-
1Academic Journal
المؤلفون: Looby, Audrey, Ginsburg, David W.
المصدر: Western North American Naturalist, 2021 May 01. 81(1), 113-130.
URL الوصول: https://www.jstor.org/stable/27109692
-
2Academic Journal
المؤلفون: Navarrete, Ignacio A., Kim, Diane Y., Wilcox, Cindy, Reed, Daniel C., Ginsburg, David W., Dutton, Jessica M., Heidelberg, John, Raut, Yubin, Wilcox, Brian Howard
المساهمون: U.S. Department of Energy
المصدر: Renewable and Sustainable Energy Reviews ; volume 141, page 110747 ; ISSN 1364-0321
-
3Academic Journal
المؤلفون: Brooke, Charles G., Roque, Breanna M., Shaw, Claire, Najafi, Negeen, Gonzalez, Maria, Pfefferlen, Abigail, De Anda, Vannesa, Ginsburg, David W., Harden, Maddelyn C., Nuzhdin, Sergey V., Salwen, Joan King, Kebreab, Ermias, Hess, Matthias
المصدر: Frontiers in Marine Science ; volume 7 ; ISSN 2296-7745
-
4Academic Journal
المؤلفون: Ginsburg, David W., Paul, Valerie J.
المصدر: Marine Ecology Progress Series, 2001 May . 215, 261-274.
URL الوصول: https://www.jstor.org/stable/24864273
-
5Academic Journal
المؤلفون: Ginsburg, David W.1 (AUTHOR) dginsbur@usc.edu, Huang, Andrew H.1 (AUTHOR)
المصدر: Diversity (14242818). May2022, Vol. 14 Issue 5, pN.PAG-N.PAG. 13p.
مصطلحات موضوعية: *SPECIES diversity, *HABITATS, *MARINE parks & reserves, *CHONDRICHTHYES, *ISLANDS, *TERRITORIAL waters
مصطلحات جغرافية: CALIFORNIA, SANTA Catalina Island (Calif.)
-
6Academic Journal
المؤلفون: Becker, Daniel J., Myers, Jay T., Ruff, Melissa M., Smith, Peter L., Gillespie, Brenda W., Ginsburg, David W., Lowe, John B.
المصدر: Mammalian Genome ; volume 14, issue 6, page 427-427 ; ISSN 0938-8990 1432-1777
-
7Academic Journal
المؤلفون: Tanner, Richelle L., Obaza, Adam K., Ginsburg, David W.
المصدر: Bulletin of the Southern California Academy of Sciences; Dec2019, Vol. 118 Issue 3, p158-172, 15p
مصطلحات موضوعية: MARINE parks & reserves, SEAGRASSES, ZOSTERA marina, ZOSTERA, KELPS, HABITATS
مصطلحات جغرافية: SANTA Catalina Island (Calif.), SOUTHERN California
-
8Academic Journal
المؤلفون: Mika, Kathryn B., Ginsburg, David W., Lee, Christine M., Thulsiraj, Vanessa, Jay, Jennifer A.
المصدر: Water, Air, & Soil Pollution ; volume 225, issue 6 ; ISSN 0049-6979 1573-2932
-
9Academic Journal
المصدر: Polar Biology ; volume 36, issue 9, page 1257-1267 ; ISSN 0722-4060 1432-2056
-
10Academic Journal
المؤلفون: Su, E. J., Geyer, M., Wahl, M., Mann, K., Ginsburg, David W., Brohmann, H., Petersen, K. U., Lawrence, D. A.
المساهمون: Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA, Department of Internal Medicine, PAION Deutschland GmbH, Aachen, Germany
مصطلحات موضوعية: Anticoagulants, Cerebral‐Ischemia, Hemorrhage, Stroke, Thrombosis, Internal Medicine and Specialties, Health Sciences
وصف الملف: application/pdf
Relation: Su, E. J.; Geyer, M.; Wahl, M.; Mann, K.; Ginsburg, D.; Brohmann, H.; Petersen, K. U.; Lawrence, D. A. (2011). "The thrombomodulin analog Solulin promotes reperfusion and reduces infarct volume in a thrombotic stroke model." Journal of Thrombosis and Haemostasis 9(6).; https://hdl.handle.net/2027.42/86888; Journal of Thrombosis and Haemostasis; Lloyd‐Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L et al. Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation 2010; 121: e46 – 215.; Green AR. Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br J Pharmacol 2008; 153: S325 – 38.; Sandercock PA, Counsell C, Gubitz GJ, Tseng MC. Antiplatelet therapy for acute ischaemic stroke. Cochrane Database Syst Rev 2008; ( 3 ): CD000029.; Adams HP. Emergent use of anticoagulation for treatment of patients with ischemic stroke. Stroke 2002; 33: 856 – 61.; Camerlingo M, Salvi P, Belloni G, Gamba T, Cesana BM, Mamoli A. Intravenous heparin started within the first 3 hours after onset of symptoms as a treatment for acute nonlacunar hemispheric cerebral infarctions. Stroke 2005; 36: 2415 – 20.; Sandercock P, Counsell C, Kamal AK. Anticoagulants for acute ischemic stroke. Stroke 2009; 40: e483 – 4.; Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin‐ catalyzed activation of protein C. Proc Natl Acad Sci U S A 1981; 78: 2249 – 52.; Dahlbäck B. Physiological anticoagulation. Resistance to activated protein C and venous thromboembolism. J Clin Invest 1994; 94: 923 – 7.; Lane DA, Philippou H, Huntington JA. Directing thrombin. Blood 2005; 106: 2605 – 12.; Bajzar L, Morser J, Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin‐thrombomodulin complex. J Biol Chem 1996; 271: 16603 – 8.; Wang W, Nagashima M, Schneider M, Morser J, Nesheim M. Elements of the primary structure of thrombomodulin required for efficient thrombin‐activable fibrinolysis inhibitor activation. J Biol Chem 2000; 275: 22942 – 7.; Momi S, Leone M, Semeraro N, Morser J, Gresele P, Colucci M. Recombinant soluble thrombomodulin prevents thrombin‐induced thromboembolism in mice independently of direct thrombin inhibition. Haematologica 2000; 85: 87 – 8.; Mohri M. ART‐123: recombinant human soluble thrombomodulin. Cardiovasc Drug Rev 2000; 18: 312 – 25.; Cui J, Eitzman DT, Westrick RJ, Christie PD, Xu ZJ, Yang AY, Purkayastha AA, Yang TL, Metz AL, Gallagher KP, Tyson JA, Rosenberg RD, Ginsburg D. Spontaneous thrombosis in mice carrying the factor V Leiden mutation. Blood 2000; 96: 4222 – 6.; Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, Gao Y, Pietras K, Mann K, Yepes M, Strickland DK, Betsholtz C, Eriksson U, Lawrence DA. Activation of PDGF‐CC by tissue plasminogen activator impairs blood–brain barrier integrity during ischemic stroke. Nat Med 2008; 14: 731 – 7.; Choudhri TF, Hoh BL, Prestigiacomo CJ, Huang J, Kim LJ, Schmidt AM, Kisiel W, Connolly ES Jr, Pinsky DJ. Targeted inhibition of intrinsic coagulation limits cerebral injury in stroke without increasing intracerebral hemorrhage. J Exp Med 1999; 190: 91 – 9.; Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, Lawrence DA. Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia‐induced apoptosis. Blood 2000; 96: 569 – 76.; Zhao BQ, Ikeda Y, Ihara H, Urano T, Fan W, Mikawa S, Suzuki Y, Kondo K, Sato K, Nagai N, Umemura K. Essential role of endogenous tissue plasminogen activator through matrix metalloproteinase 9 induction and expression on heparin‐produced cerebral hemorrhage after cerebral ischemia in mice. Blood 2004; 103: 2610 – 6.; Wong KS, Chen C, Ng PW, Tsoi TH, Li HL, Fong WC, Yeung J, Wong CK, Yip KK, Gao H, Wong HB. Low‐molecular‐weight heparin compared with aspirin for the treatment of acute ischaemic stroke in Asian patients with large artery occlusive disease: a randomised study. Lancet Neurol 2007; 6: 407 – 13.; Paciaroni M, Agnelli G, Micheli S, Caso V. Efficacy and safety of anticoagulant treatment in acute cardioembolic stroke: a meta‐analysis of randomized controlled trials. Stroke 2007; 38: 423 – 30.; Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood 2008; 112: 3555 – 62.; Adams HP Jr, Effron MB, Torner J, Davalos A, Frayne J, Teal P, Leclerc J, Oemar B, Padgett L, Barnathan ES, Hacke W. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT‐II). Stroke 2008; 39: 87 – 99.; Bajzar L, Nesheim ME, Tracy PB. The profibrinolytic effect of activated protein C in clots formed from plasma is TAFI‐dependent. Blood 1996; 88: 2093 – 100.; Mosnier LO, Meijers JC, Bouma BN. Regulation of fibrinolysis in plasma by TAFI and protein C is dependent on the concentration of thrombomodulin. Thromb Haemost 2001; 85: 5 – 11.; Bajzar L, Kalafatis M, Simioni P, Tracy PB. An antifibrinolytic mechanism describing the prothrombotic effect associated with factor VLeiden. J Biol Chem 1996; 271: 22949 – 52.; Parker AC, Mundada LV, Schmaier AH, Fay WP. Factor VLeiden inhibits fibrinolysis in vivo. Circulation 2004; 110: 3594 – 8.; Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J Neurochem 2003; 84: 3 – 9.; Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke 2007; 38: 759 – 62.; Xue M, Hollenberg MD, Yong VW. Combination of thrombin and matrix metalloproteinase‐9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci 2006; 26: 10281 – 91.; Guo H, Singh I, Wang Y, Deane R, Barrett T, Fernandez JA, Chow N, Griffin JH, Zlokovic BV. Neuroprotective activities of activated protein C mutant with reduced anticoagulant activity. Eur J Neurosci 2009; 29: 1119 – 30.; Wang Y, Thiyagarajan M, Chow N, Singh I, Guo H, Davis TP, Zlokovic BV. Differential neuroprotection and risk for bleeding from activated protein C with varying degrees of anticoagulant activity. Stroke 2009; 40: 1864 – 9.; Hemker HC, Al Dieri R, De Smedt E, Beguin S. Thrombin generation, a function test of the haemostatic‐thrombotic system. Thromb Haemost 2006; 96: 553 – 61.; Fumagalli R, Mignini MA. The safety profile of drotrecogin alfa (activated). Crit Care 2007; 11 ( Suppl. 5 ): S6.; van Iersel T, Stroissnig H, Giesen P, Wemer J, Wilhelm‐Ogunbiyi K. Phase I study of Solulin, a novel recombinant soluble human thrombomodulin analogue. Thromb Haemost 2010; 105: 302 – 12.
-
11Book
المؤلفون: Matlock, Daniel B., Ginsburg, David W., Paul, Valerie J.
المصدر: Sixteenth International Seaweed Symposium ; page 267-273 ; ISBN 9789401059091 9789401144490
-
12Academic Journal
المؤلفون: Westrick, Randal Joseph, Ginsburg, David W.
المساهمون: * Department of Human Genetics, University of Michigan, Ann Arbor, MI, † Departments of Internal Medicine and Human Genetics, Howard Hughes Medical Institute, Life Sciences Institute, University of Michigan, Ann Arbor MI, USA
مصطلحات موضوعية: ADAMTS13, Factor V Leiden, Genetic Model, Hemostasis, Mice, Von Willebrand Factor, Internal Medicine and Specialties, Health Sciences
وصف الملف: 131469 bytes; 3109 bytes; application/pdf; text/plain
Relation: WESTRICK, R. J.; GINSBURG, D. (2009). "Modifier genes for disorders of thrombosis and hemostasis." Journal of Thrombosis and Haemostasis 7(s1 State of the Art 2009 ): 132-135.; https://hdl.handle.net/2027.42/72106; http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19630785&dopt=citation; Journal of Thrombosis and Haemostasis; Davidson CJ, Tuddenham EG, McVey JH. 450 million years of hemostasis. J Thromb Haemost 2003; 1: 1487 – 94.; Ginsburg D. Hemophilia and Other Disorders of Hemostasis. Emery and Rimoin’s Principles and Practice of Medical Genetics, 5th edn. New York: Churchill Livingstone, 2007.; Ginsburg D. Identifying novel genetic determinants of hemostatic balance. J Thromb Haemost 2005; 3: 1561 – 8.; Houlston RS, Tomlinson IP. Modifier genes in humans: strategies for identification. Eur J Hum Genet 1998; 6: 80 – 8.; Hoover-Plow JL, Shchurin A, Hart E, Sha J, Singer JB, Hill AE, Nadeau JH. Genetic background determines response to hemostasis and thrombosis. BMC Blood Disord 2006; 6: 6.; Sa Q, Hart E, Hill AE, Nadeau JH, Hoover-Plow JL. Quantitative trait locus analysis for hemostasis and thrombosis. Mamm Genome 2008; 19: 406 – 12.; Rosen ED, Xuei X, Suckow M, Edenberg H. Searching for hemostatic modifier genes affecting the phenotype of mice with very low levels of FVII. Blood Cells Mol Dis 2006; 36: 131 – 4.; Lemmerhirt HL, Broman KW, Shavit JA, Ginsburg D. Genetic regulation of plasma von Willebrand factor levels: QTL analysis in a mouse model. J Thromb Haemost 2006; 5: 329 – 35.; Lemmerhirt HL, Shavit JA, Levy GG, Cole SM, Long JC, Ginsburg D. Enhanced VWF biosynthesis and elevated plasma VWF due to a natural variant in the murine Vwf gene. Blood 2006; 108: 3061 – 7.; Westrick RJ, Winn ME, Eitzman DT. Murine models of vascular thrombosis. Arterioscler Thromb Vasc Biol 2007; 27: 2079 – 93.; Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, Gupta RV, Montgomery J, Morenzoni MM, Nilsen GB, Pethiyagoda CL, Stuve LL, Johnson FM, Daly MJ, Wade CM, Cox DR. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 2007; 448: 1050 – 3.; Peters LL, Zhang W, Lambert AJ, Brugnara C, Churchill GA, Platt OS. Quantitative trait loci for baseline white blood cell count, platelet count, and mean platelet volume. Mamm Genome 2005; 16: 749 – 63.; Mohlke KL, Nichols WC, Westrick RJ, Novak EK, Cooney KA, Swank RT, Ginsburg D. A novel modifier gene for plasma von Willebrand factor level maps to distal mouse chromosome 11. Proc Natl Acad Sci USA 1996; 93: 15352 – 7.; Sweeney JD, Novak EK, Reddington M, Takeuchi KH, Swank RT. The RIIIS/J inbred mouse strain as a model for von Willebrand disease. Blood 1990; 76: 2258 – 65.; Mohlke KL, Purkayastha AA, Westrick RJ, Smith PL, Petryniak B, Lowe JB, Ginsburg D. Mvwf, a dominant modifier of murine von Willebrand factor, results from altered lineage-specific expression of a glycosyltransferase. Cell 1999; 96: 111 – 20.; Johnsen JM, Levy GG, Westrick RJ, Tucker PK, Ginsburg D. The endothelial-specific regulatory mutation, Mvwf1, is a common mouse founder allele. Mamm Genome 2008; 19: 32 – 40.; Johnsen JM, Teschke M, Pavlidis P, McGee BM, Tautz D, Ginsburg D, Baines JF. Selection on cis-regulatory variation at B4galnt2 and its influence on von Willebrand Factor in house mice. Mol Biol Evol 2008; 26: 567 – 78.; Wright MW, Bruford EA. Human and orthologous gene nomenclature. Gene 2006; 369: 1 – 6.; Levy GG, Motto DG, Ginsburg D. ADAMTS13 turns 3. Blood 2005; 106: 11 – 7.; Motto DG, Chauhan AK, Zhu G, Homeister J, Lamb CB, Desch KC, Zhang W, Tsai HM, Wagner DD, Ginsburg D. Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. J Clin Invest 2005; 115: 2752 – 61.; Bertina RM. Genetic approach to thrombophilia. Thromb Haemost 2001; 86: 92 – 103.; Bertina RM. Molecular risk factors for thrombosis. Thromb Haemost 1999; 82: 601 – 9.; Souto JC, Almasy L, Borrell M, Blanco-Vaca F, Mateo J, Soria JM, Coll I, Felices R, Stone W, Fontcuberta J, et al. Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study. Genetic Analysis of Idiopathic Thrombophilia. Am J Hum Genet 2000; 67: 1452 – 9.; Bezemer ID, Bare LA, Doggen CJ, Arellano AR, Tong C, Rowland CM, Catanese J, Young BA, Reitsma PH, Devlin JJ, et al. Gene variants associated with deep vein thrombosis. JAMA 2008; 299: 1306 – 14.; Cui J, Eitzman DT, Westrick RJ, Christie PD, Xu ZJ, Yang AY, Purkayastha AA, Yang TL, Metz AL, Gallagher KP, et al. Spontaneous thrombosis in mice carrying the factor V Leiden mutation. Blood 2000; 96: 4222 – 6.; Eitzman DT, Westrick RJ, Bi X, Manning SL, Wilkinson JE, Broze GJ, Ginsburg D. Lethal perinatal thrombosis in mice resulting from the interaction of tissue factor pathway inhibitor deficiency and factor V Leiden. Circulation 2002; 105: 2139 – 42.; Tsipouri V, Curtin JA, Nolan PM, Vizor L, Parsons CA, Clapham CM, Latham ID, Rooke LJ, Martin JE, Peters J, et al. Three Novel Pigmentation Mutants Generated by Genome-Wide Random ENU Mutagenesis in the Mouse. Comp Funct Genomics 2004; 5: 123 – 7.; Hardisty RE, Erven A, Logan K, Morse S, Guionaud S, Sancho-Oliver S, Hunter AJ, Brown SD, Steel KP. The deaf mouse mutant Jeff (Jf) is a single gene model of otitis media. J Assoc Res Otolaryngol 2003; 4: 130 – 8.; Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994; 264: 719 – 25.; Beutler B, Du X, Xia Y. Precis on forward genetics in mice. Nat Immunol 2007; 8: 659 – 64.; Carpinelli MR, Hilton DJ, Metcalf D, Antonchuk JL, Hyland CD, Mifsud SL, Di Rago L, Hilton AA, Willson TA, Roberts AW, et al. Suppressor screen in Mpl−/− mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proc Natl Acad Sci USA 2004; 101: 6553 – 8.
