يعرض 1 - 20 نتائج من 386 نتيجة بحث عن '"Gallego Rendón, Ramón Alfonso"', وقت الاستعلام: 0.64s تنقيح النتائج
  1. 1
    Book

    المساهمون: Luis Miguel Vargas Valencia, David Restrepo Suárez

    وصف الملف: 255 páginas; application/pdf

    Relation: Colección Trabajos de investigación; J. Das, Power System Protective Relaying. CRC Press, 2017.; A. Dos Santos and M. C. De Barros, “Stochastic modeling of power system faults,” Electr. Power Syst. Res., vol. 126, pp. 29–37, 2015; G. Morales-España, J. Mora-Flórez, and H. Vargas-Torres, “Elimination of multiple estimation for fault location in radial power systems by using fundamental single-end measurements,” IEEE Trans. Power Deliv., vol. 24, no. 3, pp. 1382–1389, Jun. 2009.; G. Kjolle, O. Gjerde, B. Hjartsjo, H. Engen, L. Haarla, L. Koivisto, and P. Lindblad, “Protection system faults–a comparative review of fault statistics,” in 2006 Int. Conf. on Probab. Meth. App. to Power Syst. Stockholm, Sweden: IEEE, 2006, pp. 1–7.; P. Heine and M. Lehtonen, “Voltage sag distributions caused by power system faults,” IEEE Trans. on Power Syst., vol. 18, no. 4, pp. 1367–1373, 2003.; S. Babu, E. Shayesteh, and P. Hilber, “Analysing correlated events in power system using fault statistics,” in 2016 Int. Conf. on Prob. Meth. App. to Power Syst. (PMAPS), Beijing, China, Dec. 2016, pp. 1–6.; J. L. Blackburn and T. J. Domin, Protective relaying: principles and applications. CRC Press, 2015.; T. Gonen, Modern power system analysis. CRC Press, 2013.; P. M. Anderson, Analysis of faulted power systems. IEEE Press New York, 1995, vol. 445.; A. Acosta, Introducción al análisis de circuitos eléctricos: un enfoque generalizado. Pereira: Editorial Universidad Tecnológica de Pereira, 2017.; N. Tleis, Power systems modelling and fault analysis: theory and practice. Elsevier, 2007.; G. Kindermann, Curto-circuito. Saggra Luzzatto, 1997.; C. L. Fortescue, “Method of symmetrical co-ordinates applied to the solution of polyphase networks,” Trans. of the Am. Inst of Elect. Eng., vol. 37, no. 2, pp. 1027–1140, 1918.; R. Le Doeuff and M. E. H. Zaïm, Rotating Electrical Machines. Wiley Online Library, 2010.; J. A. Melkebeek, Electrical Machines and Drives. Springer, 2018.; S. Perez-Londoño and