يعرض 1 - 20 نتائج من 68 نتيجة بحث عن '"Generación solar"', وقت الاستعلام: 0.52s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Report

    وصف الملف: 1 recursos en línea (44 páginas); application/pdf

    Relation: Lane, C. (mayo de 2024). Obtenido de SolarReviews: https://www.solarreviews.com/blog/texas-net-meteringcomplete-guide#deregulated; Lee, T., Glick, M. B., & Lee, J.-H. (2020). Island energy transition: Assessing Hawaii's multi-level, policy-driven approach. Renewable and Sustainable Energy Reviews, 118. doi:10.1016/j.rser.2019.109500; Ministerio de Energías Nuevas y Renovables de la India. (Abril de 2024). Solar Overview. Obtenido de https://mnre.gov.in/solar-overview/; Ministerio para la Transición Ecológica. (6 de Abril de 2019). Boletín Oficial del Estado. Real Decreto 244/2019, de 5 de abril, por el que se regulan las condiciones administrativas, técnicas y económicas del autoconsumo de energía eléctrica. Madrid, España; MinMinas. (2023). Potencial energético subnacional y oportunidades de descarbonización en usos de energía final.; MinMinas. (2023). Escenarios Nacionales. Transición Energética Justa. Rutas que nos preparan para el futuro.; Ortega, S., Angel, E., Arias, J., Arango, S., & Jaramillo, A. (2023). Escenarios Energéticos: Seis futuros para la transición en Colombia. Volumen II: Resultados y señales de política pública. Research Gate.; Ortega, S., Giraldo, J., España, J. M., Arango, S., Olaya, Y., Parra, J. F., & Valencia, V. (2023). ¿Un sector eléctrico sin combustibles fósiles en Colombia a 2030? Explorando escenarios y estrategias de salida de los combustibles fósiles en el sector eléctrico colombiano. Medellín.; Regulador de Energías Limpias, Gobierno de Australia. (2024). Objetivo de Energía Renovable. Obtenido de https://cer.gov.au/schemes/renewable-energy-target#:~:text=2001%3A%20The%20RET%20began%20as,the%20LRET%20and%20the%20SRES; Ruíz, A., Corral, F., Oei, P.-Y., Kemfert, C., Yepes, C., & Rendón, S. (2021). Barreras a la Generación Distribuida de la Energía Solar en Colombia. Trajects.; SolarPower Europe. (2023). Global Market Outlook for Solar Power 2023-2027. Obtenido de https://www. solarpowereurope.org/insights/outlooks/global-market-outlook-for-solar-power-2023-2027/detail#globalsolar-market-update-2000-2022; Ye, Y. (2023). Are rooftop solar panels the answer to meeting China’s challenging climate targets? Nature Index 2023 Science Cities.; De Martini, P., Kristov, L., & Schwartz, L. C. (2015). Distribution Systems in a High Distributed Energy Resources Future. Future Electric Utility Regulation Report Series. https://emp.lbl.gov/publications/distribution-systemshigh-distributed; Elizondo, G., & Poudineh, R. (2023). Harnessing the power of distributed energy resources in developing countries what can be learned from the experiences of global leaders? Oxford Institute for Energy Studies.; https://repositorio.unal.edu.co/handle/unal/86850; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المصدر: TecnoLógicas; Vol. 25 No. 54 (2022); e2354 ; TecnoLógicas; Vol. 25 Núm. 54 (2022); e2354 ; 2256-5337 ; 0123-7799

