يعرض 1 - 20 نتائج من 820 نتيجة بحث عن '"García-Guinea, Javier"', وقت الاستعلام: 0.70s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. ENCORE - Energy Catalysis Process Reaction Engineering

    وصف الملف: 27 p.; application/pdf

    Relation: https://academic.oup.com/mnras/article/518/3/3850/6762217; Andrade, M. [et al.]. The Traspena meteorite: heliocentric orbit, atmospheric trajectory, strewn field, and petrography of a new L5 ordinary chondrite. "Monthly notices of the Royal Astronomical Society", 1 Gener 2023, vol. 518, núm. 3, p. 3850-3876.; http://hdl.handle.net/2117/393036

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: Estudios Geológicos; Vol. 79 No. 1 (2023); e150 ; Estudios Geológicos; Vol. 79 Núm. 1 (2023); e150 ; 1988-3250 ; 0367-0449 ; 10.3989/egeol.16735

    وصف الملف: text/html; application/pdf

    Relation: https://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/1053/1396; https://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/1053/1398; https://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/1053/1399; Abdel-Galil E.A.; El-Kenany W.M. & Hussin L.M.S. (2015). Preparation of nanostructured hydrated antimony oxide using a sol-gel process. Characterization and applications for sorption of La3+ and Sm3+ from aqueous solutions. Russian Journal of Applied Chemistry, 88(8): 1351-1360. https://doi.org/10.1134/S1070427215080200; Adelman, J.G.; Beauchemin, S.; Hendershot, W.H. & Kwong, Y.T.J. (2012). Change in the oxidation rate of stibnite as affected by pyrite in an oxygenated flow-through system. Geochemistry: Exploration, Environment, Analysis, 12: 227-239. https://doi.org/10.1144/1467-7873/11-RA-077; Ambe, S. (1987). Adsorption kinetics of antimony (V) ions onto α-Fe2O3 surfaces from an aqueous solution. Langmuir, 3(4): 489-493. https://doi.org/10.1021/la00076a009; Atencio D.; Andrade, M.B.; Christy, A.G.; Gieré, R. & Kartashow, P.M. (2010). The pyrochlore supergroup of minerals: nomenclature. Canadian Mineralogist, 48: 673-698. https://doi.org/10.3749/canmin.48.3.673; Báez, D.F.; Pardo H.; Laborda I.; Marco J.F.; Yáñez C. & Bollo S. (2017). Reduced graphene oxides: Influence of the reduction method on the electrocatalytic effect towards nucleic acid oxidation. Nanomaterials, 7 (7): 168. https://doi.org/10.3390/nano7070168 PMid:28677654 PMCid:PMC5535234; Bahfenne S. & Frost R.L. (2010). Raman spectroscopic study of the antimonate mineral lewisite (Ca, Fe, Na)2(Sb,Ti)2O6(O, OH)7. Radiation Effects and Defects in Solids, 165 (1): 46-53. https://doi.org/10.1080/10420150903418485; Bahfenne S. & Frost R.L. (2010). Vibrational Spectroscopic Study of the Antimonate Mineral Stibiconite. Spectroscopy Letters, 43 (6): 486-490. https://doi.org/10.1080/00387010903360313; Bahfenne S. & Frost R.L. (2010) Raman spectroscopic study of the antimonate mineral romeite. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 75 (2): 637-639. https://doi.org/10.1016/j.saa.2009.11.031 PMid:20034848; Beudant F.S. (1837). Traité élémentaire de Minéralogie, 2nd edition, Carilian Jeune, Paris.; Biagioni C.; Orlandi P.; Nestola F. & Bianchin S. (2013). Oxycalcioroméite, Ca2Sb2O6O, from Buca della Vena mine, Apuan Alps, Tuscany, Italy: a new member of the pyrochlore supergroup. Mineralogical Magazine, 77 (7): 3027-3037. https://doi.org/10.1180/minmag.2013.077.7.12; Birchall T.; Connor J.A. & Hillier I (1975). High-energy photoelectron spectroscopy of some antimony compounds. Journal of the Chemical Society, Dalton Transactions, 20: 2003-2006. https://doi.org/10.1039/dt9750002003; Bodenes L.; A. Darwiche, L. Monconduit & Martinez H. (2015).The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative x-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. Journal of Power Sources, 273: 14-24. https://doi.org/10.1016/j.jpowsour.2014.09.037; Botto, L.; Schalamuk, I.; Ametrano, S. & De Barrio, R. (1990). The vibrational spectrum of Cervantite (α-Sb2O4). Anales de la Asociación Química Argentina, 78 (4): 195-201.; Burke, E.A.J. (2006) A mass discreditation of GQN minerals. Canadian Mineralogist, 44: 1557-1560. https://doi.org/10.2113/gscanmin.44.6.1557; Cody C.A.; L. Dicarlo & Darlington R.K. (1979). Vibrational and Thermal Study of Antimony Oxides. Inorganic Chemistry, 18 (6): 1572-1576. https://doi.org/10.1021/ic50196a036; Corby Anderson G. (2019). SME Mineral Processing and Extractive Metallurgy Handbook. Society for Mining, Metallurgy and Exploration, USA, 2203 pp.; Damour A. (1841). Sur la roméite, nouvelle espèce minérale, de St. Marcel, Piemont. Annales des Mines, 20 (3): 247-254. https://rruff.info/uploads/Annales_des_mines_20_1841_247.pdf; Dana J.D. (1850). A system of mineralogy: Comprising the most recent discoveries, 3rd edition. George P. Putnam, New York, London, 711 pp.; Delobel R.; H. Baussart & Leroy J.M. (1983). X-ray photoelectron spectroscopy study of uranium and antimony mixed metal-oxide catalysts. Journal of the Chemical Society, Faraday Transactions, 79: 879-891. https://doi.org/10.1039/f19837900879; Gadsden J.A. (1975). Infrared spectra of minerals and related inorganic compounds. Buttherworth & CO, London, 277 pp.; Garbassi F. (1980). XPS and AES Study of Antimony Oxides. Surface and interface analysis, 5(2): 165-169. https://doi.org/10.1002/sia.740020502; Garcia-Guinea J.; Garrido F.; López-Arce P.; Correcher V. & Delafiguera J. (2017). Spectral green cathodoluminescence emission from surfaces of insulators with metal-hydroxyl bonds. Journal of Luminescence, 190: 128-135. https://doi.org/10.1016/j.jlumin.2017.05.039; Garcia-Guinea J.; Correcher V.; Can N.; Garrido F. & Townsend P.D. (2018). Cathodoluminescence spectra recorded from surfaces of solids with hydrous molecules. Journal of Electron Spectroscopy and Related Phenomena, 227: 1-8. https://doi.org/10.1016/j.elspec.2018.05.008; Gilliam S.J.; Jensen J.O.; Banerjee A.; Zeroka D.; Kirkby S.J. & Merrow C.N. (2004). A theoretical and experimental study of Sb4O6: vibrational analysis, infrared and Raman spectra. Spectrochimica Acta Part A: Molecular Spectroscopy, 60: 425-434 https://doi.org/10.1016/S1386-1425(03)00245-2 PMid:14670509; Gottlieb P.; Wilkie G.; Sutherland D.; Ho-Tun E.; Suthers S.; Perera K.; Jenkins B.; Spencer S.; Butcher A. & Rayner J. (2000). Using quantitative electron microscopy for process mineralogy applications. The Journal of the Minerals, Metals and Materials Society, 52: 24-25 https://doi.org/10.1007/s11837-000-0126-9; Gründer W.; Pätzold H. & Strunz H. (1962). Sb2O4 als Mineral (Cervantit). Neues Jahrbuch für Mineralogie / Monatshefte, 5: 93-98.; Gunasekaran S, G. Anbalagan, G. & Pandi S. (2006). Raman and infrared spectra of carbonates of calcite structure. Journal of the Raman Spectroscopy, 37: 892-899 https://doi.org/10.1002/jrs.1518; Hussak E. & Prior G.T. (2018) Lewisite and zirkelite, two new Brazilian minerals. Mineralogical Magazine, 11: 80-88. https://doi.org/10.1180/minmag.1895.011.50.05; Izquierdo R.; Sacher E. & Yelon A. (1989). X-ray photoelectron spectra of antimony oxides. Applied Surface Science, 40: 175-177. https://doi.org/10.1016/0169-4332(89)90173-6; Kharbish S. & Jelen S. (2016). Raman spectroscopy of the Pb-Sb sulfosalts minerals: Boulangerite, jamesonite, robinsonite and zinkenite. Vibrational Spectroscopy, 85: 157-166. https://doi.org/10.1016/j.vibspec.2016.04.016; Li N.; Xia Y.; Mao Z.; Wang L.; Guan Y. & Zheng A. (2012) Influence of antimony oxide on flammability of polypropylene/intumescent flame retardant system. Polymer Degradation and Stability, 97(9): 1737-1744. https://doi.org/10.1016/j.polymdegradstab.2012.06.011; López G.P.; Castuer D.G. & Ratner B. (1991). XPS O1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surface and Interface Analysis, 17: 267-272. https://doi.org/10.1002/sia.740170508; Makreski P.; G. Petrusevski, S. Ugarkovic & G. Jovanovski (2013) Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts. Vibrational Spectroscopy 68: 177-182. https://doi.org/10.1016/j.vibspec.2013.07.007; Marco J.F.; Gancedo J.R.; Ortiz J. & Gautier J.L. (2004). Characterization of the spinel-related oxides NixCO3−xO4 (x=0.3,1.3,1.8) prepared by spray pyrolysis at 350°C. Applied Surface Science, 227: 175-186. https://doi.org/10.1016/j.apsusc.2003.11.065; Meškinis S.; Vasiliauskas A.; Andrulevičius M.; Peckus D.; Tamulevičius S. & Viskontas K. (2020). Diamond like carbon films containing Si: Structure and nonlinear optical properties. Materials, 13 (4): 1-15. https://doi.org/10.3390/ma13041003 PMid:32102249 PMCid:PMC7079637; Martín, J.D. (2006). XPowder: Programa para análisis cualitativo y cuantitativo por difracción de rayos X. Macla, 4: 35-44.; Miller, P.J. & Cody C.A. (1982). Infrared and Raman investigation of vitreous antimony trioxide. Spectrochimica Acta Part A: Molecular Spectroscopy, 38(5): 555-559 https://doi.org/10.1016/0584-8539(82)80146-3; Morgan W.E.; Stec, W.J. & Van Wazer J.R. (1973). Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorganic Chemistry, 12(4): 953-955. https://doi.org/10.1021/ic50122a054; Moulder J.F.; Stickle W.F.; Sobol P.E. & Bomben K.D. (1992) Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie, USA, 261 pp.; Vitaliano C.J. & Mason B. (1952). Stibiconite and Cervantite. American Mineralogist, 37: 982-999. http://www.minsocam.org/ammin/AM37/AM37_982.pdf; Multani R.S.; Feldmann T. & Demopoulos G.P. (2016). Antimony in the metallurgical industry: A review of its chemistry and environmental stabilization options. Hydrometallurgy 164: 141-153. https://doi.org/10.1016/j.hydromet.2016.06.014; Orecchio S. (2013) Micro-analytical characterization of decorations in handmade ancient floor tiles using inductively coupled plasma optical emission spectrometry (ICP-OES). Microchemical Journal, 108: 