-
1Academic Journal
المؤلفون: A. Fokin V., E. Semenova S., E. Vyshedkevich D., E. Shelepova S., G. Romanov G., G. Trufanov E., I. Mashchenko A., А. Фокин В., Е. Семенова С., Е. Вышедкевич Д., Е. Шелепова С., Г. Романов Г., Г. Труфанов Е., И. Мащенко А.
المصدر: Translational Medicine; Том 7, № 5 (2020); 81-90 ; Трансляционная медицина; Том 7, № 5 (2020); 81-90 ; 2410-5155 ; 2311-4495 ; 10.18705/2311-4495-2020-7-5
مصطلحات موضوعية: algorithm, fetus, MRI during pregnancy, placenta, placental MRI, pregnancy, алгоритм, беременность, МРТ во время беременности, МРТ плаценты, плацента, плод
وصف الملف: application/pdf
Relation: https://transmed.almazovcentre.ru/jour/article/view/565/403; Guttmacher AE, Maddox YT, Spong CY. The human placenta project: placental structure, development, and function in real time. Placenta. 2014; 35 (5): 303–304.; D’Antonio F, Iacovella C, Palacios-Jaraquemada J, et al. Prenatal identification of invasive placentation using magnetic resonance imaging: systematic review and metaanalysis. Ultrasound Obstet Gynecol. 2014; 44 (1): 8–16.; Morita S, Ueno E, Fujimura M, et al. Feasibility of diffusion-weighted MRI for defining placental invasion. J Magn Reson Imaging. 2009; 30 (3): 666–671.; Reddy UM, Abuhamad AZ, Levine D, et al. Fetal imaging: executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecologists, American College of Radiology, Society for Pediatric Radiology, and Society of Radiologists in ultrasound fetal imaging workshop. Am J Obstet Gynecol. 2014; 210 (5): 387–397.; Varghese B, Singh N, George RAN, et al. Magnetic resonance imaging of placenta accreta. Indian J Radiol Imaging. 2013; 23 (4): 379–385.; Dashe JS, McIntire DD, Ramus RM, et al. Persistence of placenta previa according to gestational age at ultrasound detection. Obstet Gynecol. 2002; 99 (5 Pt 1): 692–697.; Elsayes KM, Trout AT, Friedkin AM, et al. Imaging of the placenta: a multimodality pictorial review. Radiographics. 2009; 29 (5): 1371–1391.; Allen BC, Leyendecker JR. Placental evaluation with magnetic resonance. Radiol Clin North Am. 2013; 51 (6): 955–966.; Lee AJ, Bethune M, Hiscock RJ. Placental thickness in the second trimester: a pilot study to determine the normal range. J Ultrasound Med. 2012; 31 (2): 213–218.; Bailey AA, Twickler DM, Leyendecker JR. MRI of the placenta. MRI of Fetal and Maternal Diseases in Pregnancy. 2016; 245–268.; Baughman WC, Corteville JE, Shah RR. Placenta accreta: spectrum of US and MR imaging findings. Radiographics. 2008; 28 (7): 1905– 1916.; Grannum PA, Berkowitz RL, Hobbins JC. The ultrasonic changes in the maturing placenta and their relation to fetal pulmonic maturity. Am J Obstet Gynecol.1979; 133 (8): 915–922.; Brown BP, Meyers ML. Placental magnetic resonance imaging Part II: placenta accreta spectrum. Pediatr Radiol. 2020; 50 (2): 275–284.; Fadl S, Moshiri M, Fligner CL, et al. Placental imaging: normal appearance with review of pathologic findings. Radiographics. 2017; 37 (3): 979–998.; Гагаев Ч.Г. Пуповина человека при нормальной и осложненной беременности: дисс. … доктора медицинских наук: 14.01.01. М., 2015.; Iams JD, Goldenberg RL, Meis PJ, et al. The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Engl J Med. 1996; 334 (9): 567–572.; Berghella V, Kuhlman K, Weiner S, et al. Cervical funneling: sonographic criteria predictive of preterm delivery. Ultrasound Obstet Gynecol. 1997; 10 (3): 161–166.; https://transmed.almazovcentre.ru/jour/article/view/565
-
2Academic Journal
المؤلفون: S. Kushnarev V., I. Zheleznyak S., V. Kravchuk N., S. Rud D., A. Shirshin V., I. Menkov A., G. Romanov G., С. Кушнарев В., И. Железняк С., В. Кравчук Н., С. Рудь Д., А. Ширшин В., И. Меньков А., Г. Романов Г.
المصدر: Diagnostic radiology and radiotherapy; Том 11, № 3 (2020); 7-13 ; Лучевая диагностика и терапия; Том 11, № 3 (2020); 7-13 ; 2079-5343 ; 10.22328/2079-5343-2020-3
مصطلحات موضوعية: magnetic resonance imaging, computed tomography, 3D model, preoperative planning, heart anatomy, магнитно-резонансная томография, компьютерная томография, 3D-модель, предоперационное планирование, анатомия сердца
وصف الملف: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/541/423; Vukicevic M., Puperi D.S., Jane Grande-Allen K., Little S.H. Cardiac 3D рrinting and its future directions // JACC Cardiovasc Imaging. 2017. Vol. 10, No. 2. P. 171–184. DOI:10.1007/s10439-016-1676-5.; Коровин А.Е., Нагибович О.А., Пелешок С.А., Копыленкова Т.И., Шилин В.П., Ольховик А.Ю., Шевченко В.А. 3D- моделирование и биопрототипирование в военной медицине // Клиническая патофизиология. 2015. № 3. P. 17–23.; Meier L.M., Meineri M., Qua Hiansen J., Horlick E.M. Structural and congenital heart disease interventions: the role of three- dimensional printing // Neth Heart J. 2017. Vol. 25, No. 2. P. 65–75. DOI:10.1007/s12471-016-0942-3.; Багатурия Г.О. Перспективы использования 3D-печати при планировании хирургических операций // Медицина: теория и практика. 2016. Vol. 1, No. 1. P. 26–35.; Farooqi K.M., Cooper C., Chelliah A., Saeed O., Chai P.J., Jambawalikar S.R., Lipson H., Bacha E.A., Einstein A.J., Jorde U.P. 3D printing and heart failure: the present and the future // JACC: Heart Failure. 2019. Vol. 7, No. 2. P. 132–142. DOI:10.1016/j.jchf.2018.09.011.; Luo H., Meyer-Szary J., Wang Z., Sabiniewicz R., Liu Y. Three-dimensional printing in cardiology: current applications and future challenges // Cardiol. J. 2017. Vol. 24, No. 4. P. 436–444. DOI:10.5603/CJ.a2017.0056.; Mathur M., Patil P., Bove A. The role of 3D printing in structural heart disease: all that glitters is not gold // JACC: Cardiovascular Imaging. 2015. Vol. 8, No. 8. P. 987–988. DOI:10.1016/j.jcmg.2015.03.009.; El Sabbagh A., Eleid M.F., Al-Hijji M., Anavekar N.S., Holmes D.R., Nkomo V.T., Oderich G.S., Cassivi S.D., Said S.M., Rihal C.S.; Matsumoto J.M., Foley T.A. The various applications of 3D printing in cardiovascular diseases // Curr. Cardiol Rep. 2018. Vol. 20, No. 6. P. 47. DOI:10.1007/s11886-018-0992-9.; Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions // Revista Española de Cardiología (English Edition). 2017. Vol. 70, No. 4. P. 282–291. DOI:10.1016/j.rec.2017.01.012.; Liu P., Liu R., Zhang Y., Liu Y., Tang X., Cheng Y. The value of 3D printing models of left atrial appendage using real-time 3D transesophageal echocardiographic data in left atrial appendage occlusion: applications toward an era of truly personalized medicine // Cardiology. 2016. Vol. 135, No. 4. P. 255–261. DOI:10.1159/000447444.; Maragiannis D., Jackson M.S., Igo S.R., Schutt R.C., Connell P., GrandeAllen J., Barker C.M., Chang S.M., Reardon M.J., Zoghbi W.A., Little S.H. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling // Circcardiovasc imaging. 2015. Vol. 8, No. 10. P. e003626.DOI:10.1161/CIRCIMAGING.115.003626.; Нагибович О.А., Свистов Д.В., Пелешок С.А., Коровин А.Е., Городков Е.В. Применение технологии 3D-печати в медицине // Клиническая патофизиология. 2017. Vol. 23, No. 3. P. 14–22.; Schmauss D., Haeberle S., Hagl C., Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience // Eur. J. Cardiothorac Surg. 2015. Vol. 47, No. 6. P. 1044–1052. DOI:10.1093/ejcts/ezu310.; Wang J., Coles-Black J., Matalanis G., Chuen J. Innovations in cardiac surgery: techniques and applications of 3D printing // J. 3D Print. Med. 2018. Vol. 2, No. 4. P. 179–186. DOI:10.2217/3dp-2018-0013.; Park C.Y., Chang J.K., Jeong D.Y., Yoon G.J., Chung C., Kim J.K., Han D.C., Min B.G. Development of a custom designed TAH using rapid prototyping // Asaio journal (American Society for Artificial Internal Organs: 1992). 1997. Vol. 43, No. 5.; Harb S.C., Xu B., Klatte R., Griffin B.P., Rodriguez L.L. Haemodynamic assessment of severe aortic stenosis using a three-dimensional (3D) printed model incorporating a flow circuit // Heart, Lung and Circulation. 2018. Vol. 27. DOI:10.1016/j.hlc.2018.05.099.; Binder T.M., Moertl D., Mundigler G., Rehak G., Franke M., Delle-Karth G., Mohl W., Baumgartner H., Maurer G. Stereolithographic biomodelling to create tangible hard copies of cardiac structures from echocardiographic data: In vitro and in vivo validation // Journal of the American College of Cardiology. 2000. Vol. 35, No. 1. P. 230–237. DOI:10.1016/S0735-1097(99)00498-2.; Ngan E.M., Rebeyka I.M., Ross D.B., Hirji M., Wolfaardt J.F., Seelaus R., Grosvenor A., Noga M.L. The rapid prototyping of anatomic models in pulmonary atresia // The Journal of Thoracic and Cardiovascular Surgery. 2006. Vol. 132, No. 2. P. 264–269. DOI:10.1016/j.jtcvs.2006.02.047.; Noecker A.M., Chen J.F., Zhou Q., White R.D., Kopcak M.W., Arruda M.J., Duncan B.W. Development of patient-specific three-dimensional pediatric cardiac models // Asaio Journal. 2006. Vol. 52, No. 3. P. 349–353. DOI:10.1097/01.mat.0000217962.98619.ab.; Schievano S., Migliavacca F., Coats L., Khambadkone S., Carminati M., Wilson N., Deanfield J.E., Bonhoeffer P., Taylor A.M. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from mr data // Radiology. 2007. Vol. 242, No. 2. P. 490–497. DOI:10.1148/radiol.2422051994; Jacobs S., Grunert R., Mohr F.W., Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study // Interact Cardio Vasc Thorac Surg. 2008. Vol. 7, No. 1. P. 6–9. DOI:10.1510/icvts.2007.156588.; Ma X.J., Tao L., Chen X., Li W., Peng Z.Y., Chen Y., Jin J., Zhang X.L., Xiong Q.F., Zhong Z.L., Chen X.F. Clinical application of three-dimensional reconstruction and rapid prototyping technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of Fallot // Genet. Mol. Res. 2015. Vol. 14, No. 1. P. 1301–1309. DOI:10.4238/2015.February.13.9.; Guo H.C., Wang Y., Dai J., Ren C.W., Li J.H., Lai Y.Q. Application of 3D printing in the surgical planning of hypertrophic obstructive cardiomyopathy and physician-patient communication: a preliminary study // J. Thorac. Dis. 2018. Vol. 10, No. 2. P. 867–873. DOI:10.21037/jtd.2018.01.55.; Valverde I., Gomez G., Coserria J.F., Suarez-Mejias C., Uribe S., Sotelo J., Velasco M.N., Santos De Soto J., Hosseinpour A.R., Gomez-Cia T. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia: 3D cardiovascular model simulation // Catheterization and Cardiovascular Interventions. 2015. Vol. 85. DOI:10.1002/ccd.25810.; Lim K.H., Loo Z.Y., Goldie S.J., Adams J.W., McMenamin P.G. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy // Anatomical sciences education. 2015. Vol. 9. DOI:10.1002/ase.1573.; Costello J.P., Olivieri L.J., Krieger A., Thabit O., Marshall M.B., Yoo S.J., Kim P.C., Jonas R.A., Nath D.S. Utilizing three- dimensional printing technology to assess the feasibility of high- fidelity synthetic ventricular septal defect models for simulation in medical education // World journal for pediatric & congenital heart surgery. 2014. Vol. 5. P. 421–426. DOI:10.1177/2150135114528721; Ochoa S., Segal J., Garcia N., Fischer E.A. Three‐dimensional printed cardiac models for focused cardiac ultrasound instruction // Journal of Ultrasound in Medicine. 2018. Vol. 38. DOI:10.1002/jum.14818.; White S.C., Sedler J., Jones T.W., Seckeler M. Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects // Congenit Heart Dis. 2018. Vol. 13, No. 6. P. 1045–1049. DOI:10.1111/chd.12673.; Smerling J., Marboe C.C., Lefkowitch J.H., Pavlicova M., Bacha E., Einstein A.J., Naka Y., Glickstein J., Farooqi K.M. Utility of 3D printed cardiac models for medical student education in congenital heart disease: across a spectrum of disease severity // Pediatr. Cardiol. 2019. Vol. 40, No. 6. P. 1258–1265. DOI:10.1007/s00246-019-02146-8.; Biglino G., Capelli C., Wray J., Schievano S., Leaver L.K., Khambadkone S., Giardini A., Derrick G., Jones A., Taylor A.M. 3D-manufactured patientspecific models of congenital heart defects for communication in clinical practice: Feasibility and acceptability // BMJ Open. 2015. Vol. 5. P. e007165. DOI:10.1136/bmjopen-2014-007165; Wamala I., Brüning J., Dittmann J., Jerichow S., Weinhold J., Goubergitis L., Hennemuth A., Volkmar F., KempfertJ… Simulation of a Right Anterior Thoracotomy Access for Aortic Valve Replacement Using a 3D Printed Model // Innovations (Phila). 2019. P. 1–8. DOI:10.1177/1556984519870510.; Estai M., Bunt S. Best teaching practices in anatomy education: a critical review // Annals of anatomy. 2016. Vol. 208. P. 151–157. DOI:10.1016/j.aanat.2016.02.010.; Shi D., Liu K., Zhang X., Liao H., Chen X. Applications of three- dimensional printing technology in the cardiovascular field // Internal and emergency medicine. 2015. Vol. 10. DOI:10.1007/s11739-015-1282-9.; Schievano S., Taylor A.M., Capelli C., Coats L., Walker F., Lurz P., Nordmeyer J., Wright S., Khambadkone S., Tsang V., Carminati M., Bonhoeffer P. First-in-man implantation of a novel percutaneous valve: a new approach to medical device development // EuroIntervention. 2010. Vol. 5, No. 6. P. 745–750.; Pepper J., Petrou M., Rega F., Rosendahl U., Golesworthy T., Treasure T. Implantation of an individually computer-designed and manufactured external support for the Marfan aortic root // Multimed Man Cardiothorac Surg. 2013. Vol. 2013. P. 1–8. DOI:10.1093/mmcts/mmt004.; Herrmann T.A., Siefert A.W., Pressman G.S., Gollin H.R., Touchton S.A. Jr. Saikrishnan N., Yoganathan A.P. In vitro comparison of doppler and cathetermeasured pressure gradients in 3D models of mitral valve calcification // J. Biomech Eng. 2013. Vol. 135, No. 9. DOI:10.1115/1.4024579.; Mashari A., Knio Z., Jeganathan J., Montealegre-Gallegos M., Yeh L., Amador Y., Matyal R., Saraf R., Khabbaz K., Mahmood F. Hemodynamic testing of patient-specific mitral valves using a pulse duplicator: a clinical application of three-dimensional printing // Journal of Cardiothoracic and Vascular Anesthesia. 2016. Vol. 30. DOI:10.1053/j.jvca.2016.01.013.; Aldosari S., Jansen S., Sun Z. Patient-specific 3D printed pulmonary artery model with simulation of peripheral pulmonary embolism for developing optimal computed tomography pulmonary angiography protocols // Quant. Imaging Med. Surg. 2019. Vol. 9, No. 1. P. 75–85. DOI:10.21037/qims.2018.10.13.; Vignali E., Manigrasso Z., Gasparotti E., Biffi B., Landini L., Positano V., Capelli C., Celi S. Design, simulation, and fabrication of a three-dimensional printed pump mimicking the left ventricle motion // Int. J. Artif. Organs. 2019. Vol. 42, № 10. P. 539–547. DOI:10.1177/0391398819856892.; Byrne N., Velasco Forte M., Tandon A., Valverde I., Hussain T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system // JRSM Cardiovascular Disease. 2016. Vol. 5. DOI:10.1177/2048004016645467.; https://radiag.bmoc-spb.ru/jour/article/view/541
-
3Academic Journal
المؤلفون: S. Shershnev V., V. Ipatov V., I. Khalipova I., L. Kulova A., V. Malakhovsliy N., I. Boykov V., T. Rameshvili E., G. Romanov G., V. Babirin S., I. Zheleznyak S., С. Шершнёв В., В. Ипатов В., И. Халипова И., Л. Кулова А., В. Малаховский Н., И. Бойков В., Т. Рамешвили Е., Г. Романов Г., В. Бабирин С., И. Железняк С.
المصدر: Diagnostic radiology and radiotherapy; № 4 (2019); 33-40 ; Лучевая диагностика и терапия; № 4 (2019); 33-40 ; 2079-5343 ; 10.22328/2079-5343-2019-4
مصطلحات موضوعية: sanatorium resort treatment, dorsopathy, degenerative spine changes, radioilogic imaging, computed tomography, osteodensitometry, spondylography, magnetic resonance imaging, санаторно-курортное лечение, дорсопатия, дегенеративно-дистрофические изменения, лучевая диагностика, компьютерная томография, остеоденситометрия, спондилография, магнитно-резонансная томография
وصف الملف: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/452/368; International statistical classification of diseases and related health problems. 10th revision, 5th ed. World Health Organisation, 2016. P. 580-587.; Пономаренко ГН. Физическая и реабилитационная медицина: национальное руководство / под ред. Г. Н. Пономаренко. М.: ГЭОТАР-Медиа, 2016. 688 с.; Байков Е.С., Карева Н.П., Крутько А.В. и др. Остеохондроз позвоночника. Клинические рекомендации Ассоциации травматологов-ортопе-дов России. Новосибирск, 2016. 67 с.; Епифанов В.А., Епифанов А.В. Остеохондроз позвоночника (диагностика, лечение, профилактика). 3-е изд. М.: МЕДпресс-информ, 2008. 272 с.; Каладзе Н.Н., Крадинова Е.А., Черноротов В.А. и др. Реабилитационный прогноз и реабилитационный потенциал у больных с остеохондрозом шейного отдела позвоночника на этапе восстановительного лечения // Вестник физиотерапии и курортологии. 2015. Т. 23, № 3. С. 4-15.; Бельская Г.Н., Сергиенко Д.А. Лечение дорсопатии с позиции эффективности и безопасности // РМЖ. 2014. Т. 22, № 16. С. 1178-1181.; Адамбаев З.И., Киличев И.А. Тракционная терапия (обзор литературы) // Достижения науки и образования. 2017. № 7 (20). С. 62-70.; Орел А.М. Рентгенодиагностика позвоночника для мануальных терапевтов. Т. 2. М.: Видар-М, 2009. 388 с.; Ситель А.Б. Мануальная терапия // Мануальная терапия. 2015. № 3 (59). С. 31-51.; Агасиев А.Р Роль стандартизации санаторно-курортной помощи больным в неврологическом санатории // Вопросы курортологии, физиотерапии и лечебной физической культуры. 2014. № 3. С. 18-22.; Тришкин Д.В., Долгих С.В., Мерзликин А.В. и др. Организационные основы совершенствования медицинской реабилитации в санаторно-курортных организациях Вооруженных Сил // Военно-медицинский журнал. 2017. Т. 338, № 3. С. 4-14.; Быков А.Т., Чернышев А.В., Дроздова В.М. Физические методы профилактики, лечения и реабилитации: прошлое, настоящее и будущее // Вестник физиотерапии и курортологии. 2017. Т. 23, № 4. С. 78-82; Трофимова Т.Н., Ананьева Н.И., Баев А.А. Лучевая диагностика и терапия заболеваний головы и шеи: национальное руководство. М.: ГЭОТАР-Медиа, 2013. 888 с.; Труфанов Г.Е., Рамешвили Т.Е., Дергунова Н.И. и др. Лучевая диагностика дегенеративных заболеваний позвоночника. СПб.: ЭЛБИ-СПб, 2011. 287 с.; Васильев А.Ю., Витько Н.К. Компьютерная томография в диагностике дегенеративных изменений позвоночника. М.: Видар-М, 2000. 120 с.; Холин А.В. Магнитно-резонансная томография при заболеваниях и травмах центральной нервной системы. М.: МЕДпресс-информ, 2017. 256 с.; Adams A., Roche O., Mazumder A. et al. Imaging of degenerative lumbar intervertebral discs; linking anatomy, pathology and imaging // Postgrad. med. 2014. Vol. 90 (1067). P. 511-519. DOI:10.1136/postgradmedj-2013-132193.; Chaput C.D., Allred J.J., Pandorf J.J. et al. The significance of facet joint crosssectional area on magnetic resonance imaging in relationship to cervical degenerative spondylolisthesis // Spine J. 2013. No. 3. P. 856-861. DOI:10.1016/j.spinee.2013.01.021.; Ferrari, R. Imaging studies in patients with spinal pain // Can. fam. physician. 2016. Vol. 62 (3). P. e129-e137.; Hou Y.-N., Ding W.-Y., Shen Y. et al. Meta-analysis of magnetic resonance imaging for the differential diagnosis of spinal degeneration // Int. J. Clin. Exp. Med. 2015. Vol. 8 (8). P. 11947-11957.; Jensen R., Kent P., Hancock M. Do MRI findings identify patients with chronic low back pain and Modic changes who respond best to rest or exercise: a subgroup analysis of a randomised controlled trial // Chiropractic & manual therapies. 2015. Vol. 23. P. 26. doi:10.1186/s12998-015-0071-x; Martin J.T., Oldweiler A.B., Spritzer C.E. et al. A magnetic resonance imaging framework for quantifying intervertebral disc deformation in vivo: reliability and application to diurnal variations in lumbar disc shape // J. biomech. 2018. Vol. 71. P. 291-295. doi:10.1016/j.jbiomech.2018.01.045.; Xu C., Ding Z.H., Xu Y.K. Comparison of computed tomography and magnetic resonance imaging in the evaluation of facet tropism and facet arthrosis in degenerative cervical spondylolisthesis // Genet. mol. res. 2014. Vol. 13, No. 2. P. 4102-4109. doi:10.4238/2014.May.30.5.; https://radiag.bmoc-spb.ru/jour/article/view/452
-
4Academic Journal
المؤلفون: D. Tarumov A., A. Marchenko A., A. Trufanov G., G. Romanov G., A. Lobachev V., E. Mavrenkov M., D. Iskhakov N., I. Zheleznyak S., V. Shamrey K., G. Trufanov E., A. Fisun Ya., Д. Тарумов А., А. Марченко А., А. Труфанов Г., Г. Романов Г., А. Лобачев В., Э. Мавренков М., Д. Исхаков Н., И. Железняк С., В. Шамрей К., Г. Труфанов Е., А. Фисун Я.
المصدر: Diagnostic radiology and radiotherapy; № 3 (2019); 60-70 ; Лучевая диагностика и терапия; № 3 (2019); 60-70 ; 2079-5343 ; 10.22328/2079-5343-2019-3
مصطلحات موضوعية: neuroimaging, brain default mode network, dependence, adaptation disorder, connectivity, opioids, alcohol, resting state fMRI, tractography, connectom, нейровизуализация, сеть пассивного режима работы головного мозга, зависимость, расстройство адаптации, коннективность, опиоиды, алкоголь, функциональная магнитно-резонансная томография покоя, трактография, коннектом
وصف الملف: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/433/358; О системе работы должностных лиц и органов военного управления по сохранению и укреплению психического здоровья военнослужащих Вооруженных Сил Российской Федерации: Приказ Министра обороны Российской Федерации от 4 августа 2014 г. № 533. [On the system of work of officials and bodies of the military administration for the preservation and strengthening of mental health of servicemen of the Armed Forces of the Russian Federation: Order of the Minister of Defense of the Russian Federation of August 4, 2014, No. 533. (In Russ.)].; Шамрей В.К. и др. Перспективы объективного мониторинга и прогноза психического здоровья военнослужащих // Доктор.Ру. 2018. № 1 (145). С. 27–33. [Shamrey V.K. Prospects for objective monitoring and prediction of the mental health of servicemen. Doctor.Ru, 2018, No. 1 (145), рp. 27–33. (In Russ.)].; Алексеев В.В. и др. Мониторинг аддиктивного поведения военнослужащих: опыт использования методов химико-токсикологического исследования // Воен.-мед. журн. 2016. Т. 337, № 3. С. 14–21. [Alekseev V.V. et al. Monitoring addictive behavior of military personnel: experience of using methods of chemical-toxicological research. Voyen.-med. zhurn., 2016, Vol. 337, No. 3, рр. 14–21. (In Russ.)].; Кувшинов К.Э. и др. Прогнозирование отклоняющегося поведения у военнослужащих, проходящих военную службу по призыву // Воен.-мед. журн. 2017. Т. 338, № 9. С. 4–10. [Kuvshinov K.E. et al. Prediction of deviating behavior among servicemen undergoing military service. Voyen.-med. zhurn., 2017, Vol. 338, No. 9, рр. 4–10. (In Russ.)].; Lytell M.C., Robson S., Schulker D. et al. Training success for U.S. air force special operations and combat support specialties: An analysis of recruiting, screening, and development processes. Santa Monica, Calif.: RAND Corporation, 2018. 116 p.; Самохвалов В.П. Эволюционная психиатрия. ИМИС: НПФ «Движение», 1993. 286 с. [Samokhvalov V.P. Evolutionary Psychiatry. IMIS: NPF «Dvizheniye», 1993, 286 p. (In Russ.)].; Вальтер Х. Функциональная визуализация в психиатрии и психотерапии. М.: Астрель, Полиграфиздат, 2010. 432 с. [Walter H. Functional visualization in psychiatry and psychotherapy. Moscow: Izdatel’stvo Astrel, Poligrafizdat, 2010, 432 p. (In Russ.)].; Селиверстова Е.В. и др. Реорганизация сети пассивного режима работы головного мозга у пациентов с болезнью Паркинсона: анализ индивидуальных компонент по данным фМРТ покоя // Анналы неврологии. 2015. Т. 9, № 2. С. 4–9. [Seliverstova E.V. et al. Reorganization of the network of passive mode of the brain in patients with Parkinson’s disease: analysis of individual components according to fMRI data of rest. Annali nevrologii, 2015, Vol. 9, No. 2, рp. 4–9. (In Russ.)].; Denier N. et al. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment // Hum. Brain Mapp. 2015. Vol. 36. P. 5287–5300. 10. Haber S., Calzavara R. The cortico-basal ganglia integrative network. The role of the Thalamus // Brain Res. Bull. 2009. Vol. 78. P. 69–74.; Peters S.K., Dunlop K., Downar J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment // Frontiers in Systems Neuroscience. 2016. Vol. 10, No. 12. Р. 104.; Марченко А.А. и др. Расстройства адаптации у военнослужащих: Проблемы диагностики и экспертизы // 3-й Азиатско-тихоокеанский конгресс по военной медицине: сборник трудов. СПб., 2016. 216 с. [Marