يعرض 1 - 20 نتائج من 138 نتيجة بحث عن '"Gasco, C."', وقت الاستعلام: 0.87s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Universidad de Sevilla. Departamento de Física Aplicada I, Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear, European Union (UE)

    Relation: Journal of Radioanalytical and Nuclear Chemistry, 207 (2), 357-367.; FI3P-CT920035; https://link.springer.com/article/10.1007/BF02071241; https://idus.us.es/handle//11441/137175

  3. 3
    Academic Journal

    المصدر: Materiales de Construcción; Vol. 71 No. 344 (2021); e259 ; Materiales de Construcción; Vol. 71 Núm. 344 (2021); e259 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2021.v71.i344

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2329/3164; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2329/3165; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2329/3166; Mindess, S. (2019) Sustainability of Concrete. Chapter 1. Sustainability of Concrete. Modern Concrete Techonology Book 17. Ed.: Routledge. https://doi.org/10.1016/B978-0-08-102616-8.00001-0; Circular Economy. UE: https://ec.europa.eu/commission/priorities/jobs-growth-and-investment/towards-circular-economy_es, 2016.; ONU. Sustainability Development Goals. Paris. 2015. https://www.agenda2030.gob.es/; Roadmap 2020. European Commission. https://www.roadmap2050.eu.; García-Díaz. I.; Puertas, F. (2011) Empleo de residuos cerámicos como materia prima alternativa en la fabricación de cemento Portland (in spanish). Monografías del IETcc. Ed. CSIC.; Savić, A.; Martinović, S.; Vlahović, M.; Volkov-Husović, T. (2020) Effects of waste sulfur content on properties of self-compacting concrete. Mater. Construcc. 70 [338], e216, https://doi.org/10.3989/mc.2020.06919; Gonzalez-Triviño, I.; Pascual-Cosp, J.; Moreno, B.; Benitez-Guerrero, M. (2019) Manufacture of ceramics with high mechanical properties from red mud and granite waste. Mater. Construcc. 69 [333], e180. https://doi.org/10.3989/mc.2019.03818; Scrivener, K.L.; John, V. M.; Gartner, E.M. (2016) Eco-efficient cements: Potential, economically viable solutions for a low-CO2, cement based materials industry. United Nations & Environment Programm, 2016. https://doi.org/10.1016/j.cemconres.2018.03.015; Mora, J.C.; Baeza, A.; Robles, B.; Sanz, J. (2016) Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills. J. Haz. Mat. 310, 161-169. https://doi.org/10.1016/j.jhazmat.2016.02.039 PMid:26921509; Labrincha, J.; Puertas, F.; Schroeyers, W.; Kovler, K.; Pontikes, Y.; Nuccetelli, C.; Krivenko, P.V.; Kovalchuk, O.; Petropavlovsky, O.; Komljenovic, M.; Fidanchevski, E.; Wiegers, R.; Volceanov. E.; Gunay, E.; Sanjuán, M. A.; Ducman, V.; Angjusheva, B.; Bajare, D.; Kovacs, T.; Bator, G.; Schreurs, S.; Aguiar, J.; Provis, J.L. (2017) From NORM by-products to building materials. In Naturally Ocurring Radiactive Materials in Construction. Chapter 7. Ed. W. Schroeyers. Elservier, 183-252. https://doi.org/10.1016/B978-0-08-102009-8.00007-4; Martín Matarranz, J.L. (2013) Riesgo Radiológico de las industrias no nucleares. Ph. D Thesis. Universidad de Cantabria.; Kovler. K.; Fridman, H.; Michalik, B.; Schroeyers, W.; Tsapalov, A.; Antropov, S.; Bituh, T.; Nicolaides, D. (2017) Basic aspects of natural radioactivity. In Naturally Ocurring Radiactive Materials in Construction. Ed. W. Schroeyers. Elservier. Chapter 3. 13-16. https://doi.org/10.1016/B978-0-08-102009-8.00003-7; Piedecausa García, B.; Chinchón Payá, S.; Morales, M.A.; Sanjuán Barbudo, M.A. (2011) Radiactividad natural de los materiales de construcción. Aplicación al hormigón. Parte II. Radiación interna: Gas radón. Cemento y Hormigón. 946, 34-50.; Pastor, A.; Dovorzhak, A.; Mora, J.C. (2016) Hacia un inventario español de industrias generadoras de residuos NORM. Radioprotección. 86, 28-32.; Orden IET/1946/2013, de 17 de octubre, por la que se regula la gestión de los residuos generados en las actividades que utilizan materiales que contienen radionucleidos naturales. 23 de octubre de 2013 (in spanish).; Allam, M.E.; Bakhoum, E.S.; Gara, G.L.K. (2014) Re-use of granites sludge in producing Green concrete. ARPN. J. Eng. Appl. Sci. 9 [12], e2737. 2731-2737.; Condomines, M.; Hemond, C.; Allègre, C. (1988) UThRa radioactive disequilibria and magmatic processes. Earth Planet. Sci. Lett. 90 [3], 243-262. https://doi.org/10.1016/0012-821X(88)90129-X; Plant, J.A.; Saunders, A. D. (1996) The Radioactive Earth. Rad. Protec. Dosim. 