-
1Academic Journal
المؤلفون: Chaparro Acuña, Sandra Patricia, Gil González, Jesús Humberto, Aristizábal Torres, Iván Darío
المصدر: Food Science and Technology. March 2012 32(1)
مصطلحات موضوعية: oil absorption, foaming capacity, flours, vitabosa, soybean
وصف الملف: text/html
-
2Academic Journal
المؤلفون: Gallón-Bedoya, Manuela, Cortés-Rodríguez, Misael, Gil-González, Jesús H, Guil-Guerrero, José Luis, Ortega-Toro, Rodrigo
المساهمون: Universidad Nacional de Colombia, Sistema General de Regalías de Colombia, Minciencias
المصدر: Applied Food Research ; volume 4, issue 2, page 100447 ; ISSN 2772-5022
-
3Academic Journal
المؤلفون: Manjarres Pinzon, Katherine, Castro Sanchez, Adriana Maria, Rodriguez-Sandoval, Eduardo, Gil Gonzalez, Jesus, Correa Londoño, Guillermo
المصدر: Biotechnology in the Agricultural and Agroindustrial Sector; Early Edition ; Biotecnología en el Sector Agropecuario y Agroindustrial; Edición Anticipada ; 1909-9959 ; 1692-3561
مصطلحات موضوعية: Banano verde de rechazo, harina, FTIR, Raman, Propiedades fisicoquímicas, Fenoles totales, Extrusión, Estructura, Antioxidantes, Almidón, Rejected green banana, flour, Physicochemical properties, Total phenols, Extrusion, Antioxidants, Starch
وصف الملف: application/pdf
Relation: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2453/1989; AHMED, Z.F.R.; TAHA, E.M.A.; ABDELKAREEM, N.A.A.; MOHAMED, W.M. Postharvest properties of unripe bananas and the potential of producing economic nutritious products. International Journal of Fruit Science, v. 20, sup 2, 2020, p. S995-S1014. https://doi.org/10.1080/15538362.2020.1774469; ALAM, M.; BISWAS, M.; HASAN, M. M.; HOSSAIN, M. F.; ZAHID, M. A.; AL-REZA, M. S.; ISLAM, T. Quality attributes of the developed banana flour: Effects of drying methods. Heliyon, v. 9, n. 7, 2023, p. e18312. https://doi.org/10.1016/j.heliyon.2023.e18312; ALMEIDA, M.R.; ALVES, R.S.; NASCIMBEM, L.B.; STEPHANI, R.; POPPI, R.J.; DE OLIVEIRA, L.F. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Analytical and Bioanalytical Chemistry, v. 397, n. 7, 2010, p. 2693–2701. https://doi.org/10.1007/s00216-010-3566-2; ANYASI, T.A.; JIDEANI, A.I.O.; MCHAU, G.A. Morphological, physicochemical, and antioxidant profile of noncommercial banana cultivars. Food Science and Nutrition, v. 3, n. 3, 2015, p. 221–232. https://doi.org/10.1002/fsn3.208; ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS-AOAC. Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists. Gaithersburg, MD (USA): Methods 994.12, 925.10, 978.18, 943.02: 1997; BAAH, R.O.; DUODU, K.G.; EMMAMBUX, M.N. Cooking quality, nutritional and antioxidant properties of gluten-free maize – Orange-fleshed sweet potato pasta produced by extrusion. LWT-Food Science and Technology, v. 162, 2022, p. 113415.https://doi.org/10.1016/j.lwt.2022.113415; CAMPUZANO, A.; ROSELL, C.M.; CORNEJO, F. Physicochemical and nutritional characteristics of banana flour during ripening. Food Chemistry, v. 256, 2018, p. 11-17.https://doi.org/10.1016/j.foodchem.2018.02.113; CHANG, L.; YANG, M.; ZHAO, N.; XIE, F.; ZHENG, P.; SIMBO, J.; YU, X.; DU, S. K. Structural, physicochemical, antioxidant and in vitro digestibility properties of banana flours from different banana varieties (Musa spp.). Food Bioscience, v. 47, 2022, p. 101624.https://doi.org/10.1016/j.fbio.2022.101624; CZEKUS, B.; PEĆINAR, I.; PETROVIĆ, I.; PAUNOVIĆ, N.; SAVIĆ, S.; JOVANOVIĆ, Z.; STIKIĆ, R. Raman and Fourier transform infrared spectroscopy application to the Puno and Titicaca CVS. of quinoa seed microstructure and perisperm characterization. Journal of Cereal Science, v. 87, 2019, p. 25–30.https://doi.org/10.1016/j.jcs.2019.02.011; DE GELDER, J.; DE GUSSEM, K.; VANDENABEELE, P.; MOENS, L. Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy, v. 38, n. 9, 2007, p. 1133–1147.https://doi.org/10.1002/jrs.1734; DE SOUZA, A.V.; DE MELLO, J.M.; DA SILVA FAVARO, V.F.; DOS SANTOS, T.G.F.; DOS SANTOS, G.P.; DE LUCCA SARTORI, D.; FERRARI PUTTI, F. Metabolism of bioactive compounds and antioxidant activity in bananas during ripening. Journal of Food Processing and Preservation, v. 45, n. 11, 2021, p. e15959.https://doi.org/10.1111/jfpp.15959; ERDMAN, J.; MACDONALD, I.; ZEISEL, S. Nutrición y dieta en la prevención de enfermedades. 10th ed. México D.F (México).: McGraw Hill Interamericana, 2014, p. 354-361, ISBN: 9786071510532.; FATEMEH, S.; SAIFULLAH, R.; ABBAS, F.; AZHAR, M. Total phenolics, flavonoids and antioxidant activity of banana pulp and peel flours: influence of variety and stage of ripeness. International Food Research Journal, v. 19, n. 3, 2012, p. 1041-1046. https://www.semanticscholar.org/paper/Total-phenolics,-flavonoids-and-antioxidant-of-pulp-Fatemeh-Saifullah/17d1732a9222466524cbac6d938d5971178d5c4e; FAUST, S.; FOERSTER, J.; LINDNER, M.; SCHMID, M. Effect of glycerol and sorbitol on the mechanical and barrier properties of films based on pea protein isolate produced by high‐moisture extrusion processing. Polymer Engineering & Science, v. 62, n. 1, 2022, p. 95-102. https://doi.org/10.1002/pen.25836; FUENTES-ZARAGOZA, E.; RIQUELME-NAVARRETE, M.J.; SÁNCHEZ-ZAPATA, E.; PÉREZ-ÁLVAREZ, J.A. Resistant starch as functional ingredient: a review. Food Research International, v. 43, n. 4, 2010, p. 931–942. https://doi.org/10.1016/j.foodres.2010.02.004; GARRIDO-GALAND, S; ¨ASENSIO-GRAU, A; CALVO-LERMA, J; HEREDIA, A; ANDRÉS, A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Research International, v. 145, 2021. https://doi.org/10.1016/j.foodres.2021.110398.; HAZRA, B.; BISWAS, S.; MANDAL, N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complementary and Alternative Medicine, v. 8, n. 63, 2008, p. 1-10.https://doi.org/10.1186/1472-6882-8-63; JARAMILLO-GARCÉS, Y.; SACCHET-PÉREZ, M.; MANJARRÉS-PINZÓN, G.; MANJARRÉS-PINZÓN, K.; CORREA-LONDOÑO, G.; RODRÍGUEZ-SANDOVAL, E. Effect of low-temperature storage time on rejected green banana for flour production. Revista Facultad Nacional de Agronomía Medellín, v. 76, n. 3, 2023, p. 10517-10526. https://doi.org/10.15446/rfnam.v76n3.105789; KHOOZANI, A.; BIRCH, J.; BEKHIT, A.E.D.A. Textural properties and characteristics of whole green banana flour produced by air-oven and freeze-drying processing. Journal of Food Measurement and Characterization, v. 14, n. 3, 2020, p. 1533–1542. https://doi.org/10.1007/s11694-020-00402-7; KNIESE, J.; RACE, A. M.; SCHMIDT, H. Classification of cereal flour species using Raman spectroscopy in combination with spectra quality control and multivariate statistical analysis. Journal of Cereal Science, v. 101, 2021, p. 103299. https://doi.org/ 10.1016/j.jcs.2021.103299; KIZIL, R.; IRUDAYARAJ, J.; SEETHARAMAN, K. Characterization of irradiated starches by using FT-raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, v. 50, n. 14, 2002, p. 3912–3918. https://doi.org/10.1021/jf011652p; ŁABANOWSKA, M.; KURDZIEL, M.; FILEK, M.; WALAS, S.; TOBIASZ, A.; WESEŁUCHA-BIRCZYŃSKA, A. The influence of the starch component on thermal radical generation in flours. Carbohydrate Polymers, v. 101, 2014, p. 846–856.https://doi.org/10.1016/j.carbpol.2013.10.005; LACERDA, L.D.; LEITE, D.C.; DA SILVEIRA, N.P. Relationships between enzymatic hydrolysis conditions and properties of rice porous starches. Journal of Cereal Science, v. 89, 2019, p. 102819.https://doi.org/10.1016/j.jcs.2019.102819; LOYPIMAI, P.; MOONGNGARM, A. Utilization of pregelatinized banana flour as a functional ingredient in instant porridge. Journal of Food Science and Technology, v. 52, 2015, p. 311-318.https://doi.org/10.1007/s13197-013-0970-6; LU, H.; YANG, Z.; YU, M.; JI, N.; DAI, L.; DONG, X.; XIONG, L.; SUN, Q. Characterization of complexes formed between debranched starch and fatty acids having different carbon chain lengths. International Journal of Biological Macromolecules, v. 167, 2021, p. 595-604. https://doi.org/10.1016/j.ijbiomac.2020.11.198; LU, H.; TIAN, Y.; MA, R. Assessment of order of helical structures of retrograded starch by Raman spectroscopy. Food Hydrocolloids, v. 134, 2023, p. 108064.https://doi.org/10.1016/j.foodhyd.2022.108064; MAHDAD-BENZERDJEB, A.; TALEB-MOKHTARI, I.N.; SEKKAL-RAHAL, M. Normal coordinates analyses of disaccharides constituted by D-glucose, D-galactose and D-fructose units. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 68, n. 2, 2007, p. 284–299.https://doi.org/10.1016/j.saa.2006.11.032; MAHFUJUL ALAM, MRITYUNJOY BISWAS, MIR MEAHADI HASAN, MD FARUK HOSSAIN, MD ASHRAFUZZAMAN ZAHID, MD SAJIB AL-REZA, TARIKUL ISLAM. Quality attributes of the developed banana flour: Effects of drying methods. Heliyon, v 9, n 7, 2023.https://doi.org/10.1016/j.heliyon.2023.e18312.; MARTA, H.; CAHYANA, Y.; SENIA, E.; DJALI, M.; HALIM, I.R.; URROHMAH, S.; KHAIRUNNISSA, D.S.; SUTARDI, A.A. Physicochemical and pasting properties of cross linked-banana flour. IOP Conference Series: Earth and Environmental Science, v. 292, n. 1, 2019, p. 012006. https://doi.org/10.1088/1755-1315/292/1/012006; MATEEN, A.; SINGH, G. Evaluating the potential of millets as blend components with soy protein isolate in a high moisture extrusion system for improved texture, structure, and colour properties of meat analogues. Food Research International, v. 173, 2023, p. 113395.https://doi.org/10.1016/j.foodres.2023.113395; MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. Cadena de banano [Ebook]. Bogotá (Colombia): 2020. 20 p. Retrieved 12 May 2022, from https://sioc.minagricultura.gov.co/Banano/Documentos/2020-12-31 Cifras Sectoriales.pdf; NAKAJIMA, S.; KUROKI, S.; IKEHATA, A. Selective detection of starch in banana fruit with Raman spectroscopy. Food Chemistry, v. 401, 2023, p. 134166.https://doi.org/10.1016/j.foodchem.2022.134166; ORSUWAN, A.; SOTHORNVIT, R. Effect of miniemulsion cross-linking and ultrasonication on properties of banana starch. International Journal of Food Science and Technology, v. 50, n. 2, 2015, p. 298–304. https://doi.org/10.1111/ijfs.12626; OU, B.; HAMPSCH-WOODILL, M.; PRIOR, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, v. 49, n. 10, 2001, p. 4619-4626.https://doi.org/10.1021/jf010586; PADHI, S.; DWIVEDI, M. Physico-chemical, structural, functional and powder flow properties of unripe green banana flour after the application of refractance window drying. Future Foods, v. 5, 2022, p. 100101. https://doi.org/10.1016/j.fufo.2021.100101; PICO, J.; XU, K.; GUO, M.; MOHAMEDSHAH, Z.; FERRUZZI, M.; MARTINEZ, M. Manufacturing the ultimate green banana flour: Impact of drying and extrusion on phenolic profile and starch bioaccessibility. Food Chemistry, v. 297, 2019, p. 124990.https://doi.org/10.1016/j.foodchem.2019.124990; RODRÍGUEZ AGUIRRE, O.E.; ANDRADE BARREIRO, W.A.; DIAZ LÓPEZ, F.E. Actividad antioxidante de extractos de hojas de Bocconia frutescens L. (Papaveraceae). Revista de Tecnología (Archivo), v. 14, n. 2, 2015, p. 21-36.https://doi.org/10.18270/rt.v14i2.1868; ROLANDELLI, G.; GALLARDO-NAVARRO, Y.T.; GARCÍA PINILLA, S.; FARRONI, A.E.; GUTIÉRREZ-LÓPEZ, G.F.; BUERA, M.P. Components interactions and changes at molecular level in maize flour-based blends as affected by the extrusion process. A multi-analytical approach. Journal of Cereal Science, v. 99, 2021, p. 103186. https://doi.org/10.1016/j.jcs.2021.103186; SALAZAR, D.; ARANCIBIA, M.; LALALEO, D.; RODRÍGUEZ-MAECKER, R.; LÓPEZ-CABALLERO, M.; MONTERO, M.). Physico-chemical properties and filmogenic aptitude for edible packaging of Ecuadorian discard green banana flours (Musa acuminanta AAA). Food Hydrocolloids, v. 122, 2022, p. 107048.https://doi.org/10.1016/j.foodhyd.2021.107048; SARAWONG, C.; SCHOENLECHNER, R.; SEKIGUCHI, K.; BERGHOFER, E.; NG, P. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chemistry, v 143, 2014, p. 33-39.http://dx.doi.org/10.1016/j.foodchem.2013.07.081; SARTORI, T.; MENEGALLI, F.C. Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid. Food Hydrocolloids, v. 55, 2016, p. 210–219.https://doi.org/10.1016/j.foodhyd.2015.11.018; SEGUNDO, C.; ROMÁN, L.; LOBO, M.; MARTINEZ, M.; GÓMEZ, M. Ripe banana flour as a source of antioxidants in layer and sponge cakes. Plant Foods for Human Nutrition, v. 72, n. 4, 2017, p. 365-371. https://doi.org/10.1007/s11130-017-0630-5; SHARMA, A.; GUPTA, P. Evaluation of antioxidant activity and validated method for analysis of polyphenols from non-edible parts of indian tropical fruits by using microwave assisted extraction and LC-MS / MS. International Journal of Pharma and Bio Sciences, v. 4, n. 1, 2013, p. 227–241.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fb2224b313120251d0bbd93b1e03802b115fbacd; TRIPATHI, L.; TRIPATHI, J. N.; TENKOUANO, A.; BRAMEL, P. (2008). Banana and plantain. En Kole C.; Hall T. C. A Compendium of Transgenic Crop Plants: Tropical and Subtropical Fruits and Nuts, Cap 3., Hoboken, (USA): Wiley-Blackwell, 2008, 77-108 p. https://biblio.iita.org/documents/tripathi-banana-2008.pdf-77b025a37b0db699c260e7df13baa062.pdf; TORBICA, A.; PEĆINAR, I.; LEVIĆ, S.; BELOVIĆ, M.; JOVIČIĆ, M.; STEVANOVIĆ, Z. D.; NEDOVIĆ, V. Insight in changes in starch and proteins molecular structure of non-wheat cereal flours influenced by roasting and extrusion treatments. Food Hydrocolloids, v. 140, 2023, p. 108591.https://doi.org/10.1016/j.foodhyd.2023.108591; TUÁREZ-GARCÍA, D.A.; GALVÁN-GÁMEZ, H.; ERAZO SOLÓRZANO, C.Y.; ZAMBRANO, C.E.; RODRÍGUEZ-SOLANA, R.; PEREIRA-CARO, G.; SANCHEZ-PARRA, M.; MORENO-ROJAS, J.M.; ORDÓÑEZ-DÍAZ, J. L. Effects of different heating treatments on the antioxidant activity and phenolic compounds of Ecuadorian red dacca banana. Plants, v. 12, n. 15, 2023, p. 2780.https://doi.org/10.3390/plants12152780; VEGA-GÁLVEZ, A. DI SCALA, K.; RODRÍGUEZ, K.; LEMUS-MONDACA, R.; MIRANDA, M.; LÓPEZ, J.; PEREZ-WON, M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, v. 117, 2009, p. 647–653.https://doi.org/10.1016/j.foodchem.2009.04.066; ZOU, F.; TAN, C.; ZHANG, B.; WU, W.; SHANG, N. The valorization of banana by-products: Nutritional composition, bioactivities, applications, and future development. Foods, v. 11, n. 20, 2022, p. 3170. https://doi.org/10.3390/foods11203170; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2453
-
4Academic Journal
المؤلفون: Rodríguez Sandoval, Eduardo, Manjarres Pinzon, Gustavo, Castro Sanchez, Adriana, Lopez Ochoa, Juan David, Gil Gonzalez, Jesús
المصدر: Investigación e Innovación en Ingenierías; Vol. 12 No. 1 (2024): January - June; 45-54 ; Investigación e Innovación en Ingenierías; Vol. 12 Núm. 1 (2024): Enero-Junio; 45-54 ; 2344-8652 ; 10.17081/invinno.12.1
مصطلحات موضوعية: flour replacement, green banana flour, rheology, farinograph, texture, Sustitución de harina, harina de banano verde, reología, farinografo, textura
وصف الملف: application/pdf
Relation: https://revistas.unisimon.edu.co/index.php/innovacioning/article/view/6573/6545; https://revistas.unisimon.edu.co/index.php/innovacioning/article/view/6573
-
5Academic Journal
المؤلفون: Moreno Florez, Ana Isabel, Malagon, Sarita, Ocampo, Sebastian, Leal-Marin, Sara, Gil González, Jesús Humberto, Diaz-Cano, Andres, Lopera, Alex, Paucar, Carlos, Ossa, Alex, Glasmacher, Birgit, Peláez-Vargas, Alejandro, Garcia, Claudia
المصدر: Heliyon ; volume 10, issue 1, page e23955 ; ISSN 2405-8440
-
6Academic Journal
المؤلفون: Moreno Florez, Ana Isabel, Malagon, Sarita, Ocampo, Sebastian, Leal Marín, Sara, Gil Gonzalez, Jesus Humberto, Diaz Cano, Andrés, Lopera, Alex, Paucar, Carlos, Ossa, Edgar Alexander, Glasmacher, Birgit, Peláez Vargas, Alejandro, García, Claudia
المساهمون: GIOM
مصطلحات موضوعية: Propolis, Scaffolds, 3D printing, Cell proliferation, Abtibacterial activity
وصف الملف: application/pdf
Relation: 16 p.; e23955; 10; Heliyon; A. Alyahya, G.R.J. Swennen, Bone grafting in orthognathic surgery: a systematic review, Int. J. Oral Maxillofac. Surg. 48 (2019) 322–331, https://doi.org/ 10.1016/j.ijom.2018.08.014.; L. Roseti, V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, B. Grigolo, Scaffolds for bone tissue engineering: State of the art and new perspectives, Mater. Sci. Eng. C 78 (2017) 1246–1262, https://doi.org/10.1016/j.msec.2017.05.017.; G.G. Wang, S. Deb, L.D.S. Coelho, Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems, IJBIC 12 (2018) 1, https://doi.org/10.1504/IJBIC.2018.093328.; P.V. Giannoudis, H. Dinopoulos, E. Tsiridis, Bone substitutes: an update, Injury 36 (2005), https://doi.org/10.1016/j.injury.2005.07.029. S20–S27.; M. Panteli, P.V. Giannoudis, Chronic osteomyelitis: what the surgeon needs to know, EFORT Open Reviews 1 (2016) 128–135, https://doi.org/10.1302/2058- 5241.1.000017.; K. Jerzy, H. Francis, Chronic osteomyelitis - bacterial flora, antibiotic sensitivity and treatment challenges, TOORTHJ 12 (2018) 153–163, https://doi.org/ 10.2174/1874325001812010153.; M. Rossi, P. Marrazzo, The potential of honeybee products for biomaterial applications, Biomimetics 6 (2021) 6, https://doi.org/10.3390/biomimetics6010006.; N. Martelli, C. Serrano, H. van den Brink, J. Pineau, P. Prognon, I. Borget, S. El Batti, Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review, Surgery 159 (2016) 1485–1500, https://doi.org/10.1016/j.surg.2015.12.017.; J. Breeze, D. Tong, A. Gibbons, Contemporary management of maxillofacial ballistic trauma, Br. J. Oral Maxillofac. Surg. 55 (2017) 661–665, https://doi.org/ 10.1016/j.bjoms.2017.05.001.; A.L. Jardini, M.A. Larosa, R.M. Filho, C.A. de C. Zavaglia, L.F. Bernardes, C.S. Lambert, D.R. Calderoni, P. Kharmandayan, Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing, J. Cranio-Maxillofacial Surg. 42 (2014) 1877, https://doi.org/10.1016/j.jcms.2014.07.006, 1884.; S. Bhumiratana, G. Vunjak-Novakovic, Concise review: personalized human bone grafts for reconstructing head and face, Stem Cells Translational Medicine 1 (2012) 64–69, https://doi.org/10.5966/sctm.2011-0020.; H.E. Jazayeri, M. Tahriri, M. Razavi, K. Khoshroo, F. Fahimipour, E. Dashtimoghadam, L. Almeida, L. Tayebi, A current overview of materials and strategies for potential use in maxillofacial tissue regeneration, Mater. Sci. Eng. C 70 (2017) 913–929, https://doi.org/10.1016/j.msec.2016.08.055.; Y. Lin, S. Huang, R. Zou, X. Gao, J. Ruan, M.D. Weir, M.A. Reynolds, W. Qin, X. Chang, H. Fu, H.H.K. Xu, Calcium phosphate cement scaffold with stem cell coculture and prevascularization for dental and craniofacial bone tissue engineering, Dent. Mater. 