يعرض 1 - 9 نتائج من 9 نتيجة بحث عن '"GLARMA model"', وقت الاستعلام: 0.42s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil

    المصدر: Electronic Journal of Applied Statistical Analysis; Vol 15, No 1 (2022): Electronic Journal of Applied Statistical Analysis; 110 - 122

    مصطلحات موضوعية: ctuary, Brazil, glarma model, thefts, vehicles

    وصف الملف: application/pdf

  2. 2
    Academic Journal

    المصدر: Electronic Journal of Applied Statistical Analysis

    مصطلحات موضوعية: Ctuary, Glarma model, Vehicles thefts, Public policies

    وصف الملف: application/pdf

    Relation: PALA, L. O. de O.; CARVALHO, M. de M.; SÁFADI, T. Forecasting the number of vehicles thefts in Campinas. Electronic Journal of Applied Statistical Analysis, [S. l.], v. 15, n. 1, p. 110-122, May 2022. DOI:10.1285/i20705948v15n1p110.; http://repositorio.ufla.br/jspui/handle/1/55192

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: Dillis, Christopher; Marshall, Andrew J.; Webb, Campbell O.; Grote, Mark N. (2018). "Prolific fruit output by the invasive tree Bellucia pentamera Naudin (Melastomataceae) is enhanced by selective logging disturbance." Biotropica (4): 598-605.; https://hdl.handle.net/2027.42/144654; Biotropica; Poorter, L. 1999. Growth responses of 15 rain‐forest tree species to a light gradient: The relative importance of morphological and physiological traits. Funct. Ecol. 13: 396 – 410.; Marshall, A. J. 2004. Population ecology of gibbons and leaf monkeys across a gradient of Bornean forest types. PhD Dissertation. Harvard University, Cambridge, MA.; Marshall, A. J., L. Beaudrot, and H. U. Wittmer. 2014. Responses of primates and other frugivorous vertebrates to plant resource variability over space and time at Gunung Palung National Park. Int. J. Primatol. 35: 1178 – 1201.; Marshall, A. J., and M. Leighton. 2006. How does food availability limit the population density of white bearded gibbons? In G. Hohmann, M. M. Robbins, and C. Boesch (Eds.). Feeding ecology in apes and other primates: Ecological, physical, and behavioral aspects. Cambridge University Press, Cambridge, UK.; Mason, R., J. Cooke, A. Moles, and M. Leishman. 2008. Reproductive output of invasive versus native plants. Glob. Ecol. Biogeogr. 17: 633 – 640.; Moles, A., H. Flores‐Moreno, S. P. Bonser, D. I. Warton, A. Helm, L. Warman, D. J. Eldridge, E. Jurado, F. A. Hemmings, P. B. Reich, J. Cavender‐Bares. 2012. Invasions: The trail behind, the path ahead, and a test of a disturbing idea. J. Ecol. 100: 116 – 127.; Padmanaba, M., and R. Corlett. 2014. Minimizing risks of invasive aliean plant species in tropical production forest management. Forests 5: 1982 – 1988.; Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs Sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria, ISSN 1609‐395X.; Plummer, M. 2015. rjags: Bayesian graphical models using MCMC. R package version 4‐4. https://CRAN.R-project/package=rjags; Poorter, L. 2001. Light‐dependent changes in biomass allocation and their importance for growth of rain forest tree species. Funct. Ecol. 15: 113 – 123.; R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.; Rejmánek, M., and D. Richardson. 1996. What attributes make some plant species more invasive? Ecology 77: 1655 – 1661.; Renner, S. 1986. Reproductive biology of Bellucia (Melastomataceae). Acta Amazon 16 ( 17 ): 197 – 208.; Renner, S. 1989. Systematic studies in the Melastomataceae. Mem. N. Y. Bot. Gard. 50: 2 – 97.; Renner, S. 1990. Reproduction and evolution in some genera of Neotropical Melastomataceae. Mem. N. Y. Bot. Gard. 55: 143 – 152.; Rouget, M., and D. Richardson. 