68 [1-2], 25-36. https://doi.org/10.1093/oxfordjournals.rpd.a031847; Suárez-Navarro, J.A.; Alonso, M.M.; Gascó, C.; Pachón, A.; Carmona-Quiroga, P.M.; Argiz, C.; Sanjuán, M.A.; Puertas, F. (accepted 2021) Effect of particle size and composition of granitic sands on the radiological behavior of mortars. Bol. Soc. Esp. Cer. Vid. Available online 2 June 2021. https://doi.org/10.1016/j.bsecv.2021.05.001; Kovacs, T.; Bator, G.; Schroeyers, W.; Labrincha, J.; Puertas, F.; Hegedus, M.; Nicolaides, D.; Sanjuán, M.A.; Krivenko, P.V.; Grubesa, I.N.; Sas, Z.; Michalic, B.; Anagnostakis, M.; Barisic, I.; Nuccetelli, C.; Trevisi, R.; Croymans, T.; Schreurs, S.; Todorovic, N.; Vaičiukynienė-Palubinskaitė, D.; Bistrickaitė, R.; Tkaczyk, A.; Kovler, K.; Wiegers, R.; P.V.; Doherty, R. (2017) From raw materials to NORM by-products. In Naturally Ocurring Radiactive Materials in Construction. Chapter 6. Ed. W. Schroeyers. Elservier. 135-182. https://doi.org/10.1016/B978-0-08-102009-8.00006-2; EN-197-1: (2011). Part 1: Composition, specifications and conformity criteria for common cements.; Puertas, F.; Blanco-Varela, M. T.; Palomo, A.; Vázquez, T. (1988) Reactivity and burnability of raw mixes made with crystallized blastfurnace slags. Part I. and Part II. Zement-Kalk-Gips; 41, (389-402) and (628-631).; Puertas, F.; García-Díaz, I.; Palacios, M.; Gazulla, M.F.; Gómez, M.P.; Orduña, M. (2010) Clinkers and cements obtained from raw mix containing ceramic waste as a raw material. Characterization, hydration and leaching studies. Cem. Concr. Comp. 32 [3], 175-186 https://doi.org/10.1016/j.cemconcomp.2009.11.011; Blanco-Varela, M. T.; Puertas, F.; Palomo, A.; Vázquez, T.; Artola, P.; Alfaro, L. (2000) Aptitud a la cocción de crudos de cemento Portland usando Paval como materia prima. Cemento y Hormigón (in Spanish) 809, 358-377.; Puertas, F.; Blanco-Varela, M.T. (2004). Use of alternative fuels in cement manufacture. Effect on clinker and cement characteristics and properties. Mater. Construcc. 54 [274], 51-64. https://doi.org/10.3989/mc.2004.v54.i274.232; Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022. https://doi.org/10.3989/mc.2014.00314; Robayo-Salazar, R.; Mejía de Gutierrez, R.; Puertas, F. (2019) Alkali-activated binary concrete based on a natural pozzolan: physical, mechanical and microstructural characterization. Mater. Construcc. 69 [335], e191 https://doi.org/10.3989/mc.2019.06618; Pacheco-Torgal, F.; Labrincha, J.A.; Leonelli, C.; Palomo, A.; Chindaprasirt, P. (Eds.). (2015) Handbook of Alkali-activated cements, mortars and concretes. Woodhead Publishing Series in Civil and Structural Engineering. https://doi.org/10.1533/9781782422884.1 PMid:25842101; Provis, J.L.; van Deventer, J.J. (Eds). (2014) Alkali Activated Materials. State of the Art Report, ILEM TC 224-AAM. Springer. https://doi.org/10.1007/978-94-007-7672-2; Shi, C.; Krivenko, P.; Roy, D. (2006) Alkali-Activated Cements and Concretes. Taylor and Francis, London and New York. https://doi.org/10.4324/9780203390672; Shi, C.; Fernández Jiménez, A.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res., 41, 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016; Puertas, F.; Torres-Carrasco, M. (2014) Use of glass waste as an activator in the preparation of alkali-activated slag cements. Mechanical strength and paste characterisation. Cem. Concr. Res., 57, 95-104. https://doi.org/10.1016/j.cemconres.2013.12.005; Torres-Carrasco, M.; Puertas, F. (2015). Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 90, 397-408. https://doi.org/10.1016/j.jclepro.2014.11.074; Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Construcc. 63 [311], 361-375.; Shi, C.; Shi, Z.; Hu, X.; Zhao, R.; Chong, L. (2015) A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Mater. Struct. 48, 621-628. https://doi.org/10.1617/s11527-014-0505-2; Pérez-Cortes, P.; Escalante-García, J.I. (2020) Alkali activated metakaolin with high limestone contents-Statistical modeling of strength and environmental and cost analyses. Cem. Concr. Comp. 106, 103450. https://doi.org/10.1016/j.cemconcomp.2019.103450; Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. (2000) Alkali-activated fly ash/slag cement. Strength behaviour and hydration products. Cem. Concr. Res. 30 [10], 1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2; Torres-Carrasco, M.; Puertas, F. (2017) Waste glass as a precursor in alkaline activation: chemical process and hydration products. Construc. Build. Mat. 139, 342-354. https://doi.org/10.1016/j.conbuildmat.2017.02.071; Payá, J.; Agrela, F.; Rosales, J.; Martín Morales, M.; Borrachero, M.V. (2019) Application of alkali-activated industrial waste. New Trends Eco-effic. Recyc. Concr. 