35 (2019) 1031–1041, https://doi.org/10.1016/j. dental.2019.04.009.; S. Hollister, C. Lin, E. Saito, C. Lin, R. Schek, J. Taboas, J. Williams, B. Partee, C. Flanagan, A. Diggs, E. Wilke, G. Van Lenthe, R. Muller, T. Wirtz, S. Das, S. Feinberg, P. Krebsbach, Engineering craniofacial scaffolds, Orthod. Craniofac. Res. 8 (2005) 162–173, https://doi.org/10.1111/j.1601-6343.2005.00329.x.; F. Darus, R.M. Isa, N. Mamat, M. Jaafar, Techniques for fabrication and construction of three-dimensional bioceramic scaffolds: effect on pores size, porosity and compressive strength, Ceram. Int. 44 (2018) 18400–18407, https://doi.org/10.1016/j.ceramint.2018.07.056.; R. van Noort, The future of dental devices is digital, Dent. Mater. 28 (2012) 3–12, https://doi.org/10.1016/j.dental.2011.10.014.; H.N. Chia, B.M. Wu, Recent advances in 3D printing of biomaterials, J. Biol. Eng. 9 (2015) 4, https://doi.org/10.1186/s13036-015-0001-4.; G.M. Azarov, E.V. Maiorova, M.A. Oborina, A.V. Belyakov, Wollastonite raw materials and their applications (a review), Glass Ceram. 52 (1995) 237–240, https://doi.org/10.1007/BF00681090.; L.D. Maxim, R. Niebo, M.J. Utell, E.E. McConnell, S. LaRosa, A.M. Segrave, Wollastonite toxicity: an update, Inhal. Toxicol. 26 (2014) 95–112, https://doi.org/ 10.3109/08958378.2013.857372.; E. Mancuso, N. Alharbi, O.A. Bretcanu, M. Marshall, M.A. Birch, A.W. McCaskie, K.W. Dalgarno, Three-dimensional printing of porous load-bearing bioceramic scaffolds, Proc. Inst. Mech. Eng. H 231 (2017) 575–585, https://doi.org/10.1177/0954411916682984.; M.A. Berthaume, P.C. Dechow, J. Iriarte-Diaz, C.F. Ross, D.S. Strait, Q. Wang, I.R. Grosse, Probabilistic finite element analysis of a craniofacial finite element model, J. Theor. Biol. 300 (2012) 242–253, https://doi.org/10.1016/j.jtbi.2012.01.031.; M.V. Reddy, M. Pathak, Sol-gel combustion synthesis of Ag doped CaSiO 3 : in vitro bioactivity, antibacterial activity and cytocompatibility studies for biomedical applications, Materials Technology 33 (2018) 38–47, https://doi.org/10.1080/10667857.2017.1389050.; S. Palakurthy, A.A. P, V.R. K, in vitro evaluation of silver doped wollastonite synthesized from natural waste for biomedical applications, Ceram. Int. 45 (2019) 25044–25051, https://doi.org/10.1016/j.ceramint.2019.03.169.; S. Azeena, N. Subhapradha, N. Selvamurugan, S. Narayan, N. Srinivasan, R. Murugesan, T. Chung, A. Moorthi, Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering, Mater. Sci. Eng. C 71 (2017) 1156–1165, https://doi.org/10.1016/j.msec.2016.11.118.; W. Ortega-Lara, D.A. Cort´es-Hern´andez, S. Best, R. Brooks, A. Hern´andez-Ramírez, Antibacterial properties, in vitro bioactivity and cell proliferation of titania–wollastonite composites, Ceram. Int. 36 (2010) 513–519, https://doi.org/10.1016/j.ceramint.2009.09.024.; V. Martin, I.A. Ribeiro, M.M. Alves, L. Gonçalves, R.A. Claudio, L. Grenho, M.H. Fernandes, P. Gomes, C.F. Santos, A.F. Bettencourt, Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration, Mater. Sci. Eng. C 101 (2019) 15–26, https://doi.org/10.1016/j.msec.2019.03.056.; A.S. Tiffany, D.L. Gray, T.J. Woods, K. Subedi, B.A.C. Harley, The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications, Acta Biomater. 93 (2019) 86–96, https://doi.org/10.1016/j.actbio.2019.05.031; A. Sabir, A. Sumidarti, Interleukin-6 expression on inflamed rat dental pulp tissue after capped with Trigona sp. propolis from south Sulawesi, Indonesia, Saudi J. Biol. Sci. 24 (2017) 1034–1037, https://doi.org/10.1016/j.sjbs.2016.12.019.; M.J.A.M. Araújo, S.D.M.G. Bosco, J.M. Sforcin, Pythium insidiosum: inhibitory effects of propolis and geopropolis on hyphal growth, Braz. J. Microbiol. 47 (2016) 863–869, https://doi.org/10.1016/j.bjm.2016.06.008.; A. Del Carpio-Perochena, A. Kishen, R. Felitti, A.Y. Bhagirath, M.R. Medapati, C. Lai, R.S. Cunha, Antibacterial properties of chitosan nanoparticles and propolis associated with calcium hydroxide against Single- and multispecies biofilms: an in vitro and in Situ study, J. Endod. 43 (2017) 1332–1336, https://doi.org/ 10.1016/j.joen.2017.03.017.; S. Duarte, P.L. Rosalen, M.F. Hayacibara, J.A. Cury, W.H. Bowen, R.E. Marquis, V.L.G. Rehder, A. Sartoratto, M. Ikegaki, H. Koo, The influence of a novel propolis on mutans streptococci biofilms and caries development in rats, Arch. Oral Biol. 51 (2006) 15–22, https://doi.org/10.1016/j.archoralbio.2005.06.002.; M.F. Hayacibara, H. Koo, P.L. Rosalen, S. Duarte, E.M. Franco, W.H. Bowen, M. Ikegaki, J.A. Cury, In vitro and in vivo effects of isolated fractions of Brazilian propolis on caries development, J. Ethnopharmacol. 101 (2005) 110–115, https://doi.org/10.1016/j.jep.2005.04.001.; S.A. Lib´erio, A.L.A. Pereira, M.J.A.M. Araújo, R.P. Dutra, F.R.F. Nascimento, V. Monteiro-Neto, M.N.S. Ribeiro, A.G. Gonçalves, R.N.M. Guerra, The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci, J. Ethnopharmacol. 125 (2009) 1–9, https://doi.org/10.1016/j.jep.2009.04.047.; A.W. Gjertsen, K.A. Stothz, K.G. Neiva, R. Pileggi, Effect of propolis on proliferation and apoptosis of periodontal ligament fibroblasts, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 112 (2011) 843–848, https://doi.org/10.1016/j.tripleo.2011.08.004.; M.C. Marcucci, Propolis: chemical composition, biological properties and therapeutic activity, Apidologie 26 (1995) 83–99, https://doi.org/10.1051/apido: 19950202.; K.B. Santiago, G.M. Piana, B.J. Conti, E.D.O. Cardoso, B.F. Murbach Teles Andrade, M.R. Zanutto, V.L. Mores Rall, A. Fernandes, J.M. Sforcin, Microbiological control and antibacterial action of a propolis-containing mouthwash and control of dental plaque in humans, Nat. Prod. Res. 32 (2018) 1441–1445, https://doi. org/10.1080/14786419.2017.1344664.; I.-A.I. Thamnopoulos, G.F. Michailidis, D.J. Fletouris, A. Badeka, M.G. Kontominas, A.S. Angelidis, Inhibitory activity of propolis against Listeria monocytogenes in milk stored under refrigeration, Food Microbiol. 73 (2018) 168–176, https://doi.org/10.1016/j.fm.2018.01.021.; L.A.R. Valadas, E.M. Rodrigues Neto, M.A.L. Lotif, S.G.C. Fonseca, F.O. Chagas, F.V. Fechine, C.B.M. Carvalho, M.A.M. Bandeira, M.M.F. Fonteles, P.L.D. Lobo, Evaluation of propolis dental varnish against Streptococcus mutans in children, Dent. Mater. 33 (2017), https://doi.org/10.1016/j.dental.2017.08.162 e80–e81.; A. Fogden, M. Haeberlein, S. Lidin, Generalizations of the gyroid surface, J. Phys. I France. 