
مصطلحات موضوعية: keyword:Sobolev and viscoelasticity type equations, keyword:global superconvergence, keyword:direct analysis, keyword:finite element method, keyword:evolution equation, msc:35G10, msc:35K25, msc:65B05, msc:65M12, msc:65M60, msc:65N30, msc:74Hxx
وصف الملف: application/pdf
Relation: mr:MR1426678; zbl:Zbl 0902.65034; reference:[1] D. Arnold, J. Douglas, V. Thomée: Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable.Math. Comp. 36 (1981), 53–63. MR 0595041, 10.1090/S0025-5718-1981-0595041-4; reference:[2] R. Ewing: The approximation of certain parabolic equations backward in time by Sobolev equations.SIAM J. Math. Anal. 6 (1975), 283–294. Zbl 0292.35004, MR 0361447, 10.1137/0506029; reference:[3] R. Ewing: Numerical solution of Sobolev partial differential eqautions.SIAM J. Numer. Anal. 12 (1975), 345–363. MR 0395265, 10.1137/0712028; reference:[4] W. Ford: Galerkin approximation to nonlinear pseudoparabolic partial differential equation.Aequationes Math. 14 (1976), 271–291. MR 0408270, 10.1007/BF01835978; reference:[5] W. Ford, T. Ting: Stability and convergence of difference approximations to pseudoparabolic partial equations.Math. Comp. 27 (1973), 737–743. MR 0366052, 10.1090/S0025-5718-1973-0366052-4; reference:[6] W. Ford, T. Ting: Uniform error estimates for difference approximations to nonlinear pseudoparabolic partial differential equations.SIAM J. Numer. Anal. 11 (1974), 155–169. MR 0423833, 10.1137/0711016; reference:[7] Q. Lin: A new observation in FEM.Proc. Syst. Sci. & Syst. Eng. (1991), Great Wall (H.K.) Culture Publish Co., 389–391.; reference:[8] Q. Lin, N. Yan, A. Zhou: A rectangle test for interpolated finite elements, ibid.217–229.; reference:[9] Q. Lin, S. Zhang: An immediate analysis for global superconvergence for integrodifferential equations.Appl. Math. 42 (1997), 1–21. MR 1426677, 10.1023/A:1022264125558; reference:[10] Y. Lin: Galerkin methods for nonlinear Sobolev equations.Aequations Math. 40 (1990), 54–56. Zbl 0734.65078, MR 1055190, 10.1007/BF02112280; reference:[11] Y. Lin, T. Zhang: Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions.J. Math. Anal. & Appl. 165 (1992), 180–191. MR 1151067, 10.1016/0022-247X(92)90074-N; reference:[12] Y. Lin, V. Thomée, L. Wahlbin: Ritz-Volterra projection on finite element spaces and applications to integrodifferential and related equations.SIAM J. Numer. Anal. 28 (1991), 1047–1070. MR 1111453, 10.1137/0728056; reference:[13] M. Nakao: Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension.Numer. Math. 47 (1985), 139–157. Zbl 0575.65112, MR 0797883, 10.1007/BF01389881; reference:[14] L. Wahlbin: Error estimates for a Galerkin method for a class of model equations for long waves.Numer. Math. 23 (1975), 289–303. Zbl 0283.65052, MR 0388799, 10.1007/BF01438256; reference:[15] M. Wheeler: A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723–759. MR 0351124, 10.1137/0710062; reference:[16] Q. Zhu, Q. Lin: Superconvergence Theory of the Finite Element Methods.Hunan Science Press, 1990.
-
14Academic Journal
المؤلفون: Lin, Qun, Zhang, Shuhua
مصطلحات موضوعية: keyword:integrodifferential equations, keyword:global superconvergence, keyword:immediate analysis, keyword:postprocessing, keyword:finite element method, keyword:parabolic, keyword:hyperbolic, msc:45K05, msc:65B05, msc:65M60, msc:65N30, msc:65R20
وصف الملف: application/pdf
Relation: mr:MR1426677; zbl:Zbl 0902.65090; reference:[1] J. Cannon, Y. Lin: A Galerkin procedure for diffusion equations with boundary integral conditions.Int. J. Eng. Sci. 28 (1990), 579–587. MR 1059777, 10.1016/0020-7225(90)90087-Y; reference:[2] M. Křížek, P. Neittaanmäki: On Finite Element Approximation of Variational Problems and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Essex, 1989. MR 1066462; reference:[3] Q. Lin: A new observation in FEM.Proc. Syst. Sci. & Syst. Eng., Great Wall (H.K.), Culture Publish Co., 1991, pp. 389–391.; reference:[4] Q. Lin, N. Yan, A. Zhou: A rectangle test for interpolated finite elements, ibid.217–229.; reference:[5] Q. Lin, Q. Zhu: The Preprocessing and Postprocessing for the Finite Element Method.Shanghai Scientific & Technical Publishers, 1994.; reference:[6] Y. Lin: Galerkin methods for nonlinear parabolic integrodifferential equations with nonlinear boundary conditions.SIAM J. Numer. Anal. 27 (1990), 608–621. Zbl 0703.65095, MR 1041254, 10.1137/0727037; reference:[7] Y. Lin, T. Zhang: The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type.Applications of Mathematics 36 (1991), no. 2, 123–133. MR 1097696; reference:[8] Y. Lin, V. Thomée, L. Wahlbin: Ritz-Volterra projection on finite element spaces and applications to integrodifferential and related equations.SIAM J. Numer. Anal. 28 (1991), 1047–1070. MR 1111453, 10.1137/0728056; reference:[9] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems.Lect. Notes in Math., 1054, 1984. MR 0744045; reference:[10] V. Thomée, J. Xu, N. Zhang: Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem.SIAM J. Numer. Anal. 26 (1989), 553–573. MR 0997656, 10.1137/0726033; reference:[11] V. Thomée, N. Zhang: Error estimates for semidiscrete finite element methods for parabolic integrodifferential equations.Math. Comp. 53 (1989), 121–139. MR 0969493, 10.2307/2008352; reference:[12] M. Wheeler: A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723–759. MR 0351124, 10.1137/0710062; reference:[13] Q. Zhu, Q. Lin: Superconvergence Theory of the Finite Element Methods.Hunan Science Press, 1990.
-
15
المؤلفون: Pekka Neittaanmäki, Michal Křížek
المصدر: Journal of Computational and Applied Mathematics. (2):221-233
مصطلحات موضوعية: Applied Mathematics, Mathematical analysis, Order of accuracy, Superconvergence, global superconvergence for the gradient, Computer Science::Numerical Analysis, Global superconvergence for the gradient, Mathematics::Numerical Analysis, Nonlinear conjugate gradient method, Elliptic curve, Computational Mathematics, error estimates, Norm (mathematics), boundary flux, Piecewise, post-processing of the Ritz—Galerkin scheme, Gradient descent, Gradient method, Mathematics
وصف الملف: application/pdf; fulltext
-
16
المؤلفون: Zi-Cai Li, Hung-Tsai Huang, Qun Lin
المصدر: Journal of Computational and Applied Mathematics. (1):213-226
مصطلحات موضوعية: Wilson’s element, Applied Mathematics, Mathematical analysis, Extrapolation, Superconvergence, Global superconvergence, Upper and lower bounds, Finite element method, Computational Mathematics, symbols.namesake, Rate of convergence, Eigenvalue problem, Dirichlet boundary condition, symbols, Boundary value problem, Eigenvalues and eigenvectors, Mathematics