357-424. https://doi.org/10.1016/B978-0-08-102480-5.00013-0; Mas, M.A.; Tashima, M.M.; Payá, J.; Borrachero, M.V.; Soriano, L.; Monzó, J.M. (2015) A binder from alkali activation of FCC waste: Use in roof tiles fabrication. Key Eng. Mat. 668, 411-418. https://doi.org/10.4028/www.scientific.net/KEM.668.411; Puertas, F.; Barba, A.; Gazulla, M.F.; Gómez, M.P.; Palacios, M.; Martínez-Ramírez, S. (2006) Ceramic wastes as raw materials in pórtland cement clinker fabrication: characterization and alkaline activation. Mater. Construcc. 56 [281], 73-84. https://doi.org/10.3989/mc.2006.v56.i281.94; Burciaga-Díaz, O.; Durón-Sifuentes, M.; Díaz-Guillén, J.A.; Escalante-García, J.I. (2020) Effect of waste glass incorporation on the properties of geopolymers formulated with low purity metakaolin. Cem. Concr. Comp. 107, 103492. https://doi.org/10.1016/j.cemconcomp.2019.103492; Alonso, M.M.; Gascó, C.; Martín Morales, M.; Suárez-Navarro, J.A.; Zamorano, M.; Puertas, F. (2019) Olive Biomas ash as an alternative activator in geopolymer formation: A study of strenth, radiology and leaching behaviour. Cem. Concr. Comp. 104, 103384. https://doi.org/10.1016/j.cemconcomp.2019.103384; de Moraes Pinheiro, S.M.; Font, A.; Soriano, L.; Tashima, M.M.; Monzó, J.M.; Borrachero, M.V.; Payá, J. (2018) Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construc. Build. Mat. 178, 30. 327-338. https://doi.org/10.1016/j.conbuildmat.2018.05.157; Deloitte (2017) Study on Resource Efficient Use of Mixed Wastes, Improving of construction and demolition waste - Final Report. Prepared for the 631 European Commission, DG ENV [31] DWC.; Pellegrino, C.; Faleschini, F.; Meyer, C. (2019) Recycled Materiales in Concrete, Chapter 2. Sustainability of Concrete. Ed. Pierre-Claude AÍtcin, Sidney Mindess, Modern Concrete Technology 17. https://doi.org/10.1016/B978-0-08-102616-8.00002-2; Zhang, L.W.; Sojobi, A.O.; Kodur, V.K.R.; Liew, K.M. (2019) Effective utilization and recycling of mixed recycled aggregates for a greener environment. J. Clean. Prod. 236, 117600. https://doi.org/10.1016/j.jclepro.2019.07.075; Suarez-Navarro, J.A.; Lanzón, M.; Moreno-Reyes, A.M.; Gascó, C.; Alonso, M.M.; Blanco-Varela, M.T.; Puertas, F. (2019). Radiological behaviour of pigments and water repellents in cement-based mortars. Construc. Build. Mat. 225, 879-885. https://doi.org/10.1016/j.conbuildmat.2019.07.271; I.A.E.A. Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. Tech. Reports Ser. 419. Vienna, Austria 419. (2003).; CEN/TC 351. Construction products: Assessment of release of dangerous substances. Radiation from construction products - Dose assessment and classifications of emitted gamma radiation. (2013).; Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.; Suárez-Navarro, J.A.; Moreno-Reyes, A.M.; Gascó, C.; Alonso, M.M.; Puertas, F. (2020) Gamma spectrometry and LabSOCS-calculated efficiency in the radiological characterisation of quadrangular and cubic specimens of hardened portland cement paste. Rad. Phys. Chem. 171, 108709. https://doi.org/10.1016/j.radphyschem.2020.108709; Suárez-Navarro, J. A.; Gascó, C.; Alonso, M.M.; Blanco-Varela, M.T.; Lanzón, M.; Puertas, F. (2018) Use of Genie 2000 and Excel VBA to correct for γ-ray interference in the determination of NORM building material activity concentrations. Appl. Radi. Isot. 142, 1-7. https://doi.org/10.1016/j.apradiso.2018.09.019 PMid:30245436; Argiz, C.; Menéndez, E.; Moragues, A.; Sanjuán, M.A. (2015) Fly ash characteristics of Spanish coal-fired power plants. Afinidad. 72 [572], 269-277. http://www.raco.cat/index.php/afinidad/article/view/305569/395407.; Skibsted, J.; Snellings, R. (2019) Reactivity of supplementary cementitious Materials (SCMs) in cement blends. Cem. Concr. Res. 124, 105799 https://doi.org/10.1016/j.cemconres.2019.105799; Mora, J.C.; Robles, B.; Corbacho, J.A.; Gascó, C.; Gázquez, M.J. (2011). Modelling the behaviour of 210Po in high temperatura processes. J. Environ. Radioac. 