-
13Academic Journal
المؤلفون: Ginsburg, David W., Manahan, Donal T.
المصدر: Marine Biology ; volume 156, issue 11, page 2391-2402 ; ISSN 0025-3162 1432-1793
-
14Academic Journal
المؤلفون: Lemmerhirt, H. L., Broman, K. W., Shavit, J. A., Ginsburg, David W.
المساهمون: * Department of Human Genetics, University of Michigan, Ann Arbor, MI, † Department of Pediatrics, University of Michigan, Ann Arbor, MI, † Department of Biostatistics, Johns Hopkins University, Baltimore, MD, § Howard Hughes Medical Institute, Hematology/Oncology Division, and Department of Internal Medicine, Ann Arbor, MI, USA
مصطلحات موضوعية: Quantitative Trait Loci, Mvwf Modifier, Von Willebrand Factor, Internal Medicine and Specialties, Health Sciences
وصف الملف: 788949 bytes; 3109 bytes; application/pdf; text/plain
Relation: LEMMERHIRT, H. L.; BROMAN, K. W.; SHAVIT, J. A.; GINSBURG, D. (2007). "Genetic regulation of plasma von Willebrand factor levels: quantitative trait loci analysis in a mouse model." Journal of Thrombosis and Haemostasis 5(2): 329-335.; https://hdl.handle.net/2027.42/72680; http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17155961&dopt=citation; Journal of Thrombosis and Haemostasis; Nichols WC, Ginsburg D. Willebrand disease. Medicine 1997; 76: 1 – 20.; Koster T, Blann AD, BriËt E, Vandenbroucke JP, Rosendaal FR. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet 1995; 345: 152 – 5.; Kraaijenhagen RA, in't Anker PS, Koopman MM, Reitsma PH, Prins MH, van den Ende A, BÜller HR. High plasma concentration of factor VIIIc is a major risk factor for venous thromboembolism. Thromb Haemost 2000; 83: 5 – 9.; Rosendaal FR. High levels of factor VIII and venous thrombosis. Thromb Haemost 2000; 83: 1 – 2.; Vossen CY, Hasstedt SJ, Rosendaal FR, Callas PW, Bauer KA, Broze GJ, Hoogendoorn H, Long GL, Scott BT, Bovill EG. Heritability of plasma concentrations of clotting factors and measures of a prethrombotic state in a protein C-deficient family. J Thromb Haemost 2004; 2: 242 – 7.; Souto JC, Almasy L, Borrell M, Gari M, Martinez E, Mateo J, Stone WH, Blangero J, Fontcuberta J. Genetic determinants of hemostasis phenotypes in Spanish families. Circulation 2000; 101: 1546 – 51.; Orstavik KH, Magnus P, Reisner H, Berg K, Graham JB, Nance W. Factor VIII and factor IX in a twin population. Evidence for a major effect of ABO locus on factor VIII level. Am J Hum Genet 1985; 37: 89 – 101.; de Lange M, Snieder H, Ariens RA, Spector TD, Grant PJ. The genetics of haemostasis: a twin study. Lancet 2001; 357: 101 – 5.; Levy GG, Ginsburg D. Getting at the variable expressivity of von Willebrand disease. Thromb Haemost 2001; 86: 144 – 8.; 10 International Society on Thrombosis and Haemostasis Scientific and Standardization Committee. VWF Information Homepage. http://www.vwf.group.shef.ac.uk/ (Accessed 5 January 2006 ).; Bodo I, Katsumi A, Tuley EA, Eikenboom JC, Dong Z, Sadler JE. Type 1 von Willebrand disease mutation Cys1149Arg causes intracellular retention and degradation of heterodimers: a possible general mechanism for dominant mutations of oligomeric proteins. Blood 2001; 98: 2973 – 9.; O'Brien LA, James PD, Othman M, Berber E, Cameron C, Notley CR, Hegadorn CA, Sutherland JJ, Hough C, Rivard GE, O'Shaunessey D, Lillicrap D. Founder von Willebrand factor haplotype associated with type 1 von Willebrand disease. Blood 2003; 102: 549 – 57.; Kunicki TJ, Federici AB, Salomon DR, Koziol JA, Head SR, Mondala TS, Chismar JD, Baronciani L, Canciani MT, Peake IR. An association of candidate gene haplotypes and bleeding severity in von Willebrand disease (VWD) type 1 pedigrees. Blood 2004; 104: 2359 – 67.; Casana P, Martinez F, Haya S, Espinos C, Aznar JA. Significant linkage and non-linkage of type 1 von Willebrand disease to the von Willebrand factor gene. Br J Haematol 2001; 115: 692 – 700.; Castaman G, Eikenboom JC, Bertina RM, Rodeghiero F. Inconsistency of association between type 1 von Willebrand disease phenotype and genotype in families identified in an epidemiological investigation. Thromb Haemost 1999; 82: 1065 – 70.; Lanke E, Johansson A, Hallden C, Lethagen S. Genetic analysis of 31 Swedish type 1 von Willebrand disease families reveals incomplete linkage to the von Willebrand factor gene and a high frequency of a certain disease haplotype. J Thromb Haemost 2005; 3: 2656 – 63.; De Visser MC, Sandkuijl LA, Lensen RP, Vos HL, Rosendaal FR, Bertina RM. Linkage analysis of factor VIII and von Willebrand factor loci as quantitative trait loci. J Thromb Haemost 2003; 1: 1771 – 6.; Keightley AM, Lam YM, Brady JN, Cameron CL, Lillicrap D. Variation at the von Willebrand Factor (vWF) gene locus is associated with plasma vWF:Ag levels: identification of three novel single nucleotide polymorphisms in the vWF gene promoter. Blood 1999; 93: 4277 – 83.; Harvey PJ, Keightley AM, Lam YM, Cameron C, Lillicrap D. A single nucleotide polymorphism at nucleotide-1793 in the von Willebrand factor (VWF) regulatory region is associated with plasma VWF:Ag levels. Br J Haematol 2000; 109: 349 – 53.; Souto JC, Almasy L, Soria JM, Buil A, Stone W, Lathrop M, Blangero J, Fontcuberta J. Genome-wide linkage analysis of von Willebrand factor plasma levels: results from the GAIT project. Thromb Haemost 2003; 89: 468 – 74.; Eikenboom J, van Marion V, Putter H, Goodeve A, Rodeghiero F, Castaman G, Federici AB, Batlle J, Meyer D, Mazurier C, Goudemand J, Schneppenheim R, Budde U, Ingerslev J, Vorlova Z, Habart D, Holmberg L, Lethagen S, Pasi J, Hill F, Peake I. Linkage analysis in families diagnosed with type 1 von Willebrand disease in the European study, molecular and clinical markers for the diagnosis and management of type 1 VWD. J Thromb Haemost 2006; 4: 774 – 82.; James PD, Paterson AD, Notley C, Cameron C, Hegadorn C, Tinlin S, Brown C, O'Brien L, Leggo J, Lillicrap D. Genetic linkage and association analysis in type 1 von Willebrand disease: results from the Canadian Type 1 VWD Study. J Thromb Haemost 2006; 4: 783 – 92.; Mohlke KL, Nichols WC, Westrick RJ, Novak EK, Cooney KA, Swank RT, Ginsburg D. A novel modifier gene for plasma von Willebrand factor level maps to distal mouse chromosome 11. Proc Natl Acad Sci USA 1996; 93: 15352 – 7.; Lemmerhirt HL, Shavit JA, Levy GG, Cole SM, Long JC, Ginsburg D. Enhanced VWF biosynthesis and elevated plasma VWF due to a natural variant in the murine Vwf gene. Blood 2006; 108: 3061 – 7.; Mohlke KL, Purkayastha AA, Westrick RJ, Smith PL, Petryniak B, Lowe JB, Ginsburg D. Mvwf, a dominant modifier of murine von Willebrand factor, results from altered lineage-specific expression of a glycosyltransferase. Cell 1999; 96: 111 – 20.; Hsu TM, Chen X, Duan S, Miller RD, Kwok PY. Universal SNP genotyping assay with fluorescence polarization detection. BioTechniques 2001; 31: 560, 562, 564 – 8, passim.; Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003; 19: 889 – 90.; Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graphical Stat 1996; 5: 299 – 314.; Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989; 121: 185 – 99.; Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics 1994; 138: 963 – 71.; Conlan MG, Folsom AR, Finch A, Davis CE, Sorlie P, Marcucci G, Wu KK. Associations of factor VIII and von Willebrand factor with age, race, sex, and risk factors for atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) study. Thromb Haemost 1993; 70: 380 – 5.; 32 The Jackson Laboratory. Mouse Phenome Database. http://www.jax.org/phenome/. Accessed 24 January 2006.; Yamamoto M, Lin XH, Kominato Y, Hata Y, Noda R, Saitou N, Yamamoto F. Murine equivalent of the human histo-blood group ABO gene is a cis -AB gene and encodes a glycosyltransferase with both A and B transferase activity. J Biol Chem 2001; 276: 13701 – 8.; Larkin JM, Porter CD. Mice are unsuitable for modelling ABO discordance despite strain-specific A cross-reactive natural IgM. Br J Haematol 2005; 130: 310 – 7.; Purcell S, Sham PC. Epistasis in quantitative trait locus linkage analysis: interaction or main effect ? Behav Genet 2004; 34: 143 – 52.; Taylor BA, Phillips SJ. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics 1996; 34: 389 – 98.; Taylor BA, Phillips SJ. Obesity QTLs on mouse chromosomes 2 and 17. Genomics 1997; 43: 249 – 57.; Butcher LM, Meaburn E, Knight J, Sham PC, Schalkwyk LC, Craig IW, Plomin R. SNPs, microarrays and pooled DNA: identification of four loci associated with mild mental impairment in a sample of 6000 children. Hum Mol Genet 2005; 14: 1315 – 25.; Fisher PJ, Turic D, Williams NM, McGuffin P, Asherson P, Ball D, Craig I, Eley T, Hill L, Chorney K, Chorney MJ, Benbow CP, Lubinski D, Plomin R, Owen MJ. DNA pooling identifies QTLs on chromosome 4 for general cognitive ability in children. Hum Mol Genet 1999; 8: 915 – 22.; Nadeau JH. Modifier genes and protective alleles in humans and mice. Curr Opin Genet Dev 2003; 13: 290 – 5.; Nadeau JH. Modifier genes in mice and humans. Nat Rev Genet 2001; 2: 165 – 74.; Vidal SM, Malo D, Vogan K, Skamene E, Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 1993; 73: 469 – 85.; Bellamy R, Ruwende C, Corrah T, McAdam KPWJ, Whittle HC, Hill AVS. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 1998; 338: 640 – 4.; 44 The Jackson Laboratory. Mammalian Orthology and Comparative Maps. http://www.informatics.jax.org/menus/homology_menu.shtml. Accessed 24 January 2006.
-
15Academic Journal
المؤلفون: Oney, S., Nimjee, S. M., Layzer, J., Que-Gewirth, N., Ginsburg, David W., Becker, R. C., Arepally, G., Sullenger, Bruce A.
مصطلحات موضوعية: Health Sciences
وصف الملف: 222060 bytes; 2489 bytes; application/pdf; text/plain
Relation: Oney, S.; Nimjee, S.M.; Layzer, J.; Que-Gewirth, N.; Ginsburg, D.; Becker, R.C.; Arepally, G.; Sullenger, B.A. (2007). "Antidote-Controlled Platelet Inhibition Targeting von Willebrand Factor with Aptamers." Oligonucleotides 17(3): 265-274; https://hdl.handle.net/2027.42/63204; http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17854267&dopt=citation; Oligonucleotides
-
16Academic Journal
المؤلفون: Seligsohn, U., Ginsburg, David W.
المساهمون: † Departments of Internal Medicine and Human Genetics and Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI, USA, * Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
مصطلحات موضوعية: Internal Medicine and Specialties, Health Sciences
وصف الملف: 108135 bytes; 3109 bytes; application/pdf; text/plain
Relation: SELIGSOHN, U.; GINSBURG, D. (2006). "Deciphering the mystery of combined factor V and factor VIII deficiency." Journal of Thrombosis and Haemostasis 4(5): 927-931.; https://hdl.handle.net/2027.42/74477; http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16689736&dopt=citation; Journal of Thrombosis and Haemostasis; Oeri J, Matter M, Isenschmid H, Hauser F, Koller F. Congenital factor V deficiency (parahemophilia) with true hemophilia in two brothers (In German). Bibl Paediatr 1954; 58: 575 – 8.; Iversen T, Bastrup-Madsen P. Congenital familial deficiency of factor V (parahaemophilia) combined with deficiency of antihaemophilic globulin. Br J Haematol 1956; 2: 265 – 75.; Seibert RH, Margolius Jr A, Ratnoff OD. Observations on hemophilia, parahemophilia, and coexistent hemophilia and parahemophilia; alterations in the platelets and the thromboplastin generation test. J Lab Clin Med 1958; 52: 449 – 62.; Jones JH, Rizza CR, Hardisty RM, Dormandy KM, Macpherson JC. Combined deficiency of factor V and factor VIII (antihaemophilic globulin). A report of three cases. Br J Haematol 1962; 8: 120 – 8.; Saito H, Shioya M, Koie K, Kamiya T, Katsumi O. Congenital combined deficiency of factor V and factor 8. A case report and the effect of transfusion of normal plasma and hemophilic blood. Thromb Diath Haemorrh 1969; 22: 316 – 25.; Seligsohn U, Ramot B. Combined factor-V and factor-VIII deficiency: report of four cases. Br J Haematol 1969; 16: 475 – 86.; Menache Dah J. Un Nouveau cas de deficit associt en facteur VIII et V. Pathol Biol (Paris) 1968; 16: 969.; Sibinga CT, Gokemeyer JD, ten Kate LP, Bos-van Zwol F. Combined deficiency of factor V and factor VIII: report of a family and genetic analysis. Br J Haematol 1972; 23: 467 – 81.; Seligsohn U, Zivelin A, Zwang E. Combined factor V and factor VIII deficiency among non-Ashkenazi Jews. N Engl J Med 1982; 307: 1191 – 5.; Zimmerman TS, Ratnoff OD, Powell AE. Immunologic differentiation of classic hemophilia (factor 8 deficiency) and von Willebrand's disease, with observations on combined deficiencies of antihemophilic factor and proaccelerin (factor V) and on an acquired circulating anticoagulant against antihemophilic factor. J Clin Invest 1971; 50: 244 – 54.; Giddings JC, Seligsohn U, Bloom AL. Immunological studies in combined factor V and factor VIII deficiency. Br J Haematol 1977; 37: 257 – 64.; Seligsohn U, Zivelin A, Zwang E. Decreased factor VIII clotting antigen levels in the combined factor V and VIII deficiency. Thromb Res 1984; 33: 95 – 8.; Tracy PB, Eide LL, Bowie EJ, Mann KG. Radioimmunoassay of factor V in human plasma and platelets. Blood 1982; 60: 59 – 63.; Seligsohn U. Combined factors V and VIII deficiency. In: Seghachian MJ, Savidge GT, eds. Factor VIII–von Willebrand Factor. Boca Raton, USA: CRC Press, Inc., 1989: 89 – 100.; Marlar RA, Griffin JH. Deficiency of protein C inhibitor in combined factor V/VIII deficiency disease. J Clin Invest 1980; 66: 1186 – 9.; Canfield WM, Kisiel W. Evidence of normal functional levels of activated protein C inhibitor in combined Factor V/VIII deficiency disease. J Clin Invest 1982; 70: 1260 – 72.; Suzuki K, Nishioka J, Hashimoto S, Kamiya T, Saito H. Normal titer of functional and immunoreactive protein-C inhibitor in plasma of patients with congenital combined deficiency of factor V and factor VIII. Blood 1983; 62: 1266 – 70.; Gardiner JE, Griffin JH. Studies on human protein C inhibitor in normal and Factor V/VIII deficient plasmas. Thromb Res 1984; 36: 197 – 203.; Pittman DD, Wang JH, Kaufman RJ. Identification and functional importance of tyrosine sulfate residues within recombinant factor VIII. Biochemistry 1992; 31: 3315 – 25.; Pittman DD, Tomkinson KN, Michnick D, Selighsohn U, Kaufman RJ. Posttranslational sulfation of factor V is required for efficient thrombin cleavage and activation and for full procoagulant activity. Biochemistry 1994; 33: 6952 – 9.; Zivelin A, Yatuv R, Seligsohn U. Combined factor V and factor VIII deficiency is probably not related to genetic disorders of components of the protein C system. Thromb Haemost 1995; 73: 2058.; Lander ES, Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 1987; 236: 1567 – 70.; Nichols WC, Antin JH, Lunetta KL, Terry VH, Hertel CE, Wheatley MA, Arnold ND, Siemieniak DR, Boehnke M, Ginsburg D. Polymorphism of adhesion molecule CD31 is not a significant risk factor for graft-versus-host disease. Blood 1996; 88: 4429 – 34.; Ginsburg D, Nichols WC. Genetic linkage analysis to identify minor histocompatibility loci contributing to graft-versus-host disease. In: Roopenian DC, Simpson E, eds. Minor Histocompatibility Antigens: From the Laboratory to the Clinic. Georgetown: Landes Bioscience, 2000: 105 – 12.; Foroud T, Pankratz N, Batchman AP, Pauciulo MW, Vidal R, Miravalle L, Goebel HH, Cushman LJ, Azzarelli B, Horak H, Farlow M, Nichols WC. A mutation in myotilin causes spheroid body myopathy. Neurology 2005; 65: 1936 – 40.; Nichols WC, Koller DL, Slovis B, Foroud T, Terry VH, Arnold ND, Siemieniak DR, Wheeler L, Phillips III JA, Newman JH, Conneally PM, Ginsburg D, Loyd JE. Localization of the gene for familial primary pulmonary hypertension to chromosome 2q31–32. Nat Genet 1997; 15: 277 – 80.; Nichols WC, Seligsohn U, Zivelin A, Terry VH, Arnold ND, Siemieniak DR, Kaufman RJ, Ginsburg D. Linkage of combined factors V and VIII deficiency to chromosome 18q by homozygosity mapping. J Clin Invest 1997; 99: 596 – 601.; Neerman-Arbez M, Antonarakis SE, Blouin JL, Zeinali S, Akhtari M, Afshar Y, Tuddenham EG. The locus for combined factor V–factor VIII deficiency (F5F8D) maps to 18q21, between D18S849 and D18S1103. Am J Hum Genet 1997; 61: 143 – 50.; Nichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri HP, Ciavarella N, Kaufman RJ, Ginsburg D. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93: 61 – 70.; Segal A, Zivelin A, Rosenberg N, Ginsburg D, Shpilberg O, Seligsohn U. A mutation in LMAN1 (ERGIC-53) causing combined factor V and factor VIII deficiency is prevalent in Jews originating from the island of Djerba in Tunisia. Blood Coagul Fibrinolysis 2004; 15: 99 – 102.; Nichols WC, Terry VH, Wheatley MA, Yang A, Zivelin A, Ciavarella N, Stefanile C, Matsushita T, Saito H, de Bosch NB, Ruiz-Saez A, Torres A, Thompson AR, Feinstein DI, White GC, Negrier C, Vinciguerra C, Aktan M, Kaufman RJ, Ginsburg D, Seligsohn U. ERGIC-53 gene structure and mutation analysis in 19 combined factors V and VIII deficiency families. Blood 1999; 93: 2261 – 6.; Neerman-Arbez M, Johnson KM, Morris MA, McVey JH, Peyvandi F, Nichols WC, Ginsburg D, Rossier C, Antonarakis SE, Tuddenham EG. Molecular analysis of the ERGIC-53 gene in 35 families with combined factor V–factor VIII deficiency. Blood 1999; 93: 2253 – 60.; Zhang B, Cunningham MA, Nichols WC, Bernat JA, Seligsohn U, Pipe SW, McVey JH, Schulte-Overberg U, de Bosch NB, Ruiz-Saez A, White GC, Tuddenham EG, Kaufman RJ, Ginsburg D. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat Genet 2003; 34: 220 – 5.; Cunningham MA, Pipe SW, Zhang B, Hauri HP, Ginsburg D, Kaufman RJ. LMAN1 is a molecular chaperone for the secretion of coagulation factor VIII. J Thromb Haemost 2003; 1: 2360 – 7.; Zhang B, Kaufman RJ, Ginsburg D. LMAN1 and MCFD2 form a cargo receptor complex and interact with coagulation factor VIII in the early secretory pathway. J Biol Chem 2005; 280: 25881 – 6.; Moussalli M, Pipe SW, Hauri HP, Nichols WC, Ginsburg D, Kaufman RJ. Mannose-dependent endoplasmic reticulum (ER)-Golgi intermediate compartment-53-mediated ER to Golgi trafficking of coagulation factors V and VIII. J Biol Chem 1999; 274: 32539 – 42.; Zhang B, McGee B, Yamaoka JS, Guglielmone H, Downes KA, Minoldo S, Jarchum G, Peyvandi F, de Bosch NB, Ruiz-Saez A, Chatelain B, Olpinski M, Bockenstedt P, Sperl W, Kaufamn RF, Nichols WC, Tuddenham EGD, Ginsburg D. Combined deficiency of factor V and factor VIII is due to mutations in either LMAN1 or MCFD2. Blood 2006; 107: 1903 – 7.; Zhang B, Ginsburg D. Familial multiple coagulation factor deficiencies: new biologic insight from rare genetic bleeding disorders. J Thromb Haemost 2004; 2: 1564 – 72.
-
17Academic Journal
المساهمون: Life Sciences Institute, the Departments of Biological Chemistry, Internal Medicine, Human Genetics Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Mi 48109, USA, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
مصطلحات موضوعية: Cargo Receptor, Endoplasmic Reticulum, ER–Golgi Intermediate Compartment, Lectin, Protein Fragment Complementation, Protein Retention, Protein Secretion, Molecular, Cellular and Developmental Biology, Health Sciences
وصف الملف: 1103785 bytes; 3109 bytes; application/pdf; text/plain
Relation: Nyfeler, Beat; Zhang, Bin; Ginsburg, David; Kaufman, Randal J.; Hauri, Hans-Peter (2006). "Cargo Selectivity of the ERGIC-53/MCFD2 Transport Receptor Complex." Traffic 7(11): 1473-1481.; https://hdl.handle.net/2027.42/72728; http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17010120&dopt=citation; Traffic; Lee MC, Miller EA, Goldberg J, Orci L, Schekman R. Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 2004; 20: 87 – 123.; Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science 1999; 286: 1882 – 1888.; Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 2003; 114: 497 – 509.; Mancias JD, Goldberg J. Exiting the endoplasmic reticulum. Traffic 2005; 6: 278 – 285.; Kappeler F, Klopfenstein DR, Foguet M, Paccaud JP, Hauri HP. The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COPII. J Biol Chem 1997; 272: 31801 – 31808.; Nufer O, Guldbrandsen S, Degen M, Kappeler F, Paccaud JP, Tani K, Hauri HP. Role of cytoplasmic C-terminal amino acids of membrane proteins in ER export. J Cell Sci 2002; 115: 619 – 628.; Warren G, Mellman I. Bulk flow redux? Cell 1999; 98: 125 – 127.; Wieland FT, Gleason ML, Serafini TA, Rothman JE. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 1987; 50: 289 – 300.; Kuehn MJ, Herrmann JM, Schekman R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 1998; 391: 187 – 190.; Belden WJ, Barlowe C. Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science 2001; 294: 1528 – 1531.; Otte S, Barlowe C. Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles. Nat Cell Biol 2004; 6: 1189 – 1194.; Appenzeller C, Andersson H, Kappeler F, Hauri HP. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1999; 1: 330 – 334.; Appenzeller-Herzog C, Nyfeler B, Burkhard P, Santamaria I, Lopez-Otin C, Hauri HP. Carbohydrate- and conformation-dependent cargo capture for ER-exit. Mol Biol Cell 2005; 16: 1258 – 67.; Schweizer A, Fransen JA, Bachi T, Ginsel L, Hauri HP. Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J Cell Biol 1988; 107: 1643 – 1653.; Itin C, Roche AC, Monsigny M, Hauri HP. ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins. Mol Biol Cell 1996; 7: 483 – 493.; Klumperman J, Schweizer A, Clausen H, Tang BL, Hong W, Oorschot V, Hauri HP. The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J Cell Sci 1998; 111: 3411 – 3425.; Ben-Tekaya H, Miura K, Pepperkok R, Hauri HP. Live imaging of bidirectional traffic from the ERGIC. J Cell Sci 2005; 118: 357 – 367.; Itin C, Schindler R, Hauri HP. Targeting of protein ERGIC-53 to the ER/ERGIC/cis-Golgi recycling pathway. J Cell Biol 1995; 131: 57 – 67.; Vollenweider F, Kappeler F, Itin C, Hauri HP. Mistargeting of the lectin ERGIC-53 to the endoplasmic reticulum of HeLa cells impairs the secretion of a lysosomal enzyme. J Cell Biol 1998; 142: 377 – 389.; Nyfeler B, Michnick SW, Hauri HP. Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci U S A 2005; 102: 6350 – 6355.; Nichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri HP, Ciavarella N, Kaufman RJ, Ginsburg D. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93: 61 – 70.; Moussalli M, Pipe SW, Hauri HP, Nichols WC, Ginsburg D, Kaufman RJ. Mannose-dependent endoplasmic reticulum (ER)-Golgi intermediate compartment-53-mediated ER to Golgi trafficking of coagulation factors V and VIII. J Biol Chem 1999; 274: 32539 – 32542.; Zhang B, Cunningham MA, Nichols WC, Bernat JA, Seligsohn U, Pipe SW, McVey JH, Schulte-Overberg U, de Bosch NB, Ruiz-Saez A, White GC, Tuddenham EG, Kaufman RJ, Ginsburg D. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat Genet 2003; 34: 220 – 225.; Zhang B, Kaufman RJ, Ginsburg D. LMAN1 and MCFD2 form a cargo receptor complex and interact with coagulation factor VIII in the early secretory pathway. J Biol Chem 2005; 280: 25881 – 25886.; Breuza L, Halbeisen R, Jeno P, Otte S, Barlowe C, Hong W, Hauri HP. Proteomics of endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membranes from brefeldin A-treated HepG2 cells identifies ERGIC-32, a new cycling protein that interacts with human Erv46. J Biol Chem 2004; 279: 47242 – 47253.; Appenzeller-Herzog C, Roche AC, Nufer O, Hauri HP. pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J Biol Chem 2004; 279: 12943 – 12950.; Andersson H, Kappeler F, Hauri HP. Protein targeting to endoplasmic reticulum by dilysine signals involves direct retention in addition to retrieval. J Biol Chem 1999; 274: 15080 – 15084.; Kerppola TK. Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 2006; 7: 449 – 56.; Bokel C, Dass S, Wilsch-Brauninger M, Roth S. Drosophila Cornichon acts as cargo receptor for ER export of the TGFalpha-like growth factor Gurken. Development 2006; 133: 459 – 470.; Zhang B, McGee B, Yamaoka JS, Guglielmone H, Downes KA, Minoldo S, Jarchum G, Peyvandi F, de Bosch NB, Ruiz-Saez A, Chatelain B, Olpinski M, Bockenstedt P, Sperl W, Kaufman RJ et al. Combined deficiency of factor V and factor VIII is due to mutations in either LMAN1 or MCFD2. Blood 2006; 107: 1903 – 1907.; Lewis MJ, Pelham HR. A human homologue of the yeast HDEL receptor. Nature 1990; 348: 162 – 163.; Lewis MJ, Pelham HR. Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 1992; 68: 353 – 364.; Toda H, Tsuji M, Nakano I, Kobuke K, Hayashi T, Kasahara H, Takahashi J, Mizoguchi A, Houtani T, Sugimoto T, Hashimoto N, Palmer TD, Honjo T, Tashiro K. Stem cell-derived neural stem/progenitor cell supporting factor is an autocrine/paracrine survival factor for adult neural stem/progenitor cells. J Biol Chem 2003; 278: 35491 – 35500.; Nyfeler B, Nufer O, Matsui T, Mori K, Hauri HP. The cargo receptor ERGIC-53 is a target of the unfolded protein response. Biochem Biophys Res Commun 2003; 304: 599 – 604.; Spatuzza C, Renna M, Faraonio R, Cardinali G, Martire G, Bonatti S, Remondelli P. Heat shock induces preferential translation of ERGIC-53 and affects its recycling pathway. J Biol Chem 2004; 279: 42535 – 42544.; Linstedt AD, Hauri HP. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol Biol Cell 1993; 4: 679 – 693.; Blum R, Pfeiffer F, Feick P, Nastainczyk W, Kohler B, Schafer KH, Schulz I. Intracellular localization and in vivo trafficking of p24A and p23. J Cell Sci 1999; 112: 537 – 548.
-
18Academic Journal
المؤلفون: Ginsburg, David W.
مصطلحات موضوعية: Coagulation Protein Disorders, Factor V, Factor VIII, Hemostasis, Genetic Model, Von Willebrand Factor, Internal Medicine and Specialties, Health Sciences
وصف الملف: 331544 bytes; 3109 bytes; application/pdf; text/plain
Relation: GINSBURG, D. (2005). "Identifying novel genetic determinants of hemostatic balance." Journal of Thrombosis and Haemostasis 3(8): 1561-1568.; https://hdl.handle.net/2027.42/73734; http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16102020&dopt=citation; Journal of Thrombosis and Haemostasis; Jiang Y, Doolittle RF. The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc Natl Acad Sci USA 2003; 100: 7527 – 32.; Davidson CJ, Tuddenham EG, McVey JH. 450 million years of hemostasis. J Thromb Haemost 2003; 1: 1487 – 94.; Ginsburg D. Hemophilia and other disorders of hemostasis. In: Rimoin DL, Connor JM, Pyeritz RE, eds. Emery and Rimoin's Principles and Practice of Medical Genetics, Vol. II., 4th edn. Churchill Livingstone, New York, 2002: 1926 – 58.; Ginsburg D. Disorders of the fibrinolytic system. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Vogelstein B, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. McGraw Hill, New York, 2001: 4505 – 16.; Nichols WC, Cooney KA, Ginsburg D, Ruggeri ZM. von Willebrand disease. In: Loscalzo J, Schafer AI, eds. Thrombosis and Hemorrhage, 3th edn. Lippincott Williams & Wilkins, Philadelphia, 2003: 539 – 59.; Nadeau JH. Modifier genes in mice and humans. Nat Rev Genet 2001; 2: 165 – 74.; Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. Mapping complex disease loci in whole-genome association studies. Nature 2004; 429: 446 – 52.; Marlar RA, Griffin JH. Deficiency of protein C inhibitor in combined factor V/VIII deficiency disease. J Clin Invest 1980; 66: 1186 – 9.; Gardiner JE, Griffin JH. Studies on human protein C inhibitor in normal and Factor V/VIII deficient plasmas. Thromb Res 1984; 36: 197 – 203.; Seligsohn U, Zivelin A, Zwang E. Combined factor V and factor VIII deficiency among non-Ashkenazi Jews. N Engl J Med 1982; 307: 1191 – 5.; Nichols WC, Seligsohn U, Zivelin A, Terry VH, Arnold ND, Siemieniak DR, Kaufman RJ, Ginsburg D. Linkage of combined factors V and VIII deficiency to chromosome 18q by homozygosity mapping. J Clin Invest 1997; 99: 596 – 601.; Neerman-Arbez M, Antonarakis SE, Blouin J-L, Akhtari M, Afshar Y, Tuddenham EGD. The locus for combined factor V-factor VIII deficiency (F5F8D) maps to 18q21, between D18S849 and D18S1103. Am J Hum Genet 1997; 61: 143 – 50.; Nichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri H-P, Ciavarella N, Kaufman RJ, Ginsburg D. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93: 61 – 70.; Neerman-Arbez M, Johnson KM, Morris MA, McVey JH, Peyvandi F, Nichols WC, Ginsburg D, Rossier C, Antonarakis SE, Tuddenham EGD. Molecular analysis of the ERGIC-53 gene in 35 families with combined factor V-factor VIII deficiency. Blood 1999; 93: 2253 – 60.; Nichols WC, Terry VH, Wheatley MA, Yang A, Zivelin A, Ciavarella N, Stefanile C, Matsushita T, Saito H, de Bosch NB, Ruiz-Saez A, Torres A, Thompson AR, Feinstein DI, White GC, Negrier C, Vinciguerra C, Aktan M, Kaufman RJ, Ginsburg D, Seligsohn U. ERGIC-53 gene structure and mutation analysis in 19 combined factors V and VIII deficiency families. Blood 1999; 93: 2261 – 6.; Zhang B, Cunningham MA, Nichols WC, Bernat JA, Seligsohn U, Pipe SW, McVey JH, Schulte-Overberg U, de Bosch N, Ruiz-Saez A, White GC, Tuddenham EGD, Kaufman RJ, Ginsburg D. Bleeding due to disruption of a cargo-specific ER to Golgi transport complex. Nat Genet 2003; 34: 220 – 5.; Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, Yang AY, Siemieniak DR, Stark KR, Gruppo R, Sarode R, Shurin SB, Chandrasekaran V, Stabler SP, Sabio H, Bouhassira EE, Upshaw JD Jr, Ginsburg D, Tsai H-M. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413: 488 – 94.; Fujikawa K, Suzuki H, McMullen B, Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 2001; 98: 1662 – 6.; Gerritsen HE, Robles R, Lammle B, Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood 2001; 98: 1654 – 61.; Soejima K, Mimura N, Hirashima M, Maeda H, Hamamoto T, Nakagaki T, Nozaki C. A novel human metalloprotease synthesized in the liver and secreted into the blood: Possibly, the von Willebrand factor-cleaving protease ? J Biochem (Tokyo) 2001; 130: 475 – 80.; Kokame K, Matsumoto M, Soejima K, Yagi H, Ishizashi H, Funato M, Tamai H, Konno M, Kamide K, Kawano Y, Miyata T, Fujimura Y. Mutations and common polymorphisms in ADAMTS-13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci USA 2002; 99: 11902 – 7.; Nichols WC, Amano K, Cacheris PM, Figueiredo MS, Michaelides K, Schwaab R, Hoyer LW, Kaufman RJ, Ginsburg D. Moderation of hemophilia A phenotype by the factor V R506Q mutation. Blood 1996; 88: 1183 – 7.; Lee DH, Walker IR, Teitel J, Poon MC, Ritchie B, Akabutu J, Sinclair GD, Pai M, Wu JWY, Reddy S, Carter C, Growe G, Lillicrap D, Lam M, Blajchman MA. Effect of the factor V Leiden mutation on the clinical expression of severe hemophilia A. Thrombosis & Haemostasis 2000; 83: 387 – 91.; Orstavik KH, Magnus P, Reisner H, Berg K, Graham JB, Nance W. Factor VIII and factor IX in a twin population. Evidence for a major effect of ABO locus on factor VIII level. Am J Hum Genet 1985; 37: 89 – 101.; Vossen CY, Hasstedt SJ, Rosendaal FR, Callas PW, Bauer KA, Broze GJ Jr, Hoogendoorn H, Long GL, Scott BT, Bovill EG. Heritability of plasma concentrations of clotting factors and measures of a prethrombotic state in a protein C-deficient family. J Thromb Haemost 2004; 2: 242 – 7.; Souto JC, Almasy L, Borrell M, Gari M, Martinez E, Mateo J, Stone WH, Blangero J, Fontcuberta J. Genetic determinants of hemostasis phenotypes in Spanish families. Circulation 2000; 101: 1546 – 51.; Gill JC, Endres-Brooks J, Bauer PJ, Marks WJ, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand Disease. Blood 1987; 69: 1691 – 5.; Souto JC, Almasy L, Soria JM, Buil A, Stone W, Lathrop M, Blangero J, Fontcuberta J. Genome-wide linkage analysis of von Willebrand factor plasma levels: results from the GAIT project. Thromb Haemost 2003; 89: 468 – 74.; Kamphuisen PW, Eikenboom JC, Bertina RM. Elevated factor VIII levels and the risk of thrombosis. Arterioscler Thromb Vasc Biol 2001; 21: 731 – 8.; Mohlke KL, Nichols WC, Westrick RJ, Novak EK, Cooney KA, Swank RT, Ginsburg D. A novel modifier gene for plasma von Willebrand factor level maps to distal mouse chromosome 11. Proc Natl Acad Sci USA 1996; 93: 15352 – 7.; Nichols WC, Cooney KA, Mohlke KL, Ballew JD, Yang A, Bruck ME, Reddington M, Novak EK, Swank RT, Ginsburg D. Willebrand disease in the RIIIS/J mouse is caused by a defect outside of the von Willebrand factor gene. Blood 1994; 83: 3225 – 31.; Sweeney JD, Novak EK, Reddington M, Takeuchi KH, Swank RT. The RIIIS/J inbred mouse strain as a model for von Willebrand disease. Blood 1990; 76: 2258 – 65.; Mohlke KL, Purkayastha AA, Westrick RJ, Smith PL, Petryniak B, Lowe JB, Ginsburg D. Mvwf, a dominant modifier of murine von Willebrand factor, results from altered lineage-specific expression of a glycosyltransferase. Cell 1999; 96: 111 – 20.; Schachter H. The clinical relevance of glycobiology. J Clin Invest 2001; 108: 1579 – 82.; Matsui T, Shimoyama T, Matsumoto M, Fujimura Y, Takemoto Y, Sako M, Hamako J, Titani K. ABO blood group antigens on human plasma von Willebrand factor after ABO-mismatched bone marrow transplantation. Blood 1999; 94: 2895 – 900.; Vlot AJ, Mauser-Bunschoten EP, Zarkova AG, Haan E, Kruitwagen CLJJ, Sixma JJ, van den Berg HM. The half-life of infused factor VIII is shorter in hemophiliac patients with blood group O than in those with blood group A. Thrombosis & Haemostasis 2000; 83: 65 – 9.; Bertina RM, Koeleman BPC, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, van der Velden PA, Reitsma PH. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64 – 7.; Svensson PJ, DahlbÄck B. Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 1994; 330: 517 – 22.; DahlbÄck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA 1993; 90: 1004 – 8.; Price DT, Ridker PM. Factor V Leiden mutation and the risks for thromboembolic disease: a clinical perspective. Ann Intern Med 1997; 127: 895 – 903.; Zivelin A, Griffin JH, Xu X, Pabinger I, Samama M, Conard J, Brenner B, Eldor A, Seligsohn U. A single genetic origin for a common Caucasian risk factor for venous thrombosis. Blood 1997; 89: 397 – 402.; Kerlin BA, Yan SB, Isermann BH, Brandt JT, Sood R, Basson BR, Joyce DE, Weiler H, Dhainaut JF. Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 2003; 102: 3085 – 92.; Cui J, Eitzman DT, Westrick RJ, Christie PD, Xu ZJ, Yang AY, Purkayastha AA, Yang TL, Metz AL, Gallagher KP, Tyson JA, Rosenberg RD, Ginsburg D. Spontaneous thrombosis in mice carrying the factor V Leiden mutation. Blood 2000; 96: 4222 – 6.; Yin Z-F, Huang Z-F, Cui J, Fiehler R, Lasky N, Ginsburg D, Broze GJ Jr. Prothrombotic phenotype of protein Z deficiency. Proc Natl Acad Sci USA 2000; 97: 6734 – 8.; Eitzman DT, Westrick RJ, Bi X, Manning SL, Wilkinson JE, Broze GJ Jr, Ginsburg D. Lethal perinatal thrombosis in mice resulting from the interaction of tissue factor pathway inhibitor deficiency and factor V Leiden. Circulation 2002; 105: 2139 – 42.; Huang Z-F, Higuchi D, Lasky N, Broze GJ Jr. Tissue factor pathway inhibitor gene disruption produces intrauterine lethality in mice. Blood 1997; 90: 944 – 51.; van't Veer C, Kalafatis M, Bertina RM, Simioni P, Mann KG. Increased tissue factor-initiated prothrombin activation as a result of the Arg506 –> Gln mutation in factor VLEIDEN. J Biol Chem 1997; 272: 20721 – 9.; Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994; 264: 719 – 25.; Carpinelli MR, Hilton DJ, Metcalf D, Antonchuk JL, Hyland CD, Mifsud SL, Di Rago L, Hilton AA, Willson TA, Roberts AW, Ramsay RG, Nicola NA, Alexander WS. Suppressor screen in Mpl-/- mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proc Natl Acad Sci USA 2004; 101: 6553 – 8.; Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch K, Jung M, Reis A, Richter T, Alessandrini F, Jakob T, Fuchs E, Kolb H, Kremmer E, Schaeble K, Rollinski B, Roscher A, Peters C, Meitinger T, Strom T, Steckler T, Holsboer F, Klopstock T, Gekeler F, Schindewolf C, Jung T, Avraham K, Behrendt H, Ring J, Zimmer A, Schughart K, Pfeffer K, Wolf E, Balling R. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 2000; 25: 444 – 7.
-
19Academic Journal
المؤلفون: Sirachainan, N., Zhang, B., Chuansumrit, A., Pipe, Steven W., Sasanakul, W., Ginsburg, David W.
المساهمون: † Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA, * Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand, † Department of Human Genetics, § Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
مصطلحات موضوعية: Bleeding, Combined Factor V and Factor VIII Deficiency, ER-Golgi Intermediate Compartment Protein, LMAN1, Oncology and Hematology, Health Sciences
وصف الملف: 67700 bytes; 3109 bytes; application/pdf; text/plain
Relation: Sirachainan, N.; Zhang, B.; Chuansumrit, A.; Pipe, S.; Sasanakul, W.; Ginsburg, D. (2005). "Combined factor V and factor VIII deficiency in a Thai patient: a case report of genotype and phenotype characteristics." Haemophilia 11(3): 280-284.; https://hdl.handle.net/2027.42/71442; http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15876275&dopt=citation; Haemophilia; Oeri J, Matter M, Isenschmid H, Hauser F, Koller F. Congenital factor V deficiency (parahemophilia) with true hemophilia in two brothers. Bibl Paediatr 1954; 58: 575 – 88.; Seligsohn U, Ramot B. Combined factor-V and factor-VIII deficiency: report of four cases. Br J Haematol 1969; 16: 475 – 86.; Seligsohn U, Zivelin A, Zwang E. Combined factor V and factor VIII deficiency among non-Ashkenazi Jews. N Engl J Med 1982; 307: 1191 – 5.; Sweeney J, Wenz B. Combined factor V and factor VIII deficiency. N Engl J Med 1983; 308: 656 – 7.; Ozsoylu S. Combined congenital deficiency of factor V and factor VIII. Acta Haematol 1983; 70: 207 – 8.; Peyvandi F, Tuddenham EG, Akhtari AM, Lak M, Mannucci PM. Bleeding symptoms in 27 Iranian patients with the combined deficiency of factor V and factor VIII. Br J Haematol 1998; 100: 773 – 6.; Chuansumrit A, Mahaphan W, Pintadit P, Chaichareon P, Hathirat P, Ayuthaya PI. Combined factor V and factor VIII deficiency with congenital heart disease: response to plasma and DDAVP infusion. Southeast Asian J Trop Med Public Health 1994; 25: 217 – 20.; Takai Y, Hayashi H, Ishimaru F et al. [DDAVP administration in a case of congenital combined factor V and factor VIII deficiency]. Rinsho Ketsueki 1989; 30: 2035 – 40.; Marlar RA, Griffin JH. Deficiency of protein C inhibitor in combined factor V/VIII deficiency disease. J Clin Invest 1980; 66: 1186 – 9.; Giddings JC, Seligsohn U, Bloom AL. Immunological studies in combined factor V and factor VIII deficiency. Br J Haematol 1977; 37: 257 – 64.; Nichols WC, Seligsohn U, Zivelin A et al. Linkage of combined factors V and VIII deficiency to chromosome 18q by homozygosity mapping. J Clin Invest 1997; 99: 596 – 601.; Ginsburg D, Nichols WC, Zivelin A, Kaufman RJ, Seligsohn U. Combined factors V and VIII deficiency – the solution. Haemophilia 1998; 4: 677 – 82.; Nichols WC, Seligsohn U, Zivelin A et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93: 61 – 70.; Neerman-Arbez M, Antonarakis SE, Blouin JL et al. The locus for combined factor V–factor VIII deficiency (F5F8D) maps to 18q21, between D18S849 and D18S1103. Am J Hum Genet 1997; 61: 143 – 50.; Neerman-Arbez M, Johnson KM, Morris MA et al. Molecular analysis of the ERGIC-53 gene in 35 families with combined factor V–factor VIII deficiency. Blood 1999; 93: 2253 – 60.; Nichols WC, Terry VH, Wheatley MA et al. ERGIC-53 gene structure and mutation analysis in 19 combined factors V and VIII deficiency families. Blood 1999; 93: 2261 – 6.; Zhang B, Cunningham MA, Nichols WC et al. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat Genet 2003; 34: 220 – 5.; Hill FGH, Gidding JC, William CE, Pragnell D. Combined deficiency of factor V and VIII. Study of a family and response to cryoprecipitate and DDAVP infusions including protein C inhibitor measurement (Abstract 0646). Thromb Haemost 1982; 50: 210.; Gongsakdi C. Dental care in patients with bleeding tendency using celluloid splint. Southeast Asian J Trop Med Public Health 1979; 10: 298 – 300.
-
20Academic Journal
المؤلفون: Zhang, B., Ginsburg, David W.
مصطلحات موضوعية: γ-Carboxylation, ER, Golgi, Factor V, Factor VIII, Vitamin K, Internal Medicine and Specialties, Health Sciences, stat, psy
Relation: https://hdl.handle.net/2027.42/74529
الاتاحة: https://hdl.handle.net/2027.42/74529