-
1Academic Journal
المؤلفون: Chen, Peng, Duong, Xuan Thinh, Li, Ji, Yan, Lixin
المصدر: Chen , P , Duong , X T , Li , J & Yan , L 2023 , ' Sharp endpoint estimates for Schrödinger groups on Hardy spaces ' , Journal of Differential Equations , vol. 371 , pp. 660-690 . https://doi.org/10.1016/j.jde.2023.07.007
مصطلحات موضوعية: Davies-Gaffney estimate, Hardy space, Schrödinger group, Sharp endpoint estimate, Space of homogeneous type
وصف الملف: application/pdf
الاتاحة: https://researchers.mq.edu.au/en/publications/d49f7229-b5a0-4921-9c59-7156878d636e
https://doi.org/10.1016/j.jde.2023.07.007
https://research-management.mq.edu.au/ws/files/296642812/281851239.pdf
http://www.scopus.com/inward/record.url?scp=85167972473&partnerID=8YFLogxK
http://purl.org/au-research/grants/arc/DP190100970
http://purl.org/au-research/grants/arc/DP220100285 -
2Academic Journal
المؤلفون: Mouhot, Clément, Russ, Emmanuel, Sire, Yannick
المساهمون: Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge UK (CAM), Laboratoire d'Analyse, Topologie, Probabilités (LATP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS)
المصدر: ISSN: 0021-7824 ; Journal de Mathématiques Pures et Appliquées ; https://hal.science/hal-00435240 ; Journal de Mathématiques Pures et Appliquées, 2011, 95 (1), pp.72-84. ⟨10.1016/j.matpur.2010.10.003⟩ ; https://doi.org/10.1016/j.matpur.2010.10.003.
مصطلحات موضوعية: Gaffney estimate, Poincaré inequality, fractional derivative, Lévy operator, Ornstein-Uhlenbeck, fractional Sobolev space, off-diagonal estimate, 26A33, 46N20, 47G20, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/0911.4563; hal-00435240; https://hal.science/hal-00435240; https://hal.science/hal-00435240v2/document; https://hal.science/hal-00435240v2/file/Poincare-fractionnaire-20.pdf; ARXIV: 0911.4563
-
3Academic Journal
المؤلفون: DUONG, Xuan Thinh, TRAN, Tri Dung
مصطلحات موضوعية: Musielak–Orlicz function, Musielak–Orlicz Hardy space, functional calculus, Davies–Gaffney estimate, Riesz transform, 42B20, 42B25, 46B70, 47G30
وصف الملف: application/pdf
Relation: http://projecteuclid.org/euclid.jmsj/1453731532; J. Math. Soc. Japan 68, no. 1 (2016), 1-30
-
4
المؤلفون: Dachun Yang, Renjin Jiang
المصدر: Journal of Functional Analysis. 258:1167-1224
مصطلحات موضوعية: Orlicz–Hardy space, Divergence form elliptic operator, Lusin-area function, Carleson measure, Combinatorics, symbols.namesake, Riesz transform, Dual, Fractional integral, BMO, Mathematics, Dual space, Mathematical analysis, Molecule, Hardy space, Gaffney estimate, Elliptic operator, Bounded function, symbols, Maximal function, John–Nirenberg inequality, Analysis, Self-adjoint operator
-
5
المؤلفون: Xuan Thinh Duong, Tri Dung Tran
المصدر: J. Math. Soc. Japan 68, no. 1 (2016), 1-30
مصطلحات موضوعية: Pure mathematics, General Mathematics, Mathematics::Classical Analysis and ODEs, Duality (optimization), functional calculus, 01 natural sciences, Functional calculus, symbols.namesake, Riesz transform, Musielak–Orlicz function, 46B70, 0103 physical sciences, 0101 mathematics, Heat kernel, Mathematics, Discrete mathematics, Musielak–Orlicz Hardy space, Mathematics::Functional Analysis, 010102 general mathematics, Holomorphic functional calculus, Davies–Gaffney estimate, Hardy space, Metric space, Bounded function, symbols, 010307 mathematical physics, 42B20, 42B25, 47G30