102 [5], 520-526. https://doi.org/10.1016/j.jenvrad.2010.10.006 PMid:21093128; Temuujin, J.; Surenjav, E.; Ruescher, C.H.; Vahlbruch, J. (2019) Processing and uses of fly ash addressing radioactivity (critical review), Chemosph. 216, 866-88. https://doi.org/10.1016/j.chemosphere.2018.10.112 PMid:30390998; Zielinski, R.A.; Finkelman, R.B. (1997) Radioactive elements in coal and fly ash: abundance, forms, and environmental significance, US Geological Survey, 2327-6932. https://doi.org/10.3133/fs16397; World Nuclear Association. Naturally Occuring Radioactive Materials (july, 2015). https://www.world-nuclear.org/information-library/safety-and-security/radiation-and-health/naturally-occurring-radioactive-materials-norm.aspx.; Karangelos, D.J.; Petropoulos, N.P.; Anagnostakis, M.J.; Hinis, E.P.; Simopoulos, S.E. (2004) Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plant. J. Env. Rad. 77 [3], 233-246. https://doi.org/10.1016/j.jenvrad.2004.03.009 PMid:15381319; Mora, J.C.; Baeza, A.; Robles, B.; Corbacho, J.A.; Cancio, D. (2009). Behaviour of natural radionuclides in coal combustión. Radioprotec. 44 [5], 577-580. https://doi.org/10.1051/radiopro/20095106; Nuccetelli, C.; Pontikes, Y.; Leonardi, F.; Trevisi, R. (2015) New perspectives and issues arising from the introduction of (NORM) residues in building materials: A critical assessment on the radiological behaviour. Construc. Build. Mat. 82, 323-331. https://doi.org/10.1016/j.conbuildmat.2015.01.069; Kovler, K.; Haquin, G.; Manasherov, V.; Ne'eman, E.; Lavi, N. (2002) Natural radionuclides in building materials available in Israel. Build. Environ. 37 [5], 531-537. https://doi.org/10.1016/S0360-1323(01)00048-8; Piedecausa, B.; Chinchón-Payá, S.; Morales, M.A.; Sanjuán, M.A. (2011) Radioactividad natural de los materiales de construcción. Aplicación al hormigón. Parte 1. Radiación externa: índice de riesgo radiactivo. Cem. Horm. 945, 40-65.; Puertas, F.; Alonso, M.M.; Torres-Carrasco, M.; Rivilla, P.; Gasco, C.; Yagüe, L.; Suárez, J. A.; Navarro, N. (2015) Radiological characterization of anhydrous/hydrated cements and geopolymers. Construc. Build. Mat. 101 [1], 1105-1112. https://doi.org/10.1016/j.conbuildmat.2015.10.074; Alonso, M.M.; Suárez-Navarro, J.A.; Pérez-Sanz, R.; Gascó, C.; Moreno de los Reyes, A.M.; Lanzón, M.; Blanco-Varela, M.T.; Puertas, F. (2020) Data in Brief. 33, 106488. https://doi.org/10.1016/j.dib.2020.106488 PMid:33241096 PMCid:PMC7672271; Kovler, K.; Perevalov, A.; Steiner, V.; Metzger, L.A. (2005) Radon exhalation of cementitious materials made with coal fly ash: Part 1 - scientific background and testing of the cement and fly ash emanation. J. Env. Rad. 82 [3], 321-324. https://doi.org/10.1016/j.jenvrad.2005.02.004 PMid:15885378; Chinchón-Payá, S.; Piedecausa, B.; Hurtado, S.; Sanjuán, M.A.; Chinchón, S. (2011) Radiological impact of cement, concrete and admixtures in Spain. Rad. Meas. 46 [8], 734-735. https://doi.org/10.1016/j.radmeas.2011.06.020; Gupta, M.; Kumar Mahur, A.; Varshney, R.; Sonkawade, R.G.; Verma, K.D.; Prasad, R. (2013) Measurement of natural radioactivity and radon exhalation rate in fly ash samples from a thermal power plant and estimation of radiation doses. Rad. Meas. 50, 160-165. https://doi.org/10.1016/j.radmeas.2012.03.015; Kovler, K. (2012) Does the utilization of coal fly ash in concrete construction present a radiation hazard? Construc. Build. Mat. 29, 158-166. https://doi.org/10.1016/j.conbuildmat.2011.10.023; Ignjatović, I.; Sas, Z.; Dragaš, J.; Somlai, J.; Kovács, T. (2017) Radiological and material characterization of high volume fly ash concrete. J. Env. Rad. 168, 38-45. https://doi.org/10.1016/j.jenvrad.2016.06.021 PMid:27400654; Temuujin, J.; Minjigmaa, A.; Davaabal, B.; Bayarzul, U.; Ankhtuya, A.; Jadambaa, Ts.; MacKenzie, K.J.D. (2014) Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceram. Int. 40, [10], 16475-16483. https://doi.org/10.1016/j.ceramint.2014.07.157; Man-yin, W. T.; Leung, J.K.C. (1996) Radiological Impact of Coal Ash from the Power Plants in Hong Kong. J. Env. Rad. 30 [1], 1-14. https://doi.org/10.1016/0265-931X(95)00042-9; Turhan, Ş. (2008) Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. J. Env. Rad. 99 [2], 404-414. https://doi.org/10.1016/j.jenvrad.2007.11.001 PMid:18082297; Nuccetelli, C.; Trevisi, R.; Ignjatović, I.; Dragaš, J. (2017) Alkali-activated concrete with Serbian fly ash and its radiological impact. J. Env. Rad. 168, 30-37. https://doi.org/10.1016/j.jenvrad.2016.09.002 PMid:27686949; Puertas, F. (1993) Escorias alto horno: composición y comportamiento hidraúlico. Mater. Construcc. 