يعرض 1 - 20 نتائج من 846 نتيجة بحث عن '"Geng, Jian"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
    Report
  2. 2
    Report
  3. 3
    Academic Journal
  4. 4
    Report
  5. 5
    Report
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المساهمون: National Natural Science Foundation of China, Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support, Key R&D Program of China, Beijing Municipal Public Welfare Development and Reform Pilot Project for Medical Research Institutes, Beijing Municipal Health Commission

    المصدر: BMJ Open ; volume 14, issue 8, page e086855 ; ISSN 2044-6055 2044-6055

  10. 10
    Academic Journal

    المصدر: Materiales de Construcción; Vol. 74 No. 353 (2024); e334 ; Materiales de Construcción; Vol. 74 Núm. 353 (2024); e334 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2024.v74.i353

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3611/4307; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3611/4308; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3611/4309; Amran M, Murali G, Makul N, Kurpińska M, Nehdi ML. 2023. Fire-induced spalling of ultra-high performance concrete: A systematic critical review. Constr. Build. Mater. 373:130869. https://doi.org/10.1016/j.conbuildmat.2023.130869; Kiran T, Yadav SK, Anand N, Mathews ME, Andrushia D, Lubloy E, Kodur V. 2022. Performance evaluation of lightweight insulating plaster for enhancing the fire endurance of high strength structural concrete. J. Build. Eng. 57:104902. https://doi.org/10.1016/j.jobe.2022.104902; Miah MJ, Lo Monte F, Felicetti R, Pimienta P, Carré H, La Borderie C. 2023. Impact of external biaxial compressive loading on the fire spalling behavior of normal-strength concrete. Constr. Build. Mater. 366:130264. https://doi.org/10.1016/j.conbuildmat.2022.130264; Asghari Ghajari F, Yousefpour H. 2023. Cyclic bond behavior in reinforced concrete flexural members exposed to elevated temperatures. Eng. Struct. 292:116520. https://doi.org/10.1016/j.engstruct.2023.116520; Ahmad S, Rasul M, Adekunle SK, Al-Dulaijan SU, Maslehuddin M, Ali SI. 2019. Mechanical properties of steel fiber-reinforced UHPC mixtures exposed to elevated temperature: Effects of exposure duration and fiber content. Compos. Part B. 168:291-301. https://doi.org/10.1016/j.compositesb.2018.12.083; Eidan J, Rasoolan I, Rezaeian A, Poorveis D. 2019. Residual mechanical properties of polypropylene fiber-reinforced concrete after heating. Constr. Build. Mater. 198:195-206. https://doi.org/10.1016/j.conbuildmat.2018.11.209; Vafaei D, Ma X, Hassanli R, Duan J, Zhuge Y. 2022. Microstructural and mechanical properties of fiber-reinforced seawater sea-sand concrete under elevated temperatures. J. Build. Eng. 50:104140. https://doi.org/10.1016/j.jobe.2022.104140; Zhao C, Zhu Z, Guo Q, Zhan Y, Zhao R. 2023. Research on fiber reinforced concrete and its performance prediction method and mix design method. Constr. Build. Mater. 365:130033. https://doi.org/10.1016/j.conbuildmat.2022.130033; Cao M, Li L, Khan M. 2018. Effect of hybrid fibers, calcium carbonate whisker and coarse sand on mechanical properties of cement-based composites. Mater. Construcc. 68(330):e156. https://doi.org/10.3989/mc.2018.01717; Li L, Cao M, Li Z, Zhang W, Shi D, Shi K. 2022. Uniaxial tensile behavior and mechanism characterization of multi-scale fiber-reinforced cementitious materials. Mater. Construcc. 72(345):e271. https://doi.org/10.3989/mc.2022.05521; Fu Q, Xu W, Bu M, Guo B, Niu D. 2021. Effect and action mechanism of fibers on mechanical behavior of hybrid basalt-polypropylene fiber-reinforced concrete. Structures. 34:3596-3610. https://doi.org/10.1016/j.istruc.2021.09.097; Zhu M, Qiu J, Chen J. 2022. Effect and mechanism of coal gangue concrete modification by basalt fiber. Constr. Build. Mater. 328:126601. https://doi.org/10.1016/j.conbuildmat.2022.126601; Sun J, Ding Z, Li X, Wang Z. 2021. Bond behavior between BFRP bar and basalt fiber reinforced seawater sea-sand recycled aggregate concrete. Constr. Build. Mater. 285:122951. https://doi.org/10.1016/j.conbuildmat.2021.122951; Patel N, Patel K, Gohil P, Chaudhry V. 2018. Investigations on mechanical strength of hybrid basalt/glass polyester composites. Int. J. Appl. Eng. Res. 13(6):4083-4088.; Hassani Niaki M, Fereidoon A, Ghorbanzadeh Ahangari M. 2018. Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Compos. Struct. 191:231-238. https://doi.org/10.1016/j.compstruct.2018.02.063; Ren W, Xu J, Su H. 2016. Dynamic compressive behavior of basalt fiber reinforced concrete after exposure to elevated temperatures. Fire Mater. 40(5):738-755. https://doi.org/10.1002/fam.2339; Ardanuy M, Claramunt J, Toledo Filho, RD. 2015. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 79:115-128. https://doi.org/10.1016/j.conbuildmat.2015.01.035; Chami Khazraji A, Robert S. 2013. Self-assembly and intermolecular forces when cellulose and water interact using molecular modeling. J. Nanomater. 2013:745979. https://doi.org/10.1155/2013/745979; Soroushian P, Won JP, Hassan M. 2012. Durability characteristics of CO2-cured cellulose fiber reinforced cement composites. Constr. Build. Mater. 34:44-53. https://doi.org/10.1016/j.conbuildmat.2012.02.016; Hisseine OA, Wilson W, Sorelli L, Tolnai B, Tagnit-Hamou A. 2019. Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Constr. Build. Mater. 206:84-96. https://doi.org/10.1016/j.conbuildmat.2019.02.042; Chen L, Su RKL. 2022. On the corrosion rate measurement of reinforcing steel in chloride induced macrocell corrosion. Cem. Concr. Compos. 