J. López-Quintero, Transformadores eléctricos. Pereira: Editorial Universidad Tecnológica de Pereira, 2018.; J. Winders, Power transformers: principles and applications. CRC Press, 2002.; J. Grainger andW. Stevenson, Análisis de sistemas de potencia. McGraw Hill, 1996.; L. L. J. Muñoz Galeano, N. and F. Villada Duque, “Metodología para la determinación del desplazamiento angular en transformadores trifásicos,” TecnoLógicas, vol. 20, no. 38, pp. 41–53, 2017.; T. Gonen, Electrical power transmission system engineering: analysis and design. CRC Press, 2011.; M. Farzaneh, S. Farokhi, and W. A. Chisholm, Electrical design of overhead power transmission lines. McGraw Hill, 2013.; J. Carson, “Wave propagation in overhead wires with ground return,” Bell Syst. Tech. J., vol. 5, no. 4, pp. 539–554, 1926.; L. Chavarro-Barrera, S. Pérez-Londoño, and J. Mora-Flórez, “An adaptive approach for dynamic load modeling in microgrids,” IEEE Trans. on Smart Grid, Jul. 2021.; W. F. Tinney and C. E. Hart, “Power flow solution by newton’s method,” IEEE Trans. on Power Appar. and Syst., no. 11, pp. 1449–1460, 1967.; N. J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix. Oxford University Press, 1990.; B. D. Anderson, P.M. and A. Shah, “An indefinite admittance network description for fault computation,” IEEE Trans. on Power Appar. and Syst., vol. 89, no. 6, pp. 1215–1219, 1970.; G. Stagg and A. El-Abiad, Computer methods in power systems analysis. McGraw Hill, 1968.; G.-E. M. Gallego, R.A. and A. Escobar-Zuluaga, Flujo de carga en sistemas de transmisión - Modelamiento y análisis. Pereira: Editorial Universidad Tecnológica de Pereira, 2016.; J. Dagenhart, “The 40-ohm ground fault phenomenon,” in 1999 Rur. Electr. Power Conf. (Cat. No. 99CH36302). IEEE, 1999, pp. C4/1–C4/3.; Y. Zhong, X. Kang, Z. Jiao, Z. Wang, and J. Suonan, “A novel distance protection algorithm for the phase-ground fault,” IEEE Trans. on Power Del., vol. 29, no. 4, pp. 1718–1725, 2013.; J. Monticelli, Fluxo de carga em redes de energia elétrica. Blucher, 1983.; https://doi.org/10.22517/9789587225877; Universidad Tecnológica de Pereira; Repositorio Institucional Universidad Tecnológica de Pereira; https://repositorio.utp.edu.co/home; https://hdl.handle.net/11059/13968