    وصف الملف: application/pdf; application/zip; text/xml; text/html

    Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2354/2438; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2354/2441; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2354/2442; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2354/2444; Ley 54/1997 del Sector Eléctrico, Jefatura del Estado de España, 1997. https://www.boe.es/eli/es/l/1997/11/27/54/con; Acuerdo por el que se emite el Manual de Interconexión de Centrales de Generación con Capacidad Menor a 0.5 MW, Secretaría de Gobernación, México, 2016. http://www.dof.gob.mx/nota_detalle.php?codigo=5465576&fecha=15/12/2016; Energy Networks Association, “Engineering Recommendation G98. Requirements for the Connection of Fully Type Tested Micro-Generators (up to and including 16 A per phase) in Parallel with Public Low Voltage Distribution Networks on or after 27 April 2019”, 2021. https://www.energynetworks.org/industry-hub/resource-library/erec-g98-requirements-for-connection-of-fully-type-tested-micro-generators.pdf; Interconnection of On-Site Distributed Generation (DG), Public Utility Commission of Texas, Rule 25.211, 2017. https://www.puc.texas.gov/agency/rulesnlaws/subrules/electric/25.211/25.211ei.aspx; Energy Networks Association, “Engineering Recommendation G99. Requirements for the Connection of Generation Equipment in Parallel with Public Distribution Networks, Energy Networks Association,” 2020. https://www.energynetworks.org/assets/images/Resource%20library/ENA_EREC_G99_Issue_1_Amendment_6_(2020).pdf; Order Instituting Rulemaking to Modernize the Electric Grid for a High Distributed Energy Resources Future, California Public Utilities Commission (CPUC), 2021. https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M390/K664/390664433.PDF; Ley 1715 de 2014, Integración de las Energías Renovables no Convencionales al Sistema Energético Nacional, Congreso de Colombia. Colombia, 2014. http://www.upme.gov.co/Normatividad/Nacional/2014/LEY_1715_2014.pdf; Comisión de Regulación de Energía y Gas, “Resolución No 030 de 2018 (26 de febrero de 2018)”, Colombia, 2018. http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191#:~:text=Esta%20resoluci%C3%B3n%20aplica%20a%20los,menores%20o%20iguales%205%20MW; Comisión de Regulación de Energía y Gas, “Resolución No 002 de 2021 (7 de enero de 2021)”, Colombia, 2021. http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/8e71dd926eb1d0dc0525866a005921dc/$FILE/Creg002-2021.pdf; J. E. Mendoza; M. E. López; S. C. Fingerhuth; H. E. Peña; C. A. Salinas, “Low Voltage Distribution Planning Considering Micro Distributed Generation”, Electr. Power Syst. Res., vol. 103, pp. 233-240, Oct. 2013. https://doi.org/10.1016/j.epsr.2013.05.020; L. Verheggen; R. Ferdinand; A. Moser, “Planning of Low Voltage Networks Considering Distributed Generation and Geographical Constraints”, in IEEE International Energy Conference, Leuven, 2016, pp. 1-6; A. Hadjsaid; V. Debusschere; M-C. Alvarez-Herault; R. Caire, “Considering Local Photovoltaic Production in Planning Studies for Low Voltage Distribution Grids”, in IEEE Milan PowerTech, Milano, 2019, pp. 1-5. https://doi.org/10.1109/PTC.2019.8810613; J. Jiménez; J. E. Cardona; S. X. Carvajal, “Location and optimal sizing of photovoltaic sources in an isolated mini-grid”, TecnoLógicas, vol. 22, no. 44, pp. 61-80, Jan. 2019. https://doi.org/10.22430/22565337.1182; L. F. Gaitán; J. D. Gómez; E. Rivas-Trujillo, “Análisis Cuasi-Dinámico de un sistema de distribución local con generación distribuida. Caso de estudio: Sistema IEEE 13 Nodos”, TecnoLógicas, vol. 22, no. 46, pp. 195-212, Sep. 2019. https://doi.org/10.22430/22565337.1489; K. Kasturi; C. Kumar Nayak; S. Patnaik; M. Ranjan Nayak, “Strategic integration of photovoltaic, battery energy storage and switchable capacitor for multi-objective optimization of low voltage electricity grid: Assessing grid benefits”, Renew. Energy Focus, vol. 41, pp. 104-117, Jun. 2022. https://doi.org/10.1016/j.ref.2022.02.006; V. Vai; M.-C. Alvarez-Herault; B. Raison; L. Bun, “Optimal Low-voltage Distribution Topology with Integration of PV and Storage for Rural Electrification in Developing Countries: A Case Study of Cambodia”, J. Mod. Power Syst. Clean Energy, vol. 8, no. 3, pp. 531-539, May 2020. https://doi.org/10.35833/MPCE.2019.000141; M. Moreira de Souza; P. H. González; L. Satoru Ochi; S. Martins, “A Hybrid Iterated Local Search Heuristic for the Traveling Salesperson Problem with Hotel Selection”, Comput. Oper. Res., vol. 129, pp. 1-16, Jan. 2021. https://doi.org/10.1016/j.cor.2021.105229; D. Calmels, “An Iterated Local Search Procedure for the Job Sequencing and Tool Switching Problem with Non-Identical Parallel Machines”, Eur. J. Oper. Res., vol. 297, no. 1, pp. 66-85, May. 2021. https://doi.org/10.1016/j.ejor.2021.05.005; M. Alicastro; D. Ferone; P. Festa; S. Fugaro; T. Pastore, “A Reinforcement Learning Iterated Local Search for Makespan Minimization in Additive Manufacturing Machine Scheduling Problems”, Comput. Oper. Res., vol. 131, pp. 1-14, Jul. 2021. https://doi.org/10.1016/j.cor.2021.105272; H. R. Lourenço; O. C. Martin; T. Stützle, “Iterated Local Search”, in Handbook of Metaheuristics, First Edition, USA: Springer, 2003, pp. 320-353. https://doi.org/10.1007/b101874; A. Valencia; R. A. Hincapié; R. A. Gallego, “Optimal Location, Selection, and Operation of Battery Energy Storage Systems and Renewable Distributed Generation in Medium–Low Voltage Distribution Networks”, J. Energy Storage., vol. 34, pp. 1-16, Feb. 2021. https://doi.org/10.1016/j.est.2020.102158; R. D. Zimmerman; C. E. Murillo-Sánchez (2020). MATPOWER. User’s Manual: Version 7.1 [Software]. https://matpower.org; A. Valencia; R. A. Hincapié; R. A. Gallego, “Database of the distribution test system”. [Online]. http://academia.utp.edu.co/planeamiento/files/2021/06/138N-TestSystem.pdf; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2354