وصف الملف: application/pdf
-
6Academic Journal
المؤلفون: Yan, Xuefang
مصطلحات موضوعية: keyword:non-negative self-adjoint operator, keyword:Stein's square function, keyword:Bochner-Riesz means, keyword:Davies-Gaffney estimate, keyword:molecule Hardy space, msc:42B15, msc:42B25, msc:47F05
وصف الملف: application/pdf
Relation: mr:MR3336025; zbl:Zbl 06433721; reference:[1] Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds.J. Geom. Anal. 18 (2008), 192-248. Zbl 1217.42043, MR 2365673, 10.1007/s12220-007-9003-x; reference:[2] Blunck, S., Kunstmann, P. C.: Generalized Gaussian estimates and the Legendre transform.J. Oper. Theory 53 (2005), 351-365. Zbl 1117.47020, MR 2153153; reference:[3] Bui, T. A., Duong, X. T.: Boundedness of singular integrals and their commutators with BMO functions on Hardy spaces.Adv. Differ. Equ. 18 (2013), 459-494. Zbl 1275.42019, MR 3086462; reference:[4] Chen, P.: Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates.Colloq. Math. 133 (2013), 51-65. Zbl 1291.42012, MR 3139415, 10.4064/cm133-1-4; reference:[5] Chen, P., Duong, X. T., Yan, L.: $L^p$-bounds for Stein's square functions associated to operators and applications to spectral multipliers.J. Math. Soc. Japan. 65 (2013), 389-409. Zbl 1277.42011, MR 3055591, 10.2969/jmsj/06520389; reference:[6] Christ, M.: $L^p$ bounds for spectral multipliers on nilpotent groups.Trans. Am. Math. Soc. 328 (1991), 73-81. MR 1104196; reference:[7] Coifman, R. R., Weiss, G.: Non-Commutative Harmonic Analysis on Certain Homogeneous Spaces. Study of Certain Singular Integrals.Lecture Notes in Mathematics 242 Springer, Berlin (1971), French. Zbl 0224.43006, MR 0499948, 10.1007/BFb0058946; reference:[8] Davies, E. B.: Limits on $L^{p}$ regularity of self-adjoint elliptic operators.J. Differ. Equations 135 (1997), 83-102. MR 1434916, 10.1006/jdeq.1996.3219; reference:[9] Duong, X. T., Li, J.: Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus.J. Funct. Anal. 264 (2013), 1409-1437. Zbl 1271.42033, MR 3017269, 10.1016/j.jfa.2013.01.006; reference:[10] Duong, X. T., Ouhabaz, E. M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers.J. Funct. Anal. 196 (2002), 443-485. MR 1943098, 10.1016/S0022-1236(02)00009-5; reference:[11] Duong, X. T., Yan, L.: Spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates.J. Math. Soc. Japan. 63 (2011), 295-319. Zbl 1221.42024, MR 2752441, 10.2969/jmsj/06310295; reference:[12] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates.Mem. Am. Math. Soc. 214 (2011), no. 1007, 78 pages. Zbl 1232.42018, MR 2868142; reference:[13] Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators.Math. Ann. 344 (2009), 37-116. Zbl 1162.42012, MR 2481054, 10.1007/s00208-008-0295-3; reference:[14] Igari, S.: A note on the Littlewood-Paley function $g^{\ast}(f)$.Tohoku Math. J., II. Ser. 18 (1966), 232-235. MR 0199643, 10.2748/tmj/1178243450; reference:[15] Igari, S., Kuratsubo, S.: A sufficient condition for $L^p$-multipliers.Pac. J. Math. 38 (1971), 85-88. MR 0306793, 10.2140/pjm.1971.38.85; reference:[16] Kaneko, M., Sunouchi, G. I.: On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions.Tohoku. Math. J., II. Ser. 37 (1985), 343-365. Zbl 0579.42011, MR 0799527, 10.2748/tmj/1178228647; reference:[17] Kunstmann, P. C., Uhl, M.: Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces.Available at http://arXiv:1209.0358v1 (2012). MR 3322756; reference:[18] Ouhabaz, E. M.: Analysis of Heat Equations on Domains.London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). Zbl 1082.35003, MR 2124040; reference:[19] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis.Academic Press New York (1980). Zbl 0459.46001, MR 0751959; reference:[20] Schreieck, G., Voigt, J.: Stability of the $L_{p}$-spectrum of Schrödinger operators with form-small negative part of the potential.Functional Analysis K. D. Bierstedt et al. Proceedings of the Essen Conference, 1991. Lect. Notes Pure Appl. Math. 150 (1994), 95-105 Dekker, New York. MR 1241673; reference:[21] Stein, E. M.: Localization and summability of multiple Fourier series.Acta Math. 100 (1958), 93-147. Zbl 0085.28401, MR 0105592, 10.1007/BF02559603; reference:[22] Yosida, K.: Functional Analysis.Grundlehren der Mathematischen Wissenschaften 123 Springer, Berlin (1978). Zbl 0365.46001, MR 0500055
-
7Academic Journal
المؤلفون: DUONG, Xuan Thinh, YAN, Lixin
مصطلحات موضوعية: spectral multipliers, Hardy space, non-negative self-adjoint operators, Davies-Gaffney estimate, atom, molecule, space of homogeneous type, 42B20, 42B35, 47B38, stat, geo
-
8
المؤلفون: Clément Mouhot, Emmanuel Russ, Yannick Sire
المساهمون: Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge [UK] (CAM), Laboratoire d'Analyse, Topologie, Probabilités (LATP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
المصدر: Journal de Mathématiques Pures et Appliquées
Journal de Mathématiques Pures et Appliquées, Elsevier, 2011, 95 (1), pp.72-84. ⟨10.1016/j.matpur.2010.10.003⟩
Journal de Mathématiques Pures et Appliquées, 2011, 95 (1), pp.72-84. ⟨10.1016/j.matpur.2010.10.003⟩مصطلحات موضوعية: Ornstein-Uhlenbeck, Mathematics(all), Pure mathematics, Fractional powers, General Mathematics, media_common.quotation_subject, Poincaré inequality, Context (language use), 26A33, 46N20, 47G20, [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA], 01 natural sciences, Measure (mathematics), 010104 statistics & probability, symbols.namesake, Mathematics - Analysis of PDEs, Lévy operator, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], 0101 mathematics, Mathematics, media_common, fractional Sobolev space, off-diagonal estimate, Semigroup, Applied Mathematics, 010102 general mathematics, fractional derivative, Ornstein–Uhlenbeck process, Infinity, Poincaré inequalities, Gaffney estimate, Fractional calculus, Non-local inequalities, Mathematics - Functional Analysis, Algebra, Poincaré conjecture, symbols
-
9Academic Journal
المؤلفون: Yan, Xuefang
مصطلحات موضوعية: non-negative self-adjoint operator, Stein's square function, Bochner-Riesz means, Davies-Gaffney estimate, molecule Hardy space
جغرافية الموضوع: 61-82
وصف الملف: média; svazek
-
10
المؤلفون: Anh, Bui The, Li, Ji
المصدر: Journal of Mathematical Analysis and Applications. (2):485-501
مصطلحات موضوعية: Riesz transform, Mathematics::Functional Analysis, Mathematics::Classical Analysis and ODEs, Functional calculus, Davies–Gaffney estimate, Orlicz–Hardy space
-
11
المؤلفون: Yan, Xuefang
المصدر: Czechoslovak Mathematical Journal | 2015 Volume:65 | Number:1