43 [229], 37-48. https://doi.org/10.3989/mc.1993.v43.i229.687; Pellegrino, C.; Faleschini, F.; Meyer, C. (2019). Recycled Materials in Concrete. Chapter 2. Sustainability of Concrete. Modern Concrete Techonology Book 17. Routledge Ed. https://doi.org/10.1016/B978-0-08-102616-8.00002-2; Liapis, I.; Papayianni, I. (2015) Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing. J. Haz. Mat. 283, 89-97. https://doi.org/10.1016/j.jhazmat.2014.08.072 PMid:25261762; Rodríguez, A.; Santamaría-Vicario, I.; Calderón, V.; Junco, C.; García-Cuadrado, J. (2019) Study of the expansión of cement mortars manufactured with landle furnace slag LFS. Mater. Construcc. 69 [334], e183. https://doi.org/10.3989/mc.2019.06018; Liu, J.; Yu, B.; Wang, Q. (2020) Application of steel slag in cement treated aggregate base course. J. Clean. Prod. 269, 121733. https://doi.org/10.1016/j.jclepro.2020.121733; Cooper, M.B. (2005) Naturally Ocurring Radioactive Materials (NORM) in Australian Industries- Review of Current Inventories and Future Generation. EnviroRad Serv. Pty. Ltd. ARPANSA. Melbourne.; Gijbels, K.; Iacobescu, R.I.; Pontikes, Y.; Vandevenne, N.; Schreurs, S.; Schroeyers, W. (2018) Radon immobilization potential of alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum. Construc. Build. Mat. 184, 68-75. https://doi.org/10.1016/j.conbuildmat.2018.06.162; Argiz, C.; Reyes, E.; Moragues, A. (2018) Ultrafine portland cement performance. Mater. Construcc. 68 [330], e157. https://doi.org/10.3989/mc.2018.03317; Goldman, A.; Bentur, A. (1993) The influence of microfillers on enhancement of concrete strength. Cem. Concr. Res. 23 [4], 962-972. https://doi.org/10.1016/0008-8846(93)90050-J; Instrucción de hormigón estructural (EHE-08) (2008). BOE 203. https://www.fomento.es/nr/rdonlyres/e20dffb7-fd75-4803-8ca4-025064bb1c40/68186/1820103_2008.pdf" (In spanish).; Soria Santamaría, F. (1983) Las puzolanas y el ahorro energético en los materiales de construcción. Mater. Construcc. 33 [190-191], 69-84. https://doi.org/10.3989/mc.1983.v33.i190-191.974; Robayo-Salazar, R.; Mejía de Gutiérrez, R.; Puertas, F. (2019) Alkali-activated binary concrete based on a natural pozzolan: physical, mechanical and microstructural characterization. Mater. Construcc. 69 [335], e191. https://doi.org/10.3989/mc.2019.06618; Ivanović, M.; Kljajević, Lj.; Nenadović, M.; Bundaleski, N.; Vukanac, I.; Todorović, B.; Nenadović, S. (2018) Physicochemical and radiological characterization of kaolin and its polymerization products. Mater. Construcc. 68 [330], e155 . https://doi.org/10.3989/mc.2018.00517; Voglis, N.; Kakali, G.; Chaniotakis, E.; Tsivilis, S. (2005) Portland-limestone cements. Their properties and hydration compared to those of other composite cements. Cem. Concr. Comp. 27 [2], 191-196. https://doi.org/10.1016/j.cemconcomp.2004.02.006; Skaropoulou, A.; Tsivilis, S.; Kakali, G.; Sharp, J. H.; Swamy, R. N. (2009) Long term behavior of Portland limestone cement mortars exposed to magnesium sulfate attack. Cem. Concr. Comp. 31 [9], 628-636. https://doi.org/10.1016/j.cemconcomp.2009.06.003; Turhan, Ş.; Baykan, U.N.; Şen, K. (2008) Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses. J. Rad. Protec. 28 [1], 83-91. https://doi.org/10.1088/0952-4746/28/1/005 PMid:18309197; Turhan, Ş.; Gürbüz, G. (2008) Radiological significance of cement used in building construction in Turkey. Rad. Protec. Dos. 129 [4], 391-396. https://doi.org/10.1093/rpd/ncm454 PMid:17971346; Xhixha, G.; Bezzon, G.P.; Broggini, C.; Buso, G.P.; Caciolli, A.; Callegari, I.; De Bianchi, S.; Fiorentini, G.; Guastaldi, E.; Kaçeli Xhixha, M.; Mantovani, F.; Massa, G.; Menegazzo, R.; Mou, L.; Pasquini, A.; Rossi Alvarez, C.; Shyti, M. (2013) The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. J. Radioanal. Nucl. Chem. 295, 445-457. https://doi.org/10.1007/s10967-012-1791-1; Alonso, M.M.; Pasko, A.; Gascó, C.; Suarez, J.A.; Kovalchuk, O.; Krivenko, P.; Puertas, F. (2018) Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices. Construc. Build. Mat. 159, 745-754. https://doi.org/10.1016/j.conbuildmat.2017.11.119; Maldonado-García, M. A.; Hernández-Toledo, U. I.; Montes-García, P.; Valdez-Tamez, P. L. (2018) The influence of untreated sugarcane bagasse ash on the microstructural and mechanical properties of mortars. Mater. Construcc. 