3 (1993) 2371–2385, https://doi.org/10.1051/jp1:1993250.; H. Shao, Y. He, J. Fu, D. He, X. Yang, J. Xie, C. Yao, J. Ye, S. Xu, Z. Gou, 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation, J. Eur. Ceram. Soc. 36 (2016) 1495–1503, https://doi.org/10.1016/j.jeurceramsoc.2016.01.010; C21 Committee, Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, Ceramic Tiles, and Glass Tiles, ASTM International, n.d. https://doi.org/10.1520/C0373-88R06.; J. Liu, X. Miao, Porous alumina ceramics prepared by slurry infiltration of expanded polystyrene beads, J. Mater. Sci. 40 (2005) 6145–6150, https://doi.org/ 10.1007/s10853-005-3165-3; D04 Committee, Test Method for Density of Semi-Solid Asphalt Binder (Pycnometer Method), ASTM International, n.d. https://doi.org/10.1520/D0070_ D0070M-21.; V. Seidel, E. Peyfoon, D.G. Watson, J. Fearnley, Comparative study of the antibacterial activity of propolis from different geographical and climatic zones: antibacterial activity of propolis from different zones, Phytother Res. 22 (2008) 1256–1263, https://doi.org/10.1002/ptr.2480.; S. Leal-Marin, G. Gallaway, K. H¨oltje, A. Lopera-Sepulveda, B. Glasmacher, O. Gryshkov, Scaffolds with magnetic nanoparticles for tissue Stimulation, Current Directions in Biomedical Engineering 7 (2021) 460–463, https://doi.org/10.1515/cdbme-2021-2117.; Pel´aez-Vargas, Alejandro, Daniel Gallego-Perez, D.F. Gomez, M.H. Fernandes, D.J. Hansford, F.J. Monteiro, Propagation of human bone marrow stem cells for craniofacial applications, in: M.A. Hayat (Ed.), Stem Cells and Cancer Stem Cells, 2012, pp. 107–122.; S. Teixeira, M.A. Rodriguez, P. Pena, A.H. De Aza, S. De Aza, M.P. Ferraz, F.J. Monteiro, Physical characterization of hydroxyapatite porous scaffolds for tissue engineering, Mater. Sci. Eng. C 29 (2009) 1510–1514, https://doi.org/10.1016/j.msec.2008.09.052.; E. Cunningham, N. Dunne, G. Walker, C. Maggs, R. Wilcox, F. Buchanan, Hydroxyapatite bone substitutes developed via replication of natural marine sponges, J. Mater. Sci. Mater. Med. 21 (2010) 2255–2261, https://doi.org/10.1007/s10856-009-3961-4.; Y. Guo, H.S. Patanwala, B. Bognet, A.W.K. Ma, Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance, RPJ 23 (2017) 562–576, https://doi.org/10.1108/RPJ-05-2016-0076.; P.S.R.K. Prasad, A.V. Reddy, P.K. Rajesh, P. Ponnambalam, K. Prakasan, Studies on rheology of ceramic inks and spread of ink droplets for direct ceramic ink jet printing, J. Mater. Process. Technol. 176 (2006) 222–229, https://doi.org/10.1016/j.jmatprotec.2006.04.001.; R. Jayathilakage, P. Rajeev, J. Sanjayan, Rheometry for concrete 3D printing: a review and an experimental comparison, Buildings 12 (2022) 1190, https://doi. org/10.3390/buildings12081190; Mott Robert, Untener Joseph, Applied Fluid Mechanics, seventh ed., Pearson, 2014.; L. Zhang, G. Yang, B.N. Johnson, X. Jia, Three-dimensional (3D) printed scaffold and material selection for bone repair, Acta Biomater. 84 (2019) 16–33, https://doi.org/10.1016/j.actbio.2018.11.039.; Mary Lilliman, Control of Mortar Rheology for 3D Concrete Printing, Doctoral thesis, Loughborough University, 2017. https://hdl.handle.net/2134/25216.; S.S.L. Chan, R.M. Pennings, L. Edwards, G.V. Franks, 3D printing of clay for decorative architectural applications: effect of solids volume fraction on rheology and printability, Addit. Manuf. 35 (2020), 101335, https://doi.org/10.1016/j.addma.2020.101335.; Delgado, María de Lourdes, Andrade, Jesús ´Angel, Ramirez, Carlos Alberto, Caracterizaci´on fisicoquímica de prop´oleos colectados en el Bosque La Primavera Zapopan, Jalisco., Rev. mex. de cienc. forestales. 6 (2015) 74–87; M.B. Sedelnikova, A.V. Ugodchikova, T.V. Tolkacheva, V.V. Chebodaeva, I.A. Cluklhov, M.A. Khimich, O.V. Bakina, M.I. Lerner, V.S. Egorkin, J. Schmidt, Y. P. Sharkeev, Surface modification of Mg0.8Ca alloy via wollastonite micro-arc coatings: significant improvement in corrosion resistance, Metals 11 (2021) 754, https://doi.org/10.3390/met11050754.; W. Chen, Y. Liang, X. Hou, J. Zhang, H. Ding, S. Sun, H. Cao, Mechanical grinding preparation and characterization of TiO2-coated wollastonite composite pigments, Materials 11 (2018) 593, https://doi.org/10.3390/ma11040593.; F. Scazzocchio, F.D. D’Auria, D. Alessandrini, F. Pantanella, Multifactorial aspects of antimicrobial activity of propolis, Microbiol. Res. 161 (2006) 327–333, https://doi.org/10.1016/j.micres.2005.12.003.; S. Moussaoui, M. Lahouel, Propolis extract: a potent bacteria efflux pump inhibitor, Journal of Biologically Active Products from Nature 4 (2014) 216–223, https://doi.org/10.1080/22311866.2014.936906.; A. Uzel, K. Sorkun, ¨O. ¨Onça˘g, D. Ço˘gulu, ¨O. Gençay, B. Sali˙h, Chemical compositions and antimicrobial activities of four different Anatolian propolis samples, Microbiol. Res. 160 (2005) 189–195, https://doi.org/10.1016/j.micres.2005.01.002.; U.A. Qureshi, Z. Khatri, F. Ahmed, M. Khatri, I.-S. Kim, Electrospun zein nanofiber as a green and recyclable adsorbent for the removal of reactive black 5 from the aqueous phase, ACS Sustainable Chem. Eng. 5 (2017) 4340–4351, https://doi.org/10.1021/acssuschemeng.7b00402.; J. Ito, F.-R. Chang, H.-K. Wang, Y.K. Park, M. Ikegaki, N. Kilgore, K.-H. Lee, Anti-AIDS agents. 48. Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis, J. Nat. Prod. 64 (2001) 1278–1281, https://doi.org/10.1021/np010211x.; C.C. Duke, V.H. Tran, R.K. Duke, A. Abu-Mellal, G.T. Plunkett, D.I. King, K. Hamid, K.L. Wilson, R.L. Barrett, J.J. Bruhl, A sedge plant as the source of Kangaroo Island propolis rich in prenylated p-coumarate ester and stilbenes, Phytochemistry 134 (2017) 87–97, https://doi.org/10.1016/j.phytochem.2016.11.005.; A.I. Moreno, Y. Orozco, S. Ocampo, S. Malag´on, A. Ossa, A. Pel´aez-Vargas, C. Paucar, A. Lopera, C. Garcia, Effects of propolis impregnation on polylactic acid (PLA) scaffolds loaded with wollastonite particles against Staphylococcus aureus, Staphylococcus epidermidis, and their coculture for potential medical devices, Polymers 15 (2023) 2629, https://doi.org/10.3390/polym15122629.; M.S. Almuhayawi, Propolis as a novel antibacterial agent, Saudi J. Biol. Sci. 27 (2020) 3079–3086, https://doi.org/10.1016/j.sjbs.2020.09.016.; O.K. Mirzoeva, R.N. Grishanin, P.C. Calder, Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria, Microbiol. Res. 152 (1997) 239–246, https://doi.org/10.1016/S0944-5013(97)80034-1.; N. Vera, E. Solorzano, R. Ordo˜nez, L. Maldonado, E. Bedascarrasbure, M.I. Isla, Chemical composition of Argentinean propolis collected in extreme regions and its relation with antimicrobial and antioxidant activities, Nat. Prod. Commun. 6 (2011), 1934578X1100600618.; R. Silva-Carvalho, F. Baltazar, C. Almeida-Aguiar, Propolis: A Complex Natural Product with a Plethora of Biological Activities that Can Be Explored for Drug Development, Evidence-Based Complementary and Alternative Medicine. 2015, 2015, pp. 1–29, https://doi.org/10.1155/2015/206439.; W. Zhang, G.E. Margarita, D. Wu, W. Yuan, S. Yan, S. Qi, X. Xue, K. Wang, L. Wu, Antibacterial activity of Chinese red propolis against Staphylococcus aureus and MRSA, Molecules 27 (2022) 1693, https://doi.org/10.3390/molecules27051693.; F. Saeed, R.S. Ahmad, M.U. Arshad, B. Niaz, R. Batool, R. Naz, H. Ansar Rasul Suleria, Propolis to curb lifestyle related disorders: an overview, Int. J. Food Prop. 19 (2016) 420–437, https://doi.org/10.1080/10942912.2012.745131.; S. Demir, Y. Aliyazicioglu, I. Turan, S. Misir, A. Mentese, S.O. Yaman, K. Akbulut, K. Kilinc, O. Deger, Antiproliferative and proapoptotic activity of Turkish propolis on human lung cancer cell line, Nutr. Cancer 68 (2016) 165–172, https://doi.org/10.1080/01635581.2016.1115096.; A. Pantosti, A. Sanchini, M. Monaco, Mechanisms of antibiotic resistance in Staphylococcus aureus, Future Microbiol. 2 (2007) 323–334.; S. Periasamy, S.S. Chatterjee, G.Y.C. Cheung, M. Otto, Phenol-soluble modulins in staphylococci: what are they originally for? Commun. Integr. Biol. 5 (2012) 275–277, https://doi.org/10.4161/cib.19420; M.G. Gandolfi, F. Perut, G. Ciapetti, R. Mongiorgi, C. Prati, New portland cement–based materials for endodontics mixed with articaine solution: a study of cellular response, J. Endod. 34 (2008) 39–44, https://doi.org/10.1016/j.joen.2007.09.001.; N. Higuita-Castro, D. Gallego-Perez, A. Pelaez-Vargas, F. García Quiroz, O.M. Posada, L.E. L´opez, C.A. Sarassa, P. Agudelo-Florez, F.J. Monteiro, A.S. Litsky, D. J. Hansford, Reinforced Portland cement porous scaffolds for load-bearing bone tissue engineering applications, J. Biomed. Mater. Res. 100B (2012) 501–507, https://doi.org/10.1002/jbm.b.31976.; A.H. Banskota, Y. Tezuka, S. Kadota, Recent progress in pharmacological research of propolis, Phytother Res. 15 (2001) 561–571, https://doi.org/10.1002/ ptr.1029.; M. Tyszka-Czochara, P. Pa´sko, W. Reczy´nski, M. Szl´osarczyk, B. Bystrowska, W. Opoka, Zinc and propolis reduces cytotoxicity and proliferation in Skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis, Biol. Trace Elem. Res. 160 (2014) 123–131, https://doi.org/10.1007/ s12011-014-0019-3.; A.H. Banskota, Y. Tezuka, J.K. Prasain, K. Matsushige, I. Saiki, S. Kadota, Chemical constituents of Brazilian propolis and their cytotoxic activities, J. Nat. Prod. 61 (1998) 896–900, https://doi.org/10.1021/np980028c.; J. Su, S. Hua, A. Chen, P. Chen, L. Yang, X. Yuan, D. Qi, H. Zhu, C. Yan, J. Xiao, Y. Shi, Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability, Biomater. Adv. 133 (2022), 112595, https://doi.org/10.1016/j.msec.2021.112595.; J.A. Ramírez, V. Ospina, A.A. Rozo, M.I. Viana, S. Ocampo, S. Restrepo, N.A. V´asquez, C. Paucar, C. García, Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing, J. Mater. Res. 34 (2019) 3757–3765, https://doi.org/10.1557/jmr.2019.323; F. Baino, D.U. Tulyaganov, Z. Kahharov, A. Rahdar, E. Vern´e, Foam-replicated diopside/fluorapatite/wollastonite-based glass–ceramic scaffolds, Ceramics 5 (2022) 120–130, https://doi.org/10.3390/ceramics5010011.; B. Battulga, K. Shiizaki, Y. Miura, Y. Osanai, R. Yamazaki, Y. Shinohara, Y. Kubota, T. Hara, M. Kuro-o, N. Ohno, Correlative light and electron microscopic observation of calcium phosphate particles in a mouse kidney formed under a high-phosphate diet, Sci. Rep. 13 (2023) 852, https://doi.org/10.1038/s41598- 023-28103-3.; Y.