  2. 2
    Academic Journal

    Alternate Title: Optimal Power Flow in AC/DC Distribution Systems Under an Energy-Water-Carbon Nexus Approach for the Sustainable Development of Isolated Communities. (English)
    Fluxo de potência ideal em sistemas de distribuição ac/dc sob uma abordagem de nexo energia-água-carbono para o desenvolvimento sustentável de comunidades isoladas. (Portuguese)

    المصدر: Ciencia e Ingenieria Neogranadina; jul-dic2024, Vol. 34 Issue 2, p43-61, 19p

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Electronic Resource

    مصطلحات الفهرس: Trabajo de grado - Pregrado

    URL: https://hdl.handle.net/11059/14929
    https://repositorio.utp.edu.co/home
    [1] “Analyses of efficiency/energy-savings of dc power distribution systems/microgrids: Past, present and future,” International Journal of Electrical Power Energy Systems, vol. 104, pp. 89–100, 2019. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0142061518305623
    [2] H. M. Ahmed, A. B. Eltantawy, and M. Salama, “A reliability-based stochastic planning framework for ac-dc hybrid smart distribution systems,” International Journal of Electrical Power Energy Systems, vol. 107, pp. 10–18, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061518314595
    [3] S. Mousavizadeh, T. Ghanizadeh Bolandi, A. Alahyari, A. Dadashzade, and M.-R. Haghifam, “A novel unbalanced power flow analysis in active ac-dc distribution networks considering pwm convertors and distributed generations,” International Journal of Electrical Power Energy Systems, vol. 138, p. 107938, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061521011480
    [4] D. M. Larruskain, I. Zamora, O. Abarrategui, and A. Iturregi, “Vsc-hvdc configurations for converting ac distribution lines into dc lines,” International Journal of Electrical Power Energy Systems, vol. 54, pp. 589–597, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061513003360
    [5] C.-H. Noh, C.-H. Kim, G.-H. Gwon, M. O. Khan, and S. Z. Jamali, “Development of protective schemes for hybrid ac/dc low-voltage distribution system,” International Journal of Electrical Power Energy Systems, vol. 105, pp. 521–528, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061518315588
    [6] S. S. Reddy, “Solution of multi-objective optimal power flow using efficient no. 2, meta-heuristic p. 401– algorithm,” 413, 2018, Electrical cited by: Engineering, 28. [Online]. vol. 100, Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014521686&doi=10.1007% 2fs00202-017-0518-2&partnerID=40&md5=156dc1fc0c5c146d5515c51f94d8411d
    [7] T. Zhang, Y. Mu, J. Zhao, H. Jia, and Q. Xiao, “Distributed opf for pet-based ac/dc distribution networks with convex relaxation and linear approximation,” IEEE Transactions on Smart Grid, vol. 13, no. 6, pp. 4340–4354, 2022.
    [8] Z. Yang, F. Yang, X. Liao, H. Wei, H. Min, Y. Lei, L. Su, and Y. Shen, “Two stage affinely adjustable robust optimal scheduling for ac/dc hybrid distribution network based on source–grid–load–storage coordination,” Energy Reports, vol. 8, pp. 15686–15701, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S2352484722025069
    [9] K. Alshammari, H. Alrajhi, and R. El-Shatshat, “Optimal power flow for hybrid ac/mtdc systems,” Arabian Journal for Science and Engineering, vol. 47, no. 3, pp. 2977–2986, Mar 2022. [Online]. Available: https://doi.org/10.1007/s13369-021-05983-z
    [10] A. Nur and A. Kaygusuz, “Load flow analysis with newton–raphson and gauss–seidel methods in a hybrid ac/dc system,” IEEE Canadian Journal of Electrical and Computer Engineering, vol. 44, no. 4, pp. 529–536, 2021.
    [11] G. Yang, P. Dong, M. Liu, and H. Wu, “Research on random fuzzy power flow calculation of ac/dc hybrid distribution network based on unified iterative method,” IET Renewable Power Generation, vol. 15, no. 4, pp. 731–745, 2021. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/rpg2.12063
    [12] Y. Zhang, J. Zhang, and G. Liu, “Hybrid power flow calculation of ac-dc flexible interconnected system in distribution network,” in 2021 IEEE Sustainable Power and Energy Conference (iSPEC), 2021, pp. 2674–2679.
    [13] H. Gao, J. Wang, Y. Liu, L. Wang, and J. Liu, “An improved admm-based distributed optimal operation model of ac/dc hybrid distribution network considering wind power uncertainties,” IEEE Systems Journal, vol. 15, no. 2, pp. 2201–2211, 2021.