68 [329], e148. https://doi.org/10.3989/mc.2018.13716; Pereira, A.M.; Moraes, J.C.B.; Moraes, M.J.B.; Akasaki, J.L.; Tashima, M.M.; Soriano, L.; Monzó, J.; Payá, J. (2018). Valorisation of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in Portland cement mixtures. Mater. Construcc. 68 [330], e153. https://doi.org/10.3989/mc.2018.00617; Gupta, A.; Gupta, N.; Shukla, A.; Goyal, R.; Kumar, S. (2020) Utilization of recycled aggregate, plastic, glass waste and coconut shells in concrete - a review. IOP Conf. Series: Mat. Sci. Eng. 804, 012034. https://doi.org/10.1088/1757-899X/804/1/012034; Kou, S.C.; Poon, C.S. (2009) Properties of self-compacting concrete prepared with recycled glass aggregate. Cem. Concr. Comp. 31 [2], 107-113. https://doi.org/10.1016/j.cemconcomp.2008.12.002; 90 Espinosa, S.; Golzarri, J.I.; Gamboa, I.; Jacobsen, I. (1986) Natural radioactivity in Mexican building Materials by SSNT. Nuclear Tracks Rad. Meassu. 12, [1-6], 767-770. https://doi.org/10.1016/1359-0189(86)90699-0; García‐Díaz, I.; Gázquez, M.J.; Bolivar, J.P.; López, F.A. (2016) Characterization and valoration of Norm wastes for construction materials - Chapter 2. Manag. Haz. Wast. 13-37 (2016). Ed. INTECH. https://doi.org/10.5772/63196; Dvorkin, L.; Lushnikova, N.; Sonebi. M. (2018) Application areas of phosphogypsum in production of mineral binders and composites based on them: a review of research results. MATEC Web of Confe. 149, 01012. https://doi.org/10.1051/matecconf/201814901012; Ngoc Lam, N. (2020) Eco-concrete made with phosphogypsum-based super sulfated cement. IOP Conf. Series: Mater. Scie. and Engi. 869, 032031. IOP Publishing. https://doi.org/10.1088/1757-899X/869/3/032031; IAEA. (2013) Radiation protection and management of NORM residues in the phosphate industry. Safety Reports Series 78. http://refhub.elsevier.com/B978-0-08-102009-8.00006-2/rf0225.; Kovler, K.; Dashevsky, B.; Kosson, D.S.; Reches, Y. (2017) US Patent. System and methods for removing impurities from phosphogypsum and manufacturing gypsum binder. US 2017/0022070A1.; Trevisi, R.; Risica, S.; D'Alessandro, M.; Paradiso, D.; Nuccetelli. C. (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J. Env. Rad. 105, 11-20. https://doi.org/10.1016/j.jenvrad.2011.10.001 PMid:22230017; Sanjuán, M.A.; Suarez-Navarro, J.A.; Argiz, C.; Mora, P. (2019). Assessment of radiation hazards of white and grey Portland cements. J. Radioanal. Nucl. Chem. 322, 1169-1177. https://doi.org/10.1007/s10967-019-06824-y; Sanjuán, M.A.; Suárez-Navarro, J.A.; Argiz, C.; Mora, P. (2020) Assessment of natural radioactivity and radiation hazards owing to coal fly ash and natural pozzolan Portland cements. J. Radioanal. Nucl. Chem. 325, 381-390. https://doi.org/10.1007/s10967-020-07263-w; Raghu, Y.; Ravisankar, R.; Chandrasekaran, A.; Vijayagopal, P.; Venkatraman, B. (2018) Assessment of natural radioactivity and radiological hazards in building materials used in the Tiruvannamalai District, Tamilnadu, India, using a statistical approach. J. Taibah Univ. Sci. 11 [4], 523-533. https://doi.org/10.1016/j.jtusci.2015.08.004; Allard, B.; Olofsson, U.; Torstenfelt, B. (1984) Environmental actinide chemistry. Inor. Chimi. Acta. 94 [4], 205-221. https://doi.org/10.1016/S0020-1693(00)88006-8; Plant, J.A.; Saunders, A.D. (1966) The Radioactive Earth. Radia. Protec. Dosi. 68 [1-2], 25-36. https://doi.org/10.1093/oxfordjournals.rpd.a031847; Sanjuan, M.A.; Argiz, C.; Alonso, M.M.; Suarez-Navarro, J.A.; Gascó, C.; Puertas, F. (2019) Natural radioactivity of Portland cement mortars made with granite sand. 15th International Congress on Chemistry of Cement (Prague).; Croymans, T.; Schroeyers, W.; Krivenko, P.; Kovalchuk, O.; Pasko, A.; Hult, M.; Marissens, G.; Lutter, G.; Schreurs, S. (2017) Radiological characterization and evaluation of high volume bauxite residue alkali activated concretes. J. Env. Rad. 168, 21-29. https://doi.org/10.1016/j.jenvrad.2016.08.013 PMid:27554708; Frutos Vázquez, B. (2009) Estudio experimental sobre la efectividad y la viabilidad de distintas soluciones constructivas para reducir la concentración de gas radón en edificaciones. PhD Thesis E.T.S. Arquitectura. Universidad Politécnica de Madrid.; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2329