134:104775. https://doi.org/10.1016/j.cemconcomp.2022.104775; Wang Q, Zhu H, Teng F, Li H. 2023. Experimental and analytical studies of the bond between ribbed CFRP bar and aluminum alloy additional ribs anchorage. Eng. Fract. Mech. 290:109504. https://doi.org/10.1016/j.engfracmech.2023.109504; Jiang Z, Fang Z, Fang C, Li Q, Wang Z. 2022. Mechanical properties under high-temperature and fire resistant limit of carbon fiber reinforced polymer cable. Constr. Build. Mater. 361:129586. https://doi.org/10.1016/j.conbuildmat.2022.129586; Hajiloo H, Green MF. 2018. Bond strength of GFRP reinforcing bars at high temperatures with implications for performance in fire. J. Compos. Constr. 22(6):04018055. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000897; Hamad RJA, Megat Johari MA, Haddad RH. 2017. Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures. Constr. Build. Mater. 142:521-535. https://doi.org/10.1016/j.conbuildmat.2017.03.113; Li C, Gao D, Wang Y, Tang J. 2017. Effect of high temperature on the bond performance between basalt fibre reinforced polymer (BFRP) bars and concrete. Constr. Build. Mater. 141:44-51. https://doi.org/10.1016/j.conbuildmat.2017.02.125; Shaikh FUA. 2018. Mechanical properties of concrete containing recycled coarse aggregate at and after exposure to elevated temperatures. Struct. Concr. 19(2):400-410. https://doi.org/10.1002/suco.201700084; GB/T 14685-2022. 2022. Pebble and crushed stone for construction. Chin. Stand.; GB/T 14684-2022. 2022. Sand for construction. Chin. Stand.; JGJ 55-2011. 2011. Specification for Mix proportion design of ordinary concrete. Chin. Stand.; Zhu B. 2021. Experimental study on the bond behavior between BFRP bars and recycled aggregate concrete. Master thesis. Liaoning University of Technology. https://doi.org/10.32604/jrm.2021.013580; Xu H, Shao Z, Wang Z, Cai L, Li Z, Jin H, Chen T. 2020. Experimental study on mechanical properties of fiber reinforced concrete: Effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber. Constr. Build. Mater. 261:120610. https://doi.org/10.1016/j.conbuildmat.2020.120610; Committee ACI. 2012. ACI 440.3 R-12 Guide for test methods for fiber reinforced polymers (FRP) for reinforcing and strengthening concrete structures.; Committee ACI. 2006. ACI 440.1 R-06 Guide for the design and construction of structural concrete reinforced with FRP bars.; Nepomuceno E, Sena-Cruz J, Correia L, D'Antino T. 2021. Review on the bond behavior and durability of FRP bars to concrete. Constr. Build. Mater. 287:123042. https://doi.org/10.1016/j.conbuildmat.2021.123042; GB/T 30022-2013. 2013. Test method for basic mechanical properties of fiber reinforced polymer bar. chin. stand.; ASTM D7913/D7913M-14. 2014. Bond strength of fiber-reinforced polymer matrix composite bars to concrete by pullout testing. ASTM Stand.; Khaneghahi MH, Ghamsari AK, Ozbakkaloglu T. 2021. Stress-relaxation behavior of fiber reinforced polymer sheets at elevated temperatures. Constr. Build. Mater. 307:124900. https://doi.org/10.1016/j.conbuildmat.2021.124900; Shen J, Xu Q. 2019. Effect of elevated temperatures on compressive strength of concrete. Constr. Build. Mater. 229:116846. https://doi.org/10.1016/j.conbuildmat.2019.116846; Bilotta A, Compagnone A, Esposito L, Nigro E. 2020. Structural behaviour of FRP reinforced concrete slabs in fire. Eng. Struct. 221:111058. https://doi.org/10.1016/j.engstruct.2020.111058; Katz A, Berman N, Bank LC. 1999. Effect of high temperature on bond strength of FRP rebars. J. Compos. Constr. 3(2):73-81. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:2(73); Dong JF, Wang QY, Guan Z. W. 2017. Material properties of basalt fibre reinforced concrete made with recycled earthquake waste. Constr. Build. Mater. 130:241-251. https://doi.org/10.1016/j.conbuildmat.2016.08.118; Wang Y, Hughes P, Niu H, Fan Y. 2019. A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica. J. Cleaner Prod. 236:117602. https://doi.org/10.1016/j.jclepro.2019.07.077; Liu J, Lv C. 2021. Research progress on durability of cellulose fiber-reinforced cement-based composites. Int. J. Polym. Sci. 2021:1014531. https://doi.org/10.1155/2021/1014531; Akbar A, Liew KM. 2020. Influence of elevated temperature on the microstructure and mechanical performance of cement composites reinforced with recycled carbon fibers. Composites Part B. 198:108245. https://doi.org/10.1016/j.compositesb.2020.108245; Alsayed S, Al-Salloum Y, Almusallam T, El-Gamal S, Aqel M. 2012. Performance of glass fiber reinforced polymer bars under elevated temperatures. Composites Part B. 43(5):2265-2271. https://doi.org/10.1016/j.compositesb.2012.01.034; Malvar, L. J. 1994. Bond stress-slip characteristics of FRP rebars. Port Hueneme, CA, USA: Naval Facilities Engineering Service Center.; Eligehausen R, Popov EP, Bertero VV. 1982. Local bond stress slip relationship of deformed bars under generalized excitations. Calif. The Univ.; Cosenza E, Manfredi G, Realfonzo R. 1995. 20 Analytical modelling of bond between frp reinforcing bars and concrete. In Non-metallic (FRP) reinforcement for concrete structures: proceedings of the second international RILEM symposium. 29:164. CRC Press.; Cosenza E, Manfredi G, Realfonzo R. 1996. Bond characteristics and anchorage length of FRP rebars. Adv. Compos. Mater. Bridges Struct. 909-916.; Cosenza E, Manfredi G, Realfonzo R. 1997. Behavior and modeling of bond of FRP rebars to concrete. J. Compos. Constr. 1(2):40-51. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(40); Gao D, Zhu H, Xie J. 2003. The constitutive models for bond slip relation between FRP rebars and concrete. Ind. Constr. 07:41-43+82.; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3611