-C. Huang, P.-C. Hsiao, H.-J. Chai, Hydroxyapatite extracted from fish scale: effects on MG63 osteoblast-like cells, Ceram. Int. 37 (2011) 1825–1831, https:// doi.org/10.1016/j.ceramint.2011.01.018.; P.S. Gomes, M.H. Fernandes, Effect of therapeutic levels of doxycycline and minocycline in the proliferation and differentiation of human bone marrow osteoblastic cells, Arch. Oral Biol. 52 (2007) 251–259, https://doi.org/10.1016/j.archoralbio.2006.10.005.; K. Song, Q. Kong, L. Li, Y. Wang, R. Parungao, S. Zheng, Y. Nie, Z. Jiao, H. Wang, T. Liu, fabrication and biocompatibility assay of a biomimetic osteoblastic niche, Appl. Biochem. Biotechnol. 189 (2019) 471–484, https://doi.org/10.1007/s12010-019-03015-z.; H. Iqbal, M. Ali, R. Zeeshan, Z. Mutahir, F. Iqbal, M.A.H. Nawaz, L. Shahzadi, A.A. Chaudhry, M. Yar, S. Luan, A.F. Khan, I. Rehman, Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes, Colloids and Surfaces B: Biointerfaces. 160 (2017) 553–563, https://doi.org/10.1016/j.colsurfb.2017.09.059.; W.E.G. Müller, E. Tolba, H.C. Schr¨oder, B. Diehl-Seifert, T. Link, X. Wang, Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the osteoclast-related SaOS-2 cells, Biotechnol. J. 9 (2014) 1312–1321, https://doi.org/10.1002/ biot.201400277.; H.H. Lu, S.F. El-Amin, K.D. Scott, C.T. Laurencin, Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cellsin vitro, J. Biomed. Mater. Res. 64A (2003) 465–474, https:// doi.org/10.1002/jbm.a.10399.; H. Shao, A. Liu, X. Ke, M. Sun, Y. He, X. Yang, J. Fu, L. Zhang, G. Yang, Y. Liu, S. Xu, Z. Gou, 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects, J. Mater. Chem. B 5 (2017) 2941–2951, https://doi.org/10.1039/ C7TB00217C; A. Liu, M. Sun, H. Shao, X. Yang, C. Ma, D. He, Q. Gao, Y. Liu, S. Yan, S. Xu, Y. He, J. Fu, Z. Gou, The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects, J. Mater. Chem. B 4 (2016) 3945–3958, https://doi.org/ 10.1039/C6TB00449K.; A. Meimandi-Parizi, A. Oryan, E. Sayahi, A. Bigham-Sadegh, Propolis extract a new reinforcement material in improving bone healing: an in vivo study, Int. J. Surg. 56 (2018) 94–101, https://doi.org/10.1016/j.ijsu.2018.06.006.; G. Kaur, V. Kumar, F. Baino, J.C. Mauro, G. Pickrell, I. Evans, O. Bretcanu, Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges, Mater. Sci. Eng. C 104 (2019), 109895, https://doi.org/10.1016/j.msec.2019.109895.; L. Rinc´on-Kohli, P.K. Zysset, Multi-axial mechanical properties of human trabecular bone, Biomech. Model. Mechanobiol. 8 (2009) 195–208, https://doi.org/ 10.1007/s10237-008-0128-z.; L.-C. Gerhardt, A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials 3 (2010) 3867–3910, https://doi.org/ 10.3390/ma3073867.; Florez AI, Malagon S, Ocampo S, Leal-Marin S, González JH, Diaz-Cano A, Lopera A, Paucar C, Ossa A, Glasmacher B, Peláez-Vargas A. (2024)Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing. Heliyon. 2024 Jan 15;10(1).https://hdl.handle.net/20.500.12494/55111; https://hdl.handle.net/20.500.12494/55111; ttps://doi.org/10.1016/j.heliyon.2023.e23955
-
7Academic Journal
المؤلفون: Vélez-Uribe, Tatiana, Orozco-Agudelo, Natalia, Manjarrés-Pinzón, Gustavo, Manjarrés-Pinzón, Katherine, Gil-González, Jesús, Rodríguez-Sandoval, Eduardo
المصدر: DYNA; Vol. 90 No. 225 (2023): January - March; 85-94 ; DYNA; Vol. 90 Núm. 225 (2023): Enero - Marzo; 85-94 ; 2346-2183 ; 0012-7353
مصطلحات موضوعية: hot air drying, mushroom flour, antioxidant capacity, functional properties, Pleurotus sp, secado por aire caliente, harina de hongo, capacidad antioxidante, propiedades funcionales
وصف الملف: application/pdf; text/xml
-
8Academic Journal
المؤلفون: Gallon-Bedoya, Manuela, Cortés-Rodríguez, Misael, Gil-González, Jesus, Lahlou, Abdallah, Guil-Guerrero, Jose Luis
المساهمون: Universidad Nacional de Colombia, Erasmus+, Junta de Andalucía, Sistema General de Regalías de Colombia, Minciencias, European Commission
المصدر: Heliyon ; volume 9, issue 4, page e14857 ; ISSN 2405-8440
-
9Academic Journal
المؤلفون: Torres Ospina, Alexandra, Zapata, Julian Andrés, Gil Gonzalez, Jesus Humberto, Giraldo, Luis, Valencia, Diana Marcela
المصدر: Acta Scientiarum. Animal Sciences; Vol 42 (2020): Publicação contínua; e48096 ; Acta Scientiarum. Animal Sciences; v. 42 (2020): Publicação contínua; e48096 ; 1807-8672 ; 1806-2636
مصطلحات موضوعية: spectrophotometry, fecal output, external marker, chromium dioxide, validation
وصف الملف: application/pdf
Relation: http://eduemojs.uem.br/ojs/index.php/ActaSciAnimSci/article/view/48096/751375149787; http://eduemojs.uem.br/ojs/index.php/ActaSciAnimSci/article/view/48096
-
10Academic Journal
المؤلفون: Cortés-Rodríguez, Misael, Villegas-Yépez, Camilo, Gil González, Jesús H., Rodríguez, Pablo Emilio, Ortega-Toro, Rodrigo
المساهمون: Administrative Department of Science, Technology and Innovation, COLCIENCIAS, CEIBA Foundation
المصدر: Heliyon ; volume 6, issue 9, page e04884 ; ISSN 2405-8440
-
11Academic Journal
المؤلفون: Cortés Rodríguez, Misael, Villegas Yépez, Camilo, Gil González, Jesús Humberto, Ortega-Toro, Rodrigo
المساهمون: COLCIENCIAS
المصدر: Heliyon ; volume 6, issue 5, page e03974 ; ISSN 2405-8440
-
12Academic Journal
المؤلفون: Vélez Uribe, Tatiana, Orozco Agudelo, Natalia, Manjarrés Pinzón, Gustavo, Manjarrés, Katherine, Rodríguez Sandoval, Eduardo, Gil González, Jesús Humberto
المصدر: DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín, ISSN 0012-7353, Vol. 90, Nº. 225, 2023, pags. 85-94
مصطلحات موضوعية: hot air drying, mushroom flour, antioxidant capacity, functional properties, Pleurotus sp, secado por aire caliente, harina de hongo, capacidad antioxidante, propiedades funcionales
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=8925005; (Revista) ISSN 0012-7353
-
13Academic Journal
المصدر: Revista Facultad Nacional de Agronomía Medellín, Vol 66, Iss 1, Pp 6949-6958 (2013)
مصطلحات موضوعية: Lightness, sulphites, ascorbic acid, citric acid. / Luminosidad, sulfitos, ácido ascórbico, ácido cítrico., Agriculture, Agriculture (General), S1-972
وصف الملف: electronic resource
-
14Academic Journal
المصدر: Revista Facultad Nacional de Agronomía Medellín, Vol 66, Iss 1, Pp 6929-6938 (2013)
مصطلحات موضوعية: Alimentos nutracéuticos, componentes fisiológicamente activos, capacidad antioxidante, propiedades fisicoquímicas / Nutraceutical foods, physiologically active components, antioxidant capacity, physicochemical properties., Agriculture, Agriculture (General), S1-972
وصف الملف: electronic resource
-
15Academic Journal
المصدر: Biotechnology in the Agricultural and Agroindustrial Sector; Vol. 15 No. 2 (2017): 2 Special Edition; 42-51 ; Biotecnología en el Sector Agropecuario y Agroindustrial; Vol. 15 Núm. 2 (2017): Edición Especial No 2 2017; 42-51 ; 1909-9959 ; 1692-3561
مصطلحات موضوعية: Persea americana Mill variety Hass, Spray drying, Vitamins, Minerals, Physiologically active compounds, Persea americana Mill variedad Hass, Secado por atomización, Vitaminas, Minerales, Compuestos fisiológicamente activos
وصف الملف: application/pdf