  7. 7
    Academic Journal

    المؤلفون: Sanchez, Johan

    المصدر: #ashtag; Vol. 2 No. 19 (2021): Revista Hashtag 2021B; 64-75 ; #ashtag; Vol. 2 Núm. 19 (2021): Revista Hashtag 2021B; 64-75 ; 2346-139X

    وصف الملف: application/pdf

    Relation: https://revistas.cun.edu.co/index.php/hashtag/article/view/934/638; Caruso, M., Di Tommaso, A., Imburgia, A., Longo, M., Miceli, R., Romano, P., . . . Viola, F. (2016). Economic evaluation of PV system for EV charging stations: Comparison between matching maximum orientation and storage system employment. proceeding of IEEE International Conference on Renewable Energy Research and Applications (ICRERA), (págs. 1179-1184).; Chaudhari, K., Ukil, A., Nandha , K., Manandhar, U., & Kumar, K. (2017). Hybrid Optimization for Economic Deployment of ESS in PV Integrated EV Charging Station. IEEE Transactions on Industrial Informatics, 106 -116.; Chen, Q., Liu, N., Hu, C., Wang, L., & Zhang, J. (2017). Autonomous Energy Management Strategy for Solid-State Transformer to Integrate PV-Assisted EV Charging Station Participating in Ancillary Service. Trans IEEE Transactions on Industrial Informatics, 258-269.; da Graça Carvalho, M., Bonifacio , M., & Dechamps, P. (2011). Building a low carbon society. Energy, 1842-1847.; Hassan, M., Vafamand, N., & Niknam, T. (2016). vT–S fuzzy model predictive speed control of electrical vehicles. Trans SA Transactions, 231-240.; Hassan, M., Vafamand, N., Niknam, T., Dragicevic, T., & Blaabjerg, F. (2017). Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model. Trans IET Electric Power Applications, 918-934.; Hernandez, J., Sutil, F., & Vidal, P. (2016). Protection of a multi-terminal dc compact node feeding electric vehicles on electric railway systems, secondary distribution networks, and PV systems. Turk. J. Elec, 3123-3143.; Jay, Z., Raihani, A., Elmagri, A., & Bouattane, A. (2017). Toward an approach to Improve MPPT Efficiency for PV System. proceeding of International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), (págs. 1-5).; Khoucha, F., Benrabah, A., Herizi, O., Kheloui, A., & Benbouzid, M. (2013). An improved MPPT interleaved boost converter for solar electric vehicle application. proceeding of International Conference on Power Engineering, Energy and Electrical Drives, (págs. 1076-1081).; Krzysztof , U., Hrvoje, M., Neven , D., & Rodrigo, L. (2016). SDEWES 2014 – Sustainable Development of Energy, Water and Environment Systems. Journal of Cleaner Production, 1-11.; Lasheen, M., Kamel, A., Rahman, A., Abdel-Salam, A., & Ookawara, S. (2017). Adaptive reference voltage-based MPPT technique for PV applications. Trans IET Renewable Power Generation, 715-722.; LI, L., LI, X., Wang, X., Song, J., He, K., & Li, C. (2016). Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking. Trans Applied Energy, 125-137.; LI, W., Long, R., Chen, H., & Geng, J. (2017). A review of factors influencing consumer intentions to adopt battery electric vehicles. Trans Renewable and Sustainable Energy Reviews, 318-328.; Novosel, T., Ćosić, B., Pukšec, T., Krajačić, G., Duić, N., Mathiesen, B., Mustafa, M. (2015). Integration of renewables and reverse osmosis desalination e case study for the Jordanian energy system with a high share of wind and photovoltaics. Trans Energy, 270-278.; Peng, M., Liu, L., & Jiang, C. (2012). A review on the economic dispatch and risk management of the large-scale plug-in electric vehicles (phevs)- penetrated power systems. Renewable and Sustainable Energy Reviews, 1508 –1515.; Pietzcker, R., Stetter, D., Manger, S., & Luderer, G. (2014). Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power. Trans Applied Energy, 704-720.; Reza, S., & Sharifian, E. (2015). A bidirectional 3-input DC-DC converter for electric vehicle applications. proceeding of 23rd Iranian Conference on Electrical Engineering, (págs. 1700-1704).; Sang-Keun, M., & Jin-O, K. (2017). Balanced charging strategies for electric vehicles on power systems. Trans Applied Energy, 44-54.; Wang, B., Xu, J., Cao, B., & Ning, B. (2017). Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles. Trans Applied Energy, 596-608.; Wang, Z., Hong, J., Lui, P., & Zhang, L. (2017). Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles. Trans Applied Energy, 289-302.; Zhang, B., Yang, Q., & Kezunovic, M. (2017). Placement of EV charging stations integrated with PV generation and battery storage. Proceeding Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), 1-7.; https://revistas.cun.edu.co/index.php/hashtag/article/view/934