2003. Inferring process from pattern in plant invasions: A semimechanistic model incorporating propagule pressure and environmental factors. Am. Nat. 162: 712 – 724.; Ruprecht, E., A. Fenesi, and I. Nijs. 2014. Are plasticity in functional traits and constancy in performance traits linked with invasiveness? An experimental test comparing invasive and naturalized plant species. Biol. Invasions 16: 1359 – 1372.; Rutten, G., A. Ensslin, A. Hemp, and M. Fischer. 2015. Forest structure and composition of previously selectively logged and non‐logged montane forests at Mt. Kilimanjaro. Forest Ecol. Manag. 337: 61 – 66.; Schnitzer, S., and W. Carson. 2001. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82: 913 – 919.; Sheil, D., and M. Padmanaba. 2011. Innocent invaders? A preliminary assessment of Cecropia, an American tree, in Java. Plant Ecol. Divers 4: 279 – 288.; Slik, J., R. Verburg, and P. Kebler. 2002. Effects of fire and selective logging on the tree species composition of lowland dipterocarp forest in East Kalimantan, Indonesia. Biodiversity Conserv. 11: 85 – 98.; Stevens, M., and W. Carson. 2002. Resource quality, not resource heterogeneity, maintains plant diversity. Ecol. Letters 5: 420 – 426.; Viisteensaari, J., S. Johansson, V. Kaarakka, and O. Luukkanen. 2000. Is the alien tree species Maesopsis eminii Engl. (Rhamnaceae) a threat to tropical forest conservation in the East Usambaras, Tanzania? Environ. Conserv. 27: 76 – 81.; Bicknell, J., M. Struebig, and Z. Davies. 2015. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced‐impact logging. J. App. Ecol. 52: 379 – 388.; Britton‐Simmons, K., and K. Abbott. 2008. Short‐ and long‐term effects of disturbance and propagule pressure on a biological invasion. J. Ecol. 96: 68 – 77.; Brokaw, N. 1985. Gap‐phase regeneration in a tropical forest. Ecology 66: 682 – 687.; Brokaw, N. 1987. Gap‐phase regeneration of three pioneer species in a tropical forest. J. Ecol. 75: 9 – 19.; Brokaw, N., and R. Busing. 2000. Niche versus chance and tree diversity in forest gaps. Trends Ecol. Evol. 15: 183 – 188.; Burns, J., E. Pardini, M. Schutzenhofer, Y. Chung, K. Seidler, and T. Knight. 2013. Greater sexual reproduction contributes to differences in demography of invasive plants and their noninvasive relatives. Ecology 94: 995 – 1004.; Cannon, C. H., L. M. Curran, A. J. Marshall, and M. Leighton. 2007a. Beyond mast‐fruiting events: Community asynchrony and individual dormancy dominate woody plant reproductive behavior across seven Bornean forest types. Curr. Sci. 93: 1558 – 1566.; Cannon, C. H., L. M. Curran, A. J. Marshall, and M. Leighton. 2007b. Long‐term reproductive behavior of woody plants across seven Bornean forest types in the Gunung Palung National Park, Indonesia: suprannual synchrony, temporal productivity, and fruiting diversity. Ecol. Letters 10: 956 – 969.; Dahler, C. 2003. Performance comparisons of co‐occurring native and alien invasive plants: Implications for conservation and restoration. Annu. Rev. Ecol. Evol. Syst. 34: 183 – 211.; D’Antonio, C., J. Levine, and M. Thomsen. 2001. Ecosystem resistance to invasion and the role of propagule supply: A California perspective. J. Mediterranean Ecol. 2: 233 – 245.; Davidson, A., M. Jennions, and A. Nicotra. 2011. Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta‐analysis. Ecol. Letters 43: 419 – 431.; Denslow, J. 1987. Tropical rainforest gaps and tree species diversity. Annu. Rev. Ecol. Syst. 18: 431 – 451.; Denslow, J., and S. DeWalt. 