137-150. https://doi.org/10.1016/j.microc.2012.10.011; Rouse R.C.; Dunn P.J.; Peacor Dr. & Wang L. (1998), Structural studies of the natural antimonian pyrochlores. I. Mixed valency, cation site splitting, and symmetry reduction in lewisite. Journal of Solid State Chemistry, 141: 562-569. https://doi.org/10.1006/jssc.1998.8019; Schaller W.T. (1916). Mineralogical notes. Schneebergite and Romeite. U.S. Geological Survey Bulletin, 610: 81-95 https://pubs.usgs.gov/bul/0610/report.pdf; Fleischer M (1962). New mineral names. American Mineralogist, 47(9-10): 1216-1223.; Siebert H. (1959). Infrared spectra of telluric acids, tellurates and antimonates. Zeitschrift für anorganische und Allgemeine Chemie, 301: 161-170. https://doi.org/10.1002/zaac.19593010305; Smirnov M.Y.; A.V. Kalinkin & V.I. Bukhtiyarov (2007). X-ray photoelectron spectroscopic study of the interaction of supported metal catalysts with NOx. Journal of Structural Chemistry, 48: 1053-1060 https://doi.org/10.1007/s10947-007-0170-1; Stevens J.G.; Etter R.M. & Setzer E.W. (1993). 121Sb Mössbauer spectroscopic study of the mineral stibiconite. Nuclear Instruments and Methods in Physics Research B, 76: 252-253. https://doi.org/10.1016/0168-583X(93)95199-F; Stevens-Kalceff M.A. & Phillips M.R. (1995). Cathodoluminescence micro-characterization of the defect structure of quartz. Physical Review B., 52: 3122-3134 https://doi.org/10.1103/PhysRevB.52.3122 PMid:9981428; Wagner C.D.; Naumkin A.V.; Kraut-Vass A.; Allison J.W.; Powell C.J. & Rumble J.R. Jr. (2003) NIST Standard Reference Database 20, Version 3.4, web version. http:/srdata.nist.gov/xps/; Wilson S.C.; P.V. Lockwood, P.M. Ashley &Tighe M. (2010). The chemistry and behavior of antimony in the soil environment with comparisons to arsenic: A critical review. Environmental Pollution, 158 (5): 1169-1181, https://doi.org/10.1016/j.envpol.2009.10.045 PMid:19914753; Zubkova V.; D.Y. Pushcharowsky, D. Atencio, A.V. Arakcheeva & P.A. Matioli. (2000) The crystal structure of lewisite, (Ca,Sb3+,Fe3+,Al,Na,Mn)2(Sb5+,Ti)2O6(OH). Journal of Alloys and Compounds, 296: 75-79. https://doi.org/10.1016/S0925-8388(99)00513-7; https://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/1053

  5. 5
    Academic Journal
  6. 6
    Book
  7. 7
  8. 8
    Book
  9. 9
    Book
  10. 10
  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المساهمون: Ministerio de Economía y Competitividad (España), Swiss Federal Institute of Aquatic Science and Technology

    مصطلحات موضوعية: Thallium, Pyrite, Jarosite, Kerogen, Thallium XANES, Soil pollution

    Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2014-55321-P; Postprint; https://doi.org/10.1016/j.scitotenv.2020.137162; Sí; Science of The Total Environment 717: 137162 (2020); http://hdl.handle.net/10261/200618; http://dx.doi.org/10.13039/501100003329

  15. 15
    Electronic Resource
  16. 16
  17. 17
  18. 18
    Electronic Resource

    URL: http://hdl.handle.net/10261/310004
    Publisher's version
    http://dx.doi.org/10.3989/egeol.44775.621
    Sí
    info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105469RB-C22/ES/BIOMETEORIOZACION DE ROCAS Y PROCESOS DE FORMACION DE SUELO EN LA ZONA CRITICA POLAR: APROXIMACION MULTIESCALAR

  19. 19
  20. 20
    Electronic Resource