  8. 8
    Academic Journal
  9. 9
    Dissertation/ Thesis
  10. 10
    Book
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المؤلفون: Monroy Ortiz, Diego Alejandro

    المساهمون: Rivera Rodríguez, Sergio Raúl

    وصف الملف: application/pdf

    Relation: Bullo, F. D. (2013). Kron reduction of graphs with applications to electrical networks. IEEE Transactions on circuits and systems, 150-163.; E. E. Gaona, C. L. (2015). Rural microgrids and its potential application in Colombia. Renewable and sustainable energy reviews, 125-137.; IDEAM. (19 de 01 de 2020). Promedios mensuales de brillo solar. Obtenido de http://atlas.ideam.gov.co/basefiles/6.Anexo_Promedios-mensuales-de-brillo-solar.pdf; Martínez, C. G. (06 de 02 de 2020). Métodos de clustering. Obtenido de https://rstudio-pubs-static.s3.amazonaws.com/400869_1d59756046bb40d3b9bc35bede8b2287.html; Murillo-Sánchez, R. D. (2019). User's Manual Matpower.; Ray Daniel Zimmerman, C. E.-S. (2011). MATPOWER: Steady-State Operations. IEEE TRANSACTIONS ON POWER SYSTEMS, 12-19.; Rivera, S. (2016). Propuesta: Impacto de la generación renovable eólica y solar en las pérdidas y operación económica del sistema de potencia colombiano. Bogotá.; Shi, D. (2012). Power System Network Reduction for Engineering and Economic Analysis. Arizona: Arizona State University.; Stevenson, J. J. (1996). Análisis de sistemas de potencia. Mexico: McGraw-Hill.; Svendsen, H. G. (2015). Grid model reduction for large scale renewable energy integration analyses. Elsevier, 349-356.; Valencia, J. (05 de 01 de 2020). Ecovatios. Obtenido de Health and education with clean energy.; XM. (05 de 01 de 2020). Generación del SIN. Obtenido de https://www.xm.com.co/Paginas/Generacion/despacho.aspx#; Xu Cheng, T. J. (2005). PTDF-Based Power System Equivalents. IEEE TRANSACTIONS ON POWER SYSTEMS, 1868-1876.; Monroy, D. A. (2020). Análisis de la congestión media de líneas de un modelo de red reducido del sistema de potencia colombiano considerando alta penetración de generación solar fotovoltaica. Tesis de maestría. Universidad Nacional de Colombia; https://repositorio.unal.edu.co/handle/unal/77745

  13. 13
    Academic Journal
  14. 14
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Dissertation/ Thesis

    المساهمون: Sánchez de la Nieta López, Agustín Alejandro

    Relation: Tejero Cordero, M. S. (2023) Planta solar fotovoltaica Loyola Solar [Trabajo Fin de Máster, Universidad Loyola Andalucía]; https://hdl.handle.net/20.500.12412/4311

  18. 18
    Book
  19. 19
    Academic Journal
  20. 20
    Academic Journal