  4. 4
    Academic Journal

    المساهمون: European Commission, Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España)

    Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2016-77252-P; Publisher's version; Sí; Materials 14(3): 475 (2021); http://hdl.handle.net/10261/227937; http://dx.doi.org/10.13039/501100003329; http://dx.doi.org/10.13039/501100000780; http://dx.doi.org/10.13039/501100011033

  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المساهمون: Ministerio de Economía y Competitividad (España)

    Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2016-77252-P; https://doi.org/10.1016/j.conbuildmat.2019.07.271; Sí; Construction and Building Materials 225: 879-885 (2019); http://hdl.handle.net/10261/210858; http://dx.doi.org/10.13039/501100003329

  7. 7
    Academic Journal

    المساهمون: Ministerio de Economía y Competitividad (España), Ministerio de Economía, Industria y Competitividad (España)

    Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2013-47876-C2-1-P; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2016-77252-P; Postprint; https://doi.org/10.1016/j.cemconcomp.2019.103384; Sí; Cement and Concrete Composites 104: 103384 (2019); http://hdl.handle.net/10261/210796; http://dx.doi.org/10.13039/501100003329; http://dx.doi.org/10.13039/501100010198

  8. 8
    Academic Journal

    المساهمون: Ministerio de Economía y Competitividad (España), Ministerio de Economía, Industria y Competitividad (España)

    مصطلحات موضوعية: Gamma-ray spectrometry, NORM, Spectral interferences, Genie 2000

    Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2016-77252-P; Postprint; https://doi.org/10.1016/j.apradiso.2018.09.019; Sí; Applied Radiation and Isotopes 142: 1-7 (2018); http://hdl.handle.net/10261/211717; http://dx.doi.org/10.13039/501100003329; http://dx.doi.org/10.13039/501100010198

  9. 9
    Academic Journal
  10. 10
    Video Recording
  11. 11
  12. 12
    Academic Journal

    المصدر: Materiales de Construcción; Vol. 61 No. 304 (2011); 503-515 ; Materiales de Construcción; Vol. 61 Núm. 304 (2011); 503-515 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2011.v61.i304

    وصف الملف: application/pdf

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/602/649; Yang, J.; Liu, W.; Zhang, L.; Xiao B.: “Preparation of load-bearing building materials from autoclaved phosphogypsum”. Const. Build. Mat. 23 (2009), pp. 687-693. doi:10.1016/j.conbuildmat.2008.02.011; Tayibi, H.; Choura, M.; López, F. A.; Alguacil, J. A.; López-Delgado, A.: “Environmental impact and management of phosphogypsum (Review)”. J. Environ. Manage. 90 (2009), pp. 2377-2386. doi:10.1016/j.jenvman.2009.03.007 PMid:19406560; Soil amendments and Environmental Quality. Aquiculture and Environmental Series. Ed. By Jack, E. Rechcigl. Boca Raton, Lewis Publishers (CRC Press), Florida, (1995), pp. 504.; Rutherford, P. M.; Dudas, M. J.; Samek, R. A.: “Environmental impacts of phosphogypsum”. Sci. Total Environ . 149 (1-2) (1994), pp. 1-38. doi:10.1016/0048-9697(94)90002-7; Kovler, K.: “Radiological constraints of using building materials and industrial byproducts”. Const. Build. Mat. 23 (2009), pp. 246-253. doi:10.1016/j.conbuildmat.2007.12.010; Bolivar, J. P.; García-Tenorio, R.; Vaca, F.: “Radioecological study of an estuarine system located in the south of Spain”. Water Research 34 (2000), pp. 2941-2950. doi:10.1016/S0043-1354(99)00370-X; US-EPA. U. S. Environmental Protection Agency, 2002. “National Emission Standards for Hazardous Air Pollutants, Subpart R”, (2002).; Min, Y.; Jueshi, Q.; Ying, P.: “Activation of fly ash-lime systems using calcined phosphogypsum”. Const. Build. Mat. 22 (2008), pp. 1004-1008. doi:10.1016/j.conbuildmat.2006.12.005; Weiguo, S.; Mingkai, Z.; Qinglin, Z.: “Study on lime–fly ash–phosphogypsum binder”. Const. Build. Mat. 21 (7) (2007), pp. 1480-1485.; Degirmenci, N.: “Utilisation of phosphogypsum as raw and calcined material in manufacturing of building products”. Const. Build. Mat. 22 (2008), pp. 1857-1862. doi:10.1016/j.conbuildmat.2007.04.024; Yang, M.; Qian, J.; Pang, Y.: “Activation of fly ash-lime systems using calcined phosphogypsum”. Const. Build. Mat. 22 (2008), pp. 1004-1008. doi:10.1016/j.conbuildmat.2006.12.005; Taher, M. A.: “Influence of thermally treated phosphogypsum on the properties of Portland slag cement”. Resour. Conserv. Recycl. 52 (1) (2007), pp. 28-38. doi:10.1016/j.resconrec.2007.01.008; Elkhadiri, I.; Diouri, A.; Boukhari, A.; Puertas, F.; Vázquez, T.: “Obtaining a sulfoaluminate belite cement by industrial wastes”. Mater. Construcc. 270 (5) (2003), pp. 57-69.; NRCP Report 094. Exposure of the Population in the United States and Canada from Natural Background Radiation, (1987).; US-EPA. “Potential uses of Phosphogypsum and associated risks: Background information document”. EPA 402-r92-002. US-EPA, Washington, DC, (1992).; Mas, J. L.; San Miguel, E. G.; Bolívar, J. P.; Vaca F.; Pérez-Moreno J. P.: “An assay on the effect of preliminary restoration tasks applied to a large TENORM wastes disposal in the south-west of Spain”. Sci. Total Environ. 364 (2006), pp. 55–66. doi:10.1016/j.scitotenv.2005.11.006 PMid:16343599; Burnett, W. C.; Schultz, M. K.; Carter, D. H.: “Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate”. J. Environ Radioact. 32 (1-2) (1996), pp. 33-51. doi:10.1016/0265-931X(95)00078-O; El Afifi, E. M.; Hilal, M. A.; Attallah, M. F.; El-Reefy, S. A.: “Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production”. J. Environ Radioact. 100 (2009), pp. 407-412. doi:10.1016/j.jenvrad.2009.01.005 PMid:19272681; Soil amendments and Environmental Quality. Agriculture and Environmental Series. Ed. By Jack, E. Rechcigl. Boca Raton, Lewis Publishers (CRC Press), Florida, (1995), pp 504.; Radiological Protection Principles concerning the Natural Radioactivity of Building Materials. Radiation Protection 112, European Commission. Directorate-General Environment, Nuclear Safety and Civil Protection, (1999).; Vroom, A. H.: “Sulfur polymer concrete and its applications”. In: Proceedings of Seventh International Congress on Polymers in Concrete. Moscow, September, (1992), pp. 606–21.; STARTcreteTM Technologies Inc. Laboratory Procedure for Producing STARcretesTM Test Specimens. Tehnical Report, (2000).; Norma Española UNE 102031; Yesos y escayolas de construcción, Métodos de ensayo físicos y mecánicos, Sep, (1999).; Flynn, W. W.: “The determination of low level of polonium-210 in environmental materials”. Analytica Chimica Acta. 43 (1968), pp. 221-227. doi:10.1016/S0003-2670(00)89210-7; Mazzilli, B.; Saueia, C.: “Radiological Implications of Using Phosphogypsum as a building material in Brazil”. Radiation Protection Dosimetry, Technical Note. 86 (1) (1999), pp. 63–67.; Hull, C. D.; Burnett, W. C.: “Radiochemistry of Florida phosphogypsum”. J. Environ. Radioact. 32 (1996), pp. 213-238. doi:10.1016/0265-931X(95)00061-E; The Commission of the European Communities. Commission Recommendation of 21 February 1990 on the protection of the public against indoor exposure to radon 90/143/EURATOM. Official Journal L-80, (1990).; The Council of European Communities. Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of the Member States relating to construction products. Official Journal L-040. (1989).; International Commission on Radiological Protection. Protection against Radon222 at Home and at Work. ICRP Publication 65 (Oxford: Pergamon Press), (1994).; IAEA-TECDOC-1472.: “Naturally Occurring Radioactive Materials (NORM IV)”. Proceedings of an international conference held in Szczyrk, Poland, 17–21 May, (2004).; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/602

  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Book
  19. 19
  20. 20
    Book