Relation: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/592/676; DREHER, M.L. and DAVENPORT, A.J. Hass avocado composition and potential health effects. Critical Reviews in Food Science and Nutrition, 53(7), 2013, p. 738-750.; CARVALHO, C.P. and VELÁSQUEZ, M.A. Fatty acid content of avocados (Persea americana Mill. cv. Hass) in relation to orchard altitude and fruit maturity stage. Agronomía Colombiana, 33(2), 2015, p. 220-227.; KRISHNAIAH, D., NITHYANANDAM, R. and SARBATLY, R. A critical review on the spray drying of fruit extract: Effect of additives on physicochemical properties. Critical Reviews in Food Science and Nutrition, 54(4), 2014, p. 449-473.; MORAGA, G., IGUAL, M., GARCÍA-MARTÍNEZ, E., MOSQUERA, L.H. and MARTÍNEZ-NAVARRETE, N. Effect of relative humidity and storage time on the bioactive compounds and functional properties of grapefruit powder. Journal of Food Engineering, 112(3), 2012, p. 191-199.; MOSER, P., SOUZA, R.T.D. and NICOLETTI-TELIS, V.R. Spray Drying of Grape Juice from Hybrid CV. BRS Violeta: Microencapsulation of Anthocyanins Using Protein/Maltodextrin Blends as Drying Aids. Journal of Food Processing and Preservation, 41(1), 2016, p. 1-11.; SORMOLI, M.E. and LANGRISH, T.A. Spray drying bioactive orange-peel extracts produced by Soxhlet extraction: Use of WPI, antioxidant activity and moisture sorption isotherms. LWT-Food Science and Technology, 72, 2016, p. 1-8.; BUSCH, V.M., PEREYRA-GONZALEZ, A., ŠEGATIN, N., SANTAGAPITA, P.R., ULRIH, N.P. and BUERA, M.P. Propolis encapsulation by spray drying: Characterization and stability. LWT-Food Science and Technology, 75, 2017, p. 227-235.; OBEROI, D.P.S. and SOGI, D.S. Effect of drying methods and maltodextrin concentration on pigment content of watermelon juice powder. Journal of Food Engineering, 165, 2015, p. 172-178.; SAIFULLAH, M., YUSOF, Y.A., CHIN, N.L., AZIZ, M.G., MOHAMMED, M.A.P. and AZIZ, N.A. Dissolution profiling and its comparison of natural fruit powder effervescent tablets. Journal of Food Engineering, 178, 2016, p. 60-70.; MAHDAVI, S.A., JAFARI, S.M., ASSADPOOR, E. and DEHNAD D. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 2016, p. 379-385.; RAY, S., RAYCHAUDHURI, U. and CHAKRABORTY, R. An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience, 13, 2016, p. 76–83.; SOGI, D.S., SIDDIQ, M. and DOLAN, K.D. Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT-Food Science and Technology, 62(1), 2015, p. 564-568.; BAE, E.K. and LEE, S.J. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, 25(8), 2008, p. 549-560.; LIU, F., CAO, X., WANG, H. and LIAO, X. Changes of tomato powder qualities during storage. Powder Technology, 204(1), 2010, p. 159-166.; KHA, T.C., NGUYEN, M.H., ROACH, P.D. and STATHOPOULOS, C.H. A storage study of encapsulated gac (Momordica cochinchinensis) oil powder and its fortification into foods. Food and Bioproducts Processing, 96, 2015, p. 113–125.; MARULANDA, A.M., GAVIRIA, J., RUIZ-RUIZ, M. y CORTES, M. Estabilidad de un sistema coloidal a base de aguacate con fines de secado por aspersión. Revista Facultad Nacional de Agronomía, 67(Suplemento II), 2014, p. 534-536.; OFFICIAL METHODS OF ANALYSIS (AOAC). 17th ed. Arlington (USA): VA. AOAC International, 2002, 520 p.; BERGER, J., RANA, R.J. and JAVEED, H. Radical Quenching of 1,1-Diphenyl-2-picrylhydrazyl: a Spectrometric Determination of Antioxidant Behavior. Journal of Chemical Education, 85(3), 2008, p. 408 -410.; RE, R., PELLEGRINI, N., PROTEGGENTE, A., PANNALA, A., YANG, M. and RICE-EVANS, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1999, p. 1231-1237.; CORTES, M. Desarrollo de productos de manzana deshidratados enriquecidos con vitamina E [Ph.D. Tesis Ingeniería de Alimentos]. Valencia (España): Universidad Politécnica de Valencia, Facultad de Ingeniería, 2004, 320 p.; INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN (ICONTEC). NTC 5151. Alimento para animales. Determinación de los contenidos de calcio, cobre, hierro, magnesio, manganeso, potasio, sodio y zinc. Método usando espectrometría de absorción atómica. Bogotá D.C. (Colombia): 2003.; DAIUTO, É.R., TREMOCOLDI, M.A., ALENCAR, S.M.D., VIEITES, R.L. and MINARELLI, P.H. Composição química e atividade antioxidante da polpa e resíduos de abacate 'Hass'. Revista Brasileira de Fruticultura, 2014, p. 417-424.; NUNES, J.C., LAGO, M.G., CASTELO-BRANCO, V.N., OLIVEIRA, F.R., TORRES, A.G., PERRONE, D. and MONTEIRO, M. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders. Food Chemistry, 197(part A), 2016, p. 881-890.; WANG, W., BOSTIC, T.R. and GU, L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chemistry, 122(4), 2010, p. 1193-1198.; TELESZKO, M. and WOJDYŁO, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. Journal of Functional Foods, 14, 2015, p. 736-746.; MORENO, E., ORTIZ, B.L. y RESTREPO, L.P. Contenido total de fenoles y actividad antioxidante de pulpa de seis frutas tropicales. Revista Colombiana de Química, 43(3), 2014, p. 41-48.; TAN, S.P., TUYEN, C.K., PARKS, S.E., STATHOPOULOS, C.E. and ROACH, P.D. Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 281, 2015, p. 65-75.; GIUFFRIDA, D., DUGO, P., TORRE, G., BIGNARDI, C., CAVAZZA, A., CORRADINI, C. and DUGO, G. Evaluation of carotenoid and capsaicinoid contents in powder of red chili peppers during one year of storage. Food Research International, 65(part B), 2014, p. 163-170.; MUZAFFAR, K. and KUMAR, P. Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technology, 291, 2016, p. 322-327.; ALVES, S.F., BORGES, L.L., DOS-SANTOS, T.O., DE PAULA, J.R., CONCEIÇÃO, E.C. and BARA, M.T.F. Microencapsulation of essential oil from fruits of Pterodon emarginatus using gum arabic and maltodextrin as wall materials: composition and stability. Drying Technology, 32(1), 2014, p. 96–105.; PANG, S.F, YUSOFF, M.M. and GIMBUN, J. Assessment of phenolic compounds stability and retention during spray drying of Orthosiphon stamineus extracts. Food Hydrocolloides, 37, 2014, p. 159–165.; GONNET, M., LETHUAUT, L. and BOURY, F. New trends in encapsulation of liposoluble vitamins. Journal of Controlled Release, 146(3), 2010, p. 276-290.; NUNES, M.A., COSTA, A.S., BARREIRA, J.C., VINHA, A.F., ALVES, R.C., ROCHA, A. and OLIVEIRA, M.B.P. How functional foods endure throughout the shelf storage? Effects of packing materials and formulation on the quality parameters and bioactivity of smoothies. LWT-Food Science and Technology, 65, 2016, p. 70-78.; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/592
-
16Academic Journal
المؤلفون: Gallon, Manuela, Cortés, Misael, Gil Gonzalez, Jesús, Lahlou, Abdallah, Guil-Guerrero, José Luis
المصدر: SSRN Electronic Journal ; ISSN 1556-5068
-
17Academic Journal
المؤلفون: Vilora Barragan, Jesús, Gil González, Jesús, Durango Restrepo, Diego, Marín Loaiza, Juan, Correa Londoño, Guillermo
مصطلحات موضوعية: Candida albicans, B. theobromae, F. oxysporum, C. albicans, Agentes antimicóticos, Botryodiplodia theobromae, Fusarium oxysporum
جغرافية الموضوع: Bajo Cauca (Antioquia, Colombia)
وصف الملف: application/pdf
Relation: Revista UDCA : Actualidad & Divulgación Científica (Bogotá). -- Vol. 19, No. 2 (Jul.-Dic. 2016). -- páginas 333-340; Agricultura; https://revistas.udca.edu.co/index.php/ruadc/article/view/87; https://doi.org/10.31910/rudca.v19.n2.2016.87; 305131
-
18Academic Journal
المصدر: Biotechnology in the Agricultural and Agroindustrial Sector; Vol. 14 No. 1 (2016): January to June; 27-36 ; Biotecnología en el Sector Agropecuario y Agroindustrial; Vol. 14 Núm. 1 (2016): Enero a Junio; 27-36 ; 1909-9959 ; 1692-3561
مصطلحات موضوعية: Matrix Engineering, Functional Foods, Vacuum Impregnation, Active Compounds, Ingeniería de Matrices, Alimentos Funcionales, Impregnación al Vacío, Compuestos Activos
وصف الملف: application/pdf
Relation: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/454/600; SHIN, G.H., KIM, J.T. and PARK, H.J. Recent developments in nanoformulations of lipophilic functional foods. Trends in Food Science & Technology, 2015, p. 1–14.; MC CLEMENTS, D.J. Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Advances in Colloid and Interface Science, 219, 2015, p. 27–53.; ASSMANN, G., BUONO, P., DANIELE, A. and DELLA-VALLEE, E. Functional foods and cardiometabolic diseases: International Task Force for Prevention of Cardiometabolic Diseases. Nutrition, Metabolism and Cardiovascular Diseases, 24(12), 2014, p. 1272–1300.; PANG, G., XIE, J., CHEN, Q. and HU, Z. How functional foods play critical roles in human health. Food Science and Human Wellness, 1(1), 2012, p. 26–60.; MOHAMED, S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends in Food Science & Technology, 35(2), 2014, p. 114–128.; BORRELLI, F. and ERNST, E. Alternative and complementary therapies for the menopause. Maturitas, 66(4), 2010, p. 333–343.; MENON, K.C., FERGUSON, E.L., THOMSON, Ch.D., GRAY, A.R., ZODPEY, S., SARAF, A., KUMAR, P., PANDAV, Ch.S. and SKEAFF, S.A. Iron status of pregnant Indian women from an area of active iron supplementation. Nutrition, 30(1), 2014, p. 291–296.; PEÑA, P., CORTÉS, M. y GIL, J.H. Uchuva mínimamente procesada impregnada al vacío con calcio y vitaminas B9, D y E. Biotecnología en el sector Agropecuario y Agroindustrial, 13(1), 2015, p. 110-119.; FITO, P. Modelling of vacuum osmotic dehydration of foods. Journal of Food Engineering, 22(1-4), 1994, p. 313-328.; HERRERA, E., CORTÉS, M. and RODRÍGUEZ, E. Experimental optimization of the freeze dry process of cape gooseberry added with active compounds by vacuum impregnation. Vitae, 22(1), 2015, p. 47-56.; GARZÓN, D., CASTELLANOS, F. y CORTÉS, M., Impregnación al vacío de Rodajas de plátano (Dominico Hartón) con calcio y vitamina D. Revista Facultad Nacional de Agronomía, 67(2), 2014, p. S714 - S716.; DÁVILA, R.M., CORTÉS, M. and GIL, J.H. Impregnation Solution Influence on the Pulp Color of Plantains (Musa paradisiaca). Revista Facultad Nacional de Agronomía, 66(1), 2013, p. 6949 – 6958.; ANDRES-BELLO, A., DE JESÚS, C., GARCÍA-SEGOVIA, P., PAGAN-MORENO, M.J. and MARTÍNEZ-MONZO, J. Vacuum impregnation as a tool to introduce biopreservatives in gilthead sea bream fillets (Sparus aurata). LWT - Food Science and Technology, 60(2), 2015, p. 758-765.; PEÑA, R.F., CORTÉS, M. y GIL, J.H. Estabilidad fisicoquímica y funcional de uchuva (Physalis peruviana L.) impregnada al vacío con calcio y vitaminas B9, D y E, durante el almacenamiento. Revista Facultad Nacional de Agronomía, 66(1), 2013, p.6929 – 6938.; MANJARRES, K., CORTÉS, M. and RODRÍGUEZ-SANDOVAL, E. Effect of dryng conditions on the physical properties of impregnated orange peel. Brazilian Journal of Chemical Engineering, 30(3), 2013, p. 667 – 676.; OCCHINO, E., HERNANDO, I., LLORCA, E., NERI, L. and PITTIA, P. Effect of Vacuum Impregnation Treatments to Improve Quality and Texture of Zucchini (Cucurbita Pepo, L). Procedia Food Science, 1, 2011, p. 829–835.; HIRONAKA, E.K., ODA, Y. and KOAZE, H. Iron enrichment of whole potato tuber by vacuum impregnation. LWT - Food Science and Technology, 59(1), 2014, p. 504–509.; SCHULZE, B., HUBBERMANN, E.M. and SCHWARZ, K. Stability of quercetin derivatives in vacuum impregnated apple slices after drying (microwave vacuum drying, air drying, freeze drying) and storage. LWT - Food Science and Technology, 57(1), 2014, p. 426–433.; BETORET, E., BETORET, N., ROCCULI, P. and ROSA, M.D. Strategies to improve food functionality: Structure–property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 2015, p. 1-12.; PANARESE, V., DEJMEK, P., ROCCULI, P. and GALINDO, F. Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innovative Food Science & Emerging Technologies, 18, 2013, p. 169–176.; SCHULZE, B., PETH, S., HUBBERMANN, E.M. and SCHWARZA, K. The influence of vacuum impregnation on the fortification of apple parenchyma with quercetin derivatives in combination with pore structures X-ray analysis. Journal of Food Engineering, 109(3), 2012, p. 380–387.; FITO, P., ANDRÉS, A., CHIRALT, A. and PARDO, P. Coupling of hydrodynamic mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food liquid systems. Journal of Food Engineering, 27(3), 1996, p. 229-240.; PUENTE, L.A., CORTÉS, M., PINTO-MUÑOZ, C.A. and CASTRO, E. Physalis peruvianan Linneaus, The Multiple Properties of a Highly functional fruit: A review. Food Research International, 44(7), 2011, p. 1733-1740.; RESTREPO, A.M., CORTÉS, M. and MARQUÉS, C.J. Uchuvas (Physalis peruviana L.) mínimamente procesadas fortificadas con vitamina E. Vitae, 16(1), 2009, p. 19-30.; INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN (ICONTEC). Norma Técnica Colombiana NTC 4580. Frutas frescas. Uchuva. Especificaciones, Bogotá (Colombia): 2004, 3 p.; ASSOCIATION OF ANALYTICAL COMMUNITIES (AOAC). Official methods of analysis of AOAC international, Basic calculations for chemical and biological analyses. 16 th ed. Gaithersburg (USA): AOAC International, M.D, 1996.; OCHOA, A., MARIN, J., RIVERO, D. y AGUILERA, E.M. Caracterización física, físico-química y química de extractos totales de hojas frescas de Petiveria alliacea L. con acción antimicrobiana. Revista Mexicana Ciencias Farmacéuticas, 44(1), 2013, p.52-59.; OCHOA, A., MARIN, J., RIVERO, D. y AGUILERA, E.M. Caracterización física, físico-química y química de extractos totales de hojas frescas de Petiveria alliacea L. con acción antimicrobiana. Revista Mexicana Ciencias Farmaceuticas, 44(1), 2013, p.52-59.; CORTÉS, M. Desarrollo de productos de manzana deshidratados enriquecidos con vitamina E [Tesis de doctorado en ingeniería]. Valencia (España): Universidad Politécnica de Valencia, 2004, 256 p.; COLOMBIA. MINISTERIO DE LA PROTECCIÓN SOCIAL. Resolución 333 de 2011. Bogotá (Colombia): Diario Oficial No. 46.894, 2011, 56 p.; KMOSTAK, S. and KURTZ, D. Rapid Determination of Supplemental Vitamin E acetate in Feed Premixes by Capillary Gas Chromatography. Journal of AOAC International, 76(4), 1993, p. 735-741.; ARCOT, J. and SHRESTHA, A. Folate: methods of analysis. Trends Food Science and Technology, 16(6-7), 2005, p. 253-266.; KLIMCZAK, I. and GLISZCZYNSCA, A. Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chemistry, 175(1), 2015, p. 100–105.; INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN (ICONTEC). Norma Técnica Colombiana NTC 5151 Alimentos para animales. Determinación de los contenidos de calcio, cobre, hierro, magnesio, manganeso, potasio, sodio y zinc. Método usando espectrometría de absorción atómica, Bogotá (Colombia): 2003, 2 p.; OSTOS, S.L., DÍAZ, A.C. y SUAREZ, H. Evaluación de diferentes condiciones de processo en la fortificación de mango (Tommy atkins) com calcio mediante impregnación a vacío. Revista Chilena de Nutrición, 39(2), 2012, p. 181-190.; PEÑA, R.F., CORTÉS, M. and MONTOYA, O.I. Evaluation of the physicochemical, physical and sensory properties of fresh cape gooseberry and vacuum impregnated with physiologically active components. Vitae, 20(1), 2013, p.13-22.; CORTÉS M. Ingeniería de matrices: una herramienta efectiva para la generación de valor agregado en alimentos porosos. Vitae, 19(2), 2012, p. S39 – S40.; MORANTES, P. Proceso de obtención de mango biofortificado con microorganismos probióticos mediante la técnica de impregnación a vacío [Tesis de maestría en Ciencia y Tecnología de Alimentos]. Medellín (Colombia): Universidad Nacional de Colombia, 2015, 80 p.; HERNÁNDEZ, D.Y. Evaluación tecnológica de snacks de papa (Solanum tuberosum L.) obtenidos mediante la aplicación combinada ingeniería de matrices y fritura al vacío [Tesis de maestría en Ciencia y Tecnología de Alimentos]. Medellín (Colombia): Universidad Nacional de Colombia, 2015, 66 p.; VÁSQUEZ-PARRA, J.E., OCHOA-MARTÍNEZ, C.I. and BUSTOS-PARRA, M. Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits (Physalis peruviana). Journal of Food Engineering, 119(3), 2013, p. 648–654.; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/454
-
19Academic Journal
مصطلحات موضوعية: Ácido ascórbico, Ascorbic acid, Ácido cítrico, Citric Acid, Sulfitos, Sulphites, Plátano: Musa paradisiaca, Ingeniería de matrices
وصف الملف: application/pdf
Relation: Biotecnol. sector agropecuario agroind.; http://hdl.handle.net/10495/22804
الاتاحة: http://hdl.handle.net/10495/22804
https://doi.org/10.18684/BSAA(14)125-134 -
20Academic Journal
المصدر: Revista Facultad Nacional de Agronomía Medellín; Vol. 69 No. 1 (2016); 7835-7844 ; Revista Facultad Nacional de Agronomía Medellín; v. 69 n. 1 (2016); 7835-7844 ; Revista Facultad Nacional de Agronomía Medellín; Vol. 69 Núm. 1 (2016); 7835-7844 ; 2248-7026 ; 0304-2847
مصطلحات موضوعية: Transformación microbiana, Saborizantes 4-vinilguayacol, Ruta metabólica, Microbial transformation, flavoring, 4-vinylguaiacol, metabolic pathway
وصف الملف: application/pdf; text/html
Relation: https://revistas.unal.edu.co/index.php/refame/article/view/54751/54379; https://revistas.unal.edu.co/index.php/refame/article/view/54751/55791; Achterholt, S., H. Priefert and A. Steinbüchel. 2000. Identification of Amycolatopsis; sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Applied Microbiology and Biotechnology 54(6): 799-807. doi:10.1007/s002530000431.; Baqueiro-Peña, I., G. Rodríguez-Serrano, E. González-Zamora, C. Augur, O. Loera and G. Saucedo-Castañeda. 2010. Biotransformation of ferulic acid to 4-vinyl guaiacol by a wild and a diploid strain of Aspergillus niger. Bioresource Technology 101(12): 4721-4724. doi:10.1016/j.biortech.2010.01.086.; Bernini, R., E. Mincione, M. Barontini, G. Provenzano and L. Setti. 2007. Obtaining 4-vinylphenols by decarboxylation of natural 4-hydroxycinnamic acids under microwave irradiation. Tetrahedron 63(39): 9663-9667. doi:10.1016/j.tet.2007.07.035.; Bicas, J.L., P. Fontanille, G. M. Pastore and C. Larroche. 2010. A bioprocess for the production of high concentrations of R-(+)-a-terpineol from R-(+)-limonene. Process Biochemistry 45(4): 481-486. doi:10.1016/j.procbio.2009.11.007.; Bonnin, E., L. Lesage-Meessen, M. Asther and J.F. Thibault. 1999. Enhanced bioconversion of vanillic acid into vanillin by the use of natural cellobiose. Journal of the Science of Food Agriculture 79(3): 484-486. doi:10.1002/(SICI)1097-0010(19990301)79:3 484::AID-JSFA271 3.0.CO;2-H.; Bustillo, A.J., C.M. García-Pajón, J. Aleu, R. Hernández-Galán and I.G. Collado. 2003. Studies on biotransformation of (±)-1-(4'-chlorophenyl)-2-phenylethanol. Tetrahedron: Asymmetry 14(23): 3755-3760. doi:10.1016/j.tetasy.2003.08.026.; Cerrutti, P. and S.M. Alzamora. 