2008. Exotic plant invasions in tropical forests: patterns and hypotheses. In W. P. Carson, and S. A. Schnitzer (Eds.). Tropical forest community ecology, pp. 409 – 426. Blackwell Scientific, Oxford, UK.; Dillis, C., L. Beaudrot, K. Feilen, D. Clink, H. Wittmer, and A. J. Marshall. 2015. Modeling the ecological and phenological predictors of fruit consumptions by gibbons ( Hylobates albibarbis ). Biotropica 47: 85 – 93.; Dillis, C., A. J. Marshall, and M. Rejmánek. 2017. Change in disturbance regime facilitates invasion by Bellucia pentamera Naudin (Melastomataceae) at Gunung Palung National Park, Indonesia. Biol. Invasions 19: 1329 – 1337.; Dunsmuir, W. T. M. 2016. Generalized linear autoregressive moving average models. In R. A. Davis, S. H. Holan, R. Lund, and N. Ravishanker (Eds.). Handbook of discrete‐valued time series, pp. 61 – 62. CRC Press, Boca Raton, FL.; Eschtruth, A., and J. Battles. 2009. Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecol. Monographs 79: 265 – 280.; Fridley, J., J. Stachowicz, S. Naeem, D. Sax, E. Seabloom, M. Smith, T. Stohlgren, D. Tilman, and B. Von Holle. 2007. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88: 3 – 17.; Holle, B., and D. Simberloff. 2005. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 88: 3212 – 3218.; Howe, H., and J. Smallwood. 1982. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13: 201 – 228.; Hubbell, S., R. Foster, S. O’Brien, K. Harms, R. Condit, B. Wechsler, S. Wright, and S. de Lao. 1999. Light‐gap disturbance, recruitment limitation, and tree diversity in a Neotropical forest. Science 283: 554 – 557.; Jelbert, K., I. Stott, R. McDonald, and D. Hodgson. 2015. Invasiveness of plants is predicted by size and fecundity in the native range. Ecol. Evol. 5: 1933 – 1943.; van Kleunen, M., E. Weber, and M. Fischer. 2010. A meta‐analysis of trait differences between invasive and non‐invasive plant species. Ecol. Letters 13: 235 – 245.; Letten, A., K. Lyons, and A. Moles. 2013. The mid‐domain effect: It’s not just about space. J. Biogeogr. 40: 2017 – 2019.; Levine, J., P. Adler, and S. Yelenik. 2004. A meta‐analysis of biotic resistance to exotic plant invasions. Ecol. Letters 7: 975 – 989.; Lockwood, J. L., M. F. Hoopes, and M. P. Marchetti. 2007. Invasion ecology. Blackwell Publishing, Oxford, UK.; Lozon, J., and H. MacIsaac. 1997. Biological invasions: Are they dependent on disturbance? Environmental Review 5: 131 – 144.; Lusk, C., R. Chazdon, G. Hofmann, and J. Memmott. 2006. A bounded null model explains juvenile tree community structure along light availability gradients in a temperate rain forest. Oikos 112: 131 – 137.; Maron, J., and M. Marler. 2007. Native plant diversity resists invasion at both low and high resource levels. Ecology 88: 2651 – 2661.

  5. 5
    Academic Journal

    مصطلحات موضوعية: Tropical invasion, Selective logging, Seed output, GLARMA model

    جغرافية الموضوع: Indonesia

    Relation: Dillis C, Marshall AJ, Webb CO, Grote MN (2018) Prolific fruit output by the invasive tree Bellucia pentamera Naudin (Melastomataceae) is enhanced by selective logging disturbance. Biotropica 50(4): 598-605.; http://hdl.handle.net/10255/dryad.170461

  6. 6
  7. 7
  8. 8
    Dissertation/ Thesis
  9. 9
    Academic Journal

    المساهمون: Universidade Federal de Minas Gerais = Federal University of Minas Gerais Belo Horizonte, Brazil (UFMG), Federal University of Espírito Santo, Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)

    المصدر: ISSN: 0307-904X.