  11. 11
  12. 12
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المؤلفون: Geng, Jian1 (AUTHOR), Zhang, Wenshuang1 (AUTHOR), Ge, Yufeng2 (AUTHOR), Wang, Ling1 (AUTHOR), Huang, Pengju1,3 (AUTHOR), Liu, Yandong1 (AUTHOR), Shi, Jia4 (AUTHOR), Zhou, Fengyun5 (AUTHOR), Ma, Kangkang1 (AUTHOR), Blake, Glen M.6 (AUTHOR), Xu, Gang7 (AUTHOR), Yan, Dong1 (AUTHOR) bmuyandong@126.com, Cheng, Xiaoguang1 (AUTHOR) Xiao65@263.com

    المصدر: Skeletal Radiology. Dec2024, Vol. 53 Issue 12, p2635-2642. 8p.

    مصطلحات موضوعية: *CARPAL bones, *BONE growth, *ULNA, *RADIOGRAPHS, *RADIOLOGISTS

  15. 15
    Academic Journal

    المؤلفون: Wu, Yunfei1 (AUTHOR) 2020048@huvtc.edu.cn, Geng, Jian2 (AUTHOR) gengjian@nbt.edu.cn, Zhu, Haoze2 (AUTHOR), Jin, Chen3 (AUTHOR), Kang, Nengneng4 (AUTHOR)

    المصدر: Materials (1996-1944). Dec2024, Vol. 17 Issue 23, p5698. 21p.

  16. 16
    Academic Journal

    المساهمون: National Natural Science Foundation of China, Beijing Municipal Health Commission, National Key Research and Development Program of China

    المصدر: Journal of Cachexia, Sarcopenia and Muscle ; volume 14, issue 4, page 1824-1835 ; ISSN 2190-5991 2190-6009

  17. 17
    Academic Journal

    المساهمون: National Natural Science Foundation of China, Beijing Hospitals Authority Youth Programme, eijing Hospitals Authority Clinical Medicine Development of Special Funding Support, Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support

    المصدر: BMC Musculoskeletal Disorders ; volume 24, issue 1 ; ISSN 1471-2474

  18. 18
    Academic Journal

    المساهمون: The key technologies R&D program of Tianjin, The natural science foundation of Tianjin

    المصدر: Textile Research Journal ; volume 93, issue 17-18, page 4329-4341 ; ISSN 0040-5175 1746-7748

  19. 19
    Academic Journal
  20. 20
    Academic Journal