    [14] M. M. Rezvani and S. Mehraeen, “A generalized model for unified ac-dc load flow analysis,” in 2021 IEEE Texas Power and Energy Conference (TPEC), 2021, pp. 1–6.
    [15] Z. Sabzian Molaee, E. Rokrok, and M. Doostizadeh, “A unified power flow approach using vsc-efficiency for ac-dc distribution systems operating at grid connected and islanded modes,” International Journal of Electrical Power Energy Systems, vol. 130, p. 106906, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0142061521001460
    [16] H. Yin, Y. Liu, Q. Li, X. Liu, H. Gao, and J. Liu, “Power flow calculation for distribution system with multi-port pets an improved ac/dc decoupling iterative method,” in 2020 IEEE/IAS Industrial and Commercial Power System Asia (ICPS Asia), 2020, pp. 562–567.
    [17] H. Yin, Q. Li, Y. Liu, X. Liu, Y. Xiang, and J. Liu, “Power flow calculation for a distribution system with multi-port pets: an improved ac-dc decoupling iterative method,” Global Energy Interconnection, vol. 3, no. 4, pp. 313–323, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2096511720300906
    [18] Z. Zhu, D. Liu, Q. Liao, F. Tang, J. J. Zhang, and H. Jiang, “Optimal power scheduling for a medium voltage ac/dc hybrid distribution network,” Sustainability, vol. 10, no. 2, 2018. [Online]. Available: https://www.mdpi.com/2071-1050/10/2/318
    [19] R. Zhong, Y. Teng, X. Wang, Y. Zhu, and H. Zhang, “Probabilistic optimal power f low calculation of ac/dc hybrid distribution network with photovoltaic power and electric vehicles,” in 2018 International Conference on Power System Technology (POWERCON), 2018, pp. 20–27.
    [20] S. Liu, M. Miao, T. Shi, and J. Li, “Optimal power flow in hybrid ac/dc distribution network considering different control strategies of vsc stations,” in 2018 China International Conference on Electricity Distribution (CICED), 2018, pp. 1380–1384.
    [21] Z. Zhuo, N. Zhang, C. Kang, R. Dong, and Y. Liu, “Optimal operation of hybrid ac/dc distribution network with high penetrated renewable energy,” in 2018 IEEE Power Energy Society General Meeting (PESGM), 2018, pp. 1–5.
    [22] K. Murari and N. P. Padhy, “A network-topology-based approach for the load-flow solution of ac–dc distribution system with distributed generations,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1508–1520, 2019.
    [23] M. M. Rezvani and S. Mehraeen, “A generalized model for unified ac-dc load flow analysis,” in 2021 IEEE Texas Power and Energy Conference (TPEC), 2021, pp. 1–6.
    [24] M. Mousavizadeh, M.-H. Shariatkhah, and M.-R. Haghifam, “Load flow analysis for ac/dc distribution systems with distributed generations,” Electric Power Components and Systems, vol. 45, no. 10, pp. 1057–1067, 2017. [Online]. Available: https://doi.org/10.1080/15325008.2017.1318321
    [25] M. O. Khan, S. Z. Jamali, C.-H. Noh, G.-H. Gwon, and C.-H. Kim, “A load flow analysis for ac/dc hybrid distribution network incorporated with distributed energy resources for different grid scenarios,” Energies, vol. 11, no. 2, 2018. [Online]. Available: https://www.mdpi.com/1996-1073/11/2/367
    [26] P. Ke, Z. Cong, W. Shuying, Y. Xi, L. Zhao, L. Xianfei, and W. Kai, “Gauss-newton hybrid power flow algorithm for ac-dc distribution system,” in 2016 China International Conference on Electricity Distribution (CICED), 2016, pp. 1–6
    [27] R. Cespedes, “New method for the analysis of distribution networks,” IEEE Transactions on Power Delivery, vol. 5, no. 1, pp. 391–396, 1990.
    [28] A. C. Rueda-Medina, J. F. Franco, M. J. Rider, A. Padilha-Feltrin, and R. Romero, “A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems,” Electric Power Systems Research, vol. 97, pp. 133–143, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779612003616
    [29] A. Valencia, R. A. Hincapie, and R. A. Gallego, “Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks,” Journal of Energy Storage, vol. 34, p. 102158, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2352152X20319848
    [30] N. Alguacil, A. Motto, and A. Conejo, “Transmission expansion planning: a mixed-integer lp approach,” IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1070–1077, 2003.

  7. 7
    Academic Journal

    المصدر: COLOMBIAN JOURNAL OF ADVANCED TECHNOLOGIES; Vol. 2 No. 34 (2019): July - December; 1-8 ; REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA); Vol. 2 Núm. 34 (2019): Julio – Diciembre; 1-8 ; 2500-8625 ; 1692-7257

    وصف الملف: application/pdf

  8. 8
    Academic Journal

    المصدر: Ciencia e Ingenieria Neogranadina; Vol. 29 No. 2 (2019); 115-128 ; Ciencia e Ingeniería Neogranadina; Vol. 29 Núm. 2 (2019); 115-128 ; Ciencia e Ingeniería Neogranadina; v. 29 n. 2 (2019); 115-128 ; 1909-7735 ; 0124-8170

    وصف الملف: application/pdf; text/xml

    Relation: http://revistas.unimilitar.edu.co/index.php/rcin/article/view/3635/3601; http://revistas.unimilitar.edu.co/index.php/rcin/article/view/3635/3732; Saboori, H., y Abdi, H. (2013, Abril-Mayo). Application of a grid scale energy storage system to reduce distribution network losses. Presentado en: 18th Electric Power Distribution Conference, Kermanshah, Iran. Doi: https://doi.org/ 10.1109/EPDC.2013.6565963; Bozchalui, M. C., y Sharma, R. (2014, Julio). Operation strategies for energy storage systems in distribution networks. Presentado en: IEEE Power and Energy Society General Meeting, National Harbor, USA. Doi: https://doi.org/10.1109/PESGM.2014.6939483; Luna, A. C., Diaz, N. L., Andrade, F., Graells, M., Guerrero, J. M., y Vasquez, J. C. (2015, Junio). Economic power dispatch of distributed generators in a grid-connected microgrid. Presentado en: 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), seúl, Corea del sur. Doi: https://doi.org/10.1109/ICPE.2015.7167927; Miranda, I., Leite, H., y Silva, N. (2016). Coordination of multifunctional distributed energy storage systems in distribution networks. IET Generation, Transmission & Distribution, Vol.10 (3), pp. 726–735. Doi: https://doi.org/10.1049/iet-gtd.2015.0398; Yan, R.W., y Xiao, H.-M. (2016, Octubre). Energy storage system optimization strategy in the distribution network based on active set method. Presentado en: IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), Atlanta, USA. Doi: https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.45; Zheng, Y., Zhao, J., Song, Y., Luo, F., Meng, K., Qiu, J., y Hill, D. J. (2018). Optimal operation of battery energy storage system considering distribution system uncertainty. IEEE Transactions on Sustainable Energy, Vol.9 (3), pp. 1051-1060. Doi: https://doi.org/10.1109/TSTE.2017.2762364; Ke, B.R., Ku, T.T., Ke, Y.L., Chung, C.Y., y Chen, H.Z. (2016). Sizing the battery energy storage system on a university campus with prediction of load and photovoltaic generation. IEEE Transactions on Industry Applications, Vol.52 (2), pp. 1136–1147. Doi: https://doi.org/10.1109/TIA.2015.2483583; Valencia, A., (2017). Impacto de los almacenadores de energía en la operación de sistemas de distribución. Trabajo de grado. Facultad de ingenierias, programa de Ingeniería Eléctrica, Universidad Tecnológica de Pereira. Pereira, 73 p.; http://revistas.unimilitar.edu.co/index.php/rcin/article/view/3635

  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المصدر: COLOMBIAN JOURNAL OF ADVANCED TECHNOLOGIES; Vol. 1 No. 31 (2018): January - June; 120-127 ; REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA); Vol. 1 Núm. 31 (2018): Enero – Junio; 120-127 ; 2500-8625 ; 1692-7257

    مصطلحات موضوعية: clusterización, heurísticas, ILS, infactibilidad, MDVRP

    وصف الملف: application/pdf

  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المصدر: Tecnura Journal; Vol. 19 No. 43 (2015): January - March; 106-118 ; Tecnura; Vol. 19 Núm. 43 (2015): Enero - Marzo; 106-118 ; 2248-7638 ; 0123-921X

    وصف الملف: application/pdf; text/html

    Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/8149/9840; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/8149/10421; Bernal-Agustín, J. (1998). Application of Genetic Algorithms To the Optimal Design of Power Distribution Systems. Zaragoza, España: Universidad deZaragoza.; Billinton, R.yAllan, R. (1996). Reliability Evaluation of Power Systems. NuevaYork: Plenum.; Carrano, E., Soarez, L., Takahashi, R., Saldanha, R.y Neto, O. (2006). Electric Distribution Network Multiobjective Design Using a Problem-Specific Genetic Algorithm. IEEE, 21 (2), 995-1005.; Deb, K. (2004). Multi-Objective Optimization using Evolutionary Algorithms. Nueva York: John Wiley y Sons.; Deb, K., Amrit, P., Agarwal, S.y Meyarivan, T. (2000). A Fast and Elitist Multiobjective Genetic Algorithm. Nueva Delhi: Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology.; Gallego, R., Escobar, A. y Toro, E. (2008). Técnicas metaheurísticas de optimización. Pereira: Textos Universitarios Universidad Tecnológica de Pereira.; Ganguly, S., Sahoo, N. y Das, D. (2011). Multi-Objective Planning of Electrical Distribution Systems Incorporating Shunt Capacitor Banks. International Conference on Energy, Automation, and Signals (ICEAS) (pp. 1-6). Bhubaneswar, India.; Ganguly, S., Sahoo, N. y Das, D. (2013). Multi-Objective Planning of Electrical Distribution Systems Using Dynamic Programming. Electrical Power and Energy Systems, 46, 65-78.; Kayu, G.y Ooka, R. (2009). Application Multi-Objective Genetic Algorithm for Optimal Design Method of Distributed Energy System. Eleventh Intenational IBPSA Conference, (pp. 162-172). Glasgow, Escocia.; Kong, T., Cheng, H., Hu, Z., Wang, C., Chen, C.y Gao Y. (2008). Multiobjective Planning of Open-Loop mv Distribution Networks Using ComGIS Network Analysis and MOGA. Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (págs. 1340-1346). NanJing, China.; Mantway, A., y Al-Muhaini, M. (2008). Multi-objective BPSO algorithm for distribution system expansion planning including distributed generation. Transmission and Distribution Conference and Exposition T&D. IEEE/PES (pp. 1-8). Chicago, USA.; Mori, H., y Yamada y. (2007). An efficient multi-objective meta-heuristic method for distribution network expansion planning. IEEE Lausanne Power Tech Conference, 374-379.; Nahman, J. y Peric, D. (2008). Optimal Planning of Radial Distribution Networks by Simulated Annealing Technique. IEEE Transactions on Power Systems, 23 (2), 790-795.; Ramírez, I. yBernal, J. (2001). Reliability and Costs Optimization for Distribution Network Expansion Using an Evolutionary Algorithm. IEEE Transactions on Power Systems, 16 (1), 111-118.; Ramírez, I. y Domínguez, J. (2004). Possibilistic Model Based on Fuzzy Sets for the Multiobjective Optimal Planning of Electric Power Distribution Networks. IEEE Transactions on Power Systems, 19 (4), 1801-1810.; Ramírez, I. yDomínguez, J. (2006). New Multiobjective Tabu Search Algorithm for Fuzzy Optimal Planning of Power Distribution Systems. IEEE Transactions on Power Systems, 21 (1), 224-233.; Sahoo, N., Ganguly, S. y Das, D. (2012). Multi-Objective Planning of Electrical Distribution Systems Incorporating Sectionalizing Switches and Tie-Lines Using Particle Swarm Optimization. Swarm and Evolutionary Computation, 3, 15-32.; Shirmohammadi, D., Hong, H., Semlyen, A.y Luo, G. (1988). A Compensation-Based Power Flow Method for Weakly Meshed Distribution and Transmission Networks. IEEE Transactions on Power Systems, 3 (2), 753-762.; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/8149

  15. 15
    Book
  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
    Electronic Resource
  20. 20
    Electronic Resource

    مصطلحات الفهرس: Libro

    URL: https://hdl.handle.net/11059/13968
    https://doi.org/10.22517/9789587225877
    https://repositorio.utp.edu.co/home
    Colección Trabajos de investigación
    J. Das, Power System Protective Relaying. CRC Press, 2017.
    A. Dos Santos and M. C. De Barros, “Stochastic modeling of power system faults,” Electr. Power Syst. Res., vol. 126, pp. 29–37, 2015
    G. Morales-España, J. Mora-Flórez, and H. Vargas-Torres, “Elimination of multiple estimation for fault location in radial power systems by using fundamental single-end measurements,” IEEE Trans. Power Deliv., vol. 24, no. 3, pp. 1382–1389, Jun. 2009.
    G. Kjolle, O. Gjerde, B. Hjartsjo, H. Engen, L. Haarla, L. Koivisto, and P. Lindblad, “Protection system faults–a comparative review of fault statistics,” in 2006 Int. Conf. on Probab. Meth. App. to Power Syst. Stockholm, Sweden: IEEE, 2006, pp. 1–7.
    P. Heine and M. Lehtonen, “Voltage sag distributions caused by power system faults,” IEEE Trans. on Power Syst., vol. 18, no. 4, pp. 1367–1373, 2003.
    S. Babu, E. Shayesteh, and P. Hilber, “Analysing correlated events in power system using fault statistics,” in 2016 Int. Conf. on Prob. Meth. App. to Power Syst. (PMAPS), Beijing, China, Dec. 2016, pp. 1–6.
    J. L. Blackburn and T. J. Domin, Protective relaying: principles and applications. CRC Press, 2015.
    T. Gonen, Modern power system analysis. CRC Press, 2013.
    P. M. Anderson, Analysis of faulted power systems. IEEE Press New York, 1995, vol. 445.
    A. Acosta, Introducción al análisis de circuitos eléctricos: un enfoque generalizado. Pereira: Editorial Universidad Tecnológica de Pereira, 2017.
    N. Tleis, Power systems modelling and fault analysis: theory and practice. Elsevier, 2007.
    G. Kindermann, Curto-circuito. Saggra Luzzatto, 1997.
    C. L. Fortescue, “Method of symmetrical co-ordinates applied to the solution of polyphase networks,” Trans. of the Am. Inst of Elect. Eng., vol. 37, no. 2, pp. 1027–1140, 1918.
    R. Le Doeuff and M. E. H. Zaïm, Rotating Electrical Machines. Wiley Online Library, 2010.
    J. A. Melkebeek, Electrical Machines and Drives. Springer, 2018.
    S. Perez-Londoño and J. López-Quintero, Transformadores eléctricos. Pereira: Editorial Universidad Tecnológica de Pereira, 2018.
    J. Winders, Power transformers: principles and applications. CRC Press, 2002.
    J. Grainger andW. Stevenson, Análisis de sistemas de potencia. McGraw Hill, 1996.
    L. L. J. Muñoz Galeano, N. and F. Villada Duque, “Metodología para la determinación del desplazamiento angular en transformadores trifásicos,” TecnoLógicas, vol. 20, no. 38, pp. 41–53, 2017.
    T. Gonen, Electrical power transmission system engineering: analysis and design. CRC Press, 2011.
    M. Farzaneh, S. Farokhi, and W. A. Chisholm, Electrical design of overhead power transmission lines. McGraw Hill, 2013.
    J. Carson, “Wave propagation in overhead wires with ground return,” Bell Syst. Tech. J., vol. 5, no. 4, pp. 539–554, 1926.
    L. Chavarro-Barrera, S. Pérez-Londoño, and J. Mora-Flórez, “An adaptive approach for dynamic load modeling in microgrids,” IEEE Trans. on Smart Grid, Jul. 2021.
    W. F. Tinney and C. E. Hart, “Power flow solution by newton’s method,” IEEE Trans. on Power Appar. and Syst., no. 11, pp. 1449–1460, 1967.
    N. J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix. Oxford University Press, 1990.
    B. D. Anderson, P.M. and A. Shah, “An indefinite admittance network description for fault computation,” IEEE Trans. on Power Appar. and Syst., vol. 89, no. 6, pp. 1215–1219, 1970.
    G. Stagg and A. El-Abiad, Computer methods in power systems analysis. McGraw Hill, 1968.
    G.-E. M. Gallego, R.A. and A. Escobar-Zuluaga, Flujo de carga en sistemas de transmisión - Modelamiento y análisis. Pereira: Editorial Universidad Tecnológica de Pereira, 2016.
    J. Dagenhart, “The 40-ohm ground fault phenomenon,” in 1999 Rur. Electr. Power Conf. (Cat. No. 99CH36302). IEEE, 1999, pp. C4/1–C4/3.
    Y. Zhong, X. Kang, Z. Jiao, Z. Wang, and J. Suonan, “A novel distance protection algorithm for the phase-ground fault,” IEEE Trans. on Power Del., vol. 29, no. 4, pp. 1718–1725, 2013.
    J. Monticelli, Fluxo de carga em redes de energia elétrica. Blucher, 1983.