1996. Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruit purées. International Journal of Food Microbiology29(2-3): 379-386. doi:10.1016/0168-1605(95)00026-7.; Civolani, C., P. Barghini, A.R. Roncetti, M. Ruzzi and A. Schiesser. 2000. Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens Strain BF13. Applied and Environmental Microbiology 66(6): 2311-2317. doi:10.1128/AEM.66.6.2311-2317.2000.; Daugsch, A. and G. Pastore. 2005. Production of vanillin: a biotechnological opportunity. Química Nova 28(4): 642-645. doi:10.1590/S0100-40422005000400017.; Di Gioia, D., F. Luziatelli, A. Negroni, A.G. Ficca, F. Fava, and M. Ruzzi. 2011. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. Journal of Biotechnology 156(4): 309-316. doi:10.1016/j.jbiotec.2011.08.014.; Donaghy, J.A., P.F. Kelly and A. McKay. 1999. Conversion of ferulic acid to 4-vinyl guaiacol by yeasts isolated from unpasteurised apple juice. Journal of the Science of Food and Agriculture 79(3): 453-456. doi:10.1002/(SICI)1097-0010(19990301)79:3 453:AID-JSFA284 3.0.CO;2-H.; Gallage, N.J. and B.L Møller. 2015. Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Molecular Plant 8(1): 40-57. doi:10.1016/j.molp.2014.11.008.; Godoy, L., C. Martínez, N. Carrasco and M.A. Ganga. 2008. Purification and characterization of a p-coumarate decarboxylase and a vinylphenol reductase from Brettanomyces bruxellensis. International Journal of Food Microbiology 127(1-2): 6-11. doi:10.1016/j.ijfoodmicro.2008.05.011.; Hu, H., L. Li and S. Ding. 2015. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives. Applied Microbiology and Biotechnology 99(12): 5071-5081. doi:10.1007/s00253-014-6313-3.; Huang, Z., L. Dostal and J.P.N. Rosazza. 1993. Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. The Journal of Biological Chemistry 268(32): 23954-23958.; Karmakar, B., R.M. Vohra, H. Nandanwar, P. Sharma, K.G. Gupta and R.C. Sobti. 2000. Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans. Journal of Biotechnology 80(3): 195-202. doi:10.1016/S0168-1656(00)00248-0.; Krings, U., S. Pilawa, C. Theobald and R.G. Berger. 2001. Phenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus - elucidation of metabolic pathways using [5-2H]-ferulic acid. Journal of Biotechnology 85(3): 305-314. doi:10.1016/S0168-1656(00)00396-5.; Lafeber, F.P., C.J. Beukelman, E. van den Worm, J.L. van Roy, M.E. Vianen, J. van Roon, H. van Dijk and J.W. Bijlsma. 1999. Apocynin, a plant-derived, cartilage-saving drug, might be useful in the treatment of rheumatoid arthritis. Rheumatology 38(11): 1088-1093. doi:10.1093/rheumatology/38.11.1088.; Lapperre, T.S., L.A. Jiménez, F. Antonicelli, E.M. Drost, P.S. Hiemstra, J. Stolk, W. MacNee and I. Rahman. 1999. Apocynin increases glutathione synthesis and activates AP-1 in alveolar epithelial cells. FEBS Letters 443(2): 235-239. doi:10.1016/S0014-5793(98)01723-2.; Lesage-Meessen, L., M. Delattre, M. Haon, J.F. Thibault, B.C. Ceccaldi, P. Brunerie and M. Asther. 1996. A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. Journal of Biotechnology 50(2-3): 107-113. doi:10.1016/0168-1656(96)01552-0.; Luo, J.R., H.E. Jiang, Y.X. Zhao, J. Zhou and J.F. Qian. 2008. Components of the heartwood of Populus euphratica from an ancient tomb. Chemistry of Natural Compounds 44(1): 6-9. doi:10.1007/s10600-008-0003-2.; Mathew, S., T.E. Abraham and S. Sudheesh. 2007. Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii. Journal of Molecular Catalysis B: Enzymatic 44(2): 48-52. doi:10.1016/j.molcatb.2006.09.001.; Mathew, S. and T.E. Abraham. 2004. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Critical Reviews in Biotechnology24(2-3): 59-83. doi:10.1080/07388550490491467.; Mishra, S., A. Sachan, A.S. Vidyarthi and S.G. Sachan. 2014. Transformation of ferulic acid to 4-vinyl guaiacol as a major metabolite: a microbial approach. Reviews in Environmental Science and Bio/Technology 13(4): 377-385. doi:10.1007/s11157-014-9348-0.; Muijsers, R.B.R., E. van den Worm, G. Folkerts, C.J. Beukelman, A.S. Koster, D.S. Postma and F.P. Nijkamp. 2000. Apocynin inhibits peroxynitrite formation by murine macrophages. British Journal of Pharmacology 130(4): 932-936. doi:10.1038/sj.bjp.0703401.; Plaggenborg, R., J. Overhage, A. Steinbüchel and H. Priefert. 2003. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Applied Microbiology and Biotechnology 61(5-6): 528-535. doi:10.1007/s00253-003-1260-4.; Plaggenborg, R., A. Steinbüchel and H. Priefert. 2001. The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans. Microbiology Letters 205(1): 9-16. doi:10.1111/j.1574-6968.2001.tb10918.x; Plaggenborg, R., J. Overhage, A. Loos, J. Archer, P. Lessard, A. Sinskey and A. Steinbüchel. 2006. Potential of Rhodococcus; strains for biotechnological vanillin production from ferulic acid and eugenol. Applied Microbiology and Biotechnology 72(4): 745-755. doi:10.1007/s00253-005-0302-5.; Priefert, H., J. Rabenhorst and A. Steinbüchel. 2001. Biotechnological production of vanillin. Applied Microbiology and Biotechnology 56(3-4): 296-314. doi:10.1007/s002530100687.; Rosazza, J.P.N., Z. Huang, L. Dostal, T. Volm and B. Rousseau. 1995. Review: Biocatalytic transformations of ferulic acid: An abundant aromatic natural product. Journal of Industrial Microbiology and Biotechnology 15(6): 457-471. doi:10.1007/BF01570016.; Saha, S., R.M. Smith, E. Lenz and I.D. Wilson. 2003. Analysis of a ginger extract by high-performance liquid chromatography coupled to nuclear magnetic resonance spectroscopy using superheated deuterium oxide as the mobile phase. Journal of Chromatography A 991(1): 143-150. doi:10.1016/S0021-9673(03)00215-2.; Sarma, B.K. and U.P. Singh. 2003. Ferulic acid may prevent infection of Cicer arietinum by Sclerotium rolfsii. World Journal of Microbiology and Biotechnology 19(2): 123-127. doi:10.1023/A:1023205522032.; Seshime, Y., P.R. Juvvadi, I. Fujii and K. Kitamoto. (2005). Genomic evidences for the existence of a phenylpropanoid metabolic pathway in Aspergillus oryzae. Biochemical and Biophysical Research Communications 337(3): 747-751. doi:10.1016/j.bbrc.2005.08.233.; Shanker, K.S., K.H. Kishore, S. Kanjilal, S. Misra, U.S.N. Murthy and R.B.N. Prasad. 2007. Biotransformation of ferulic acid to acetovanillone using Rhizopus oryzae. Biocatalysis and Biotransformation 25(1): 109-112. doi:10.1080/10242420601141721.; Serra, S., C. Fuganti and E. Brenna. 2005. Biocatalytic preparation of natural flavours and fragrances. Trends in Biotechnology 23(4): 193-198. doi:10.1016/j.tibtech.2005.02.003.; Shaughnessy, D.T., R.W. Setzer and D.M. DeMarini. 2001. The antimutagenic effect of vanillin and cinnamaldehyde on spontaneous mutation in Salmonella TA104 is due to a reduction in mutations at GC but not AT sites. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis480-481(1): 55-69. doi:10.1016/S0027-5107(01)00169-5.; Topakas, E., E. Kalogeris, D. Kekos, B.J. Macris and P. Christakopoulos. 2003. Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. LWT Food Science and Technology 36(6): 561-565. doi:10.1016/S0023-6438(03)00060-4.; Tsujiyama, S. and M. Ueno. 2008. Formation of 4-vinyl guaiacol as an intermediate in bioconversion of feruli acid by Schizophyllumcommune. Bioscience, Biotechnology and Biochemistry 72(1): 212-215. doi:10.1271/bbb.60606.; Velasco, R., J.H Gil, C.M. García and D.L. Durango. 2010. Production of 2-Phenylethanol in the Biotransformation of Cinnamyl Alcohol by the Plant Pathogenic Fungus Colletotrichum acutatum. Vitae 17(3): 272-280.; Velasco, R., J.H. Gil, C.M. García and D.L. Durango. 2012. Structural modification of trans-cinnamic acid using Colletotrichum acutatum.Revista Facultad de Ingeniería Universidad de Antioquia 63(1): 20-29.; Velasco, R., D.L. Montenegro, J.F. Vélez, C.M. García and D.L. Durango. 2009. Biotransformación de Compuestos Aromáticos Sustituidos Mediante Hongos Filamentosos Fitopatógenos de los Géneros Botryodiplodia y Colletotrichum. Revista de la Sociedad Química de Perú 75(1): 94-111.; Velasco, R., I.D. Valverde, D.L. Durango and C.M. García. 2007. Biotransformación de los Compuestos 2- Feniletanol y Acetofenona Mediante el Hongo Fitopatógeno Botryodiplodia theobromae. Vitae 14(2): 43-50.; Xu, P., D. Hua and C. Ma. 2007. Microbial transformation of propenylbenzenes for natural flavour production. Trends in Biotechnology 25(12): 571-576. doi:10.1016/j.tibtech.2007.08.011.; Zhao, Z. and M.H. Moghadasian, 2008. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chemistry109(4): 691-702. doi:10.1016/j.foodchem.2008.02.039.; https://revistas.unal.edu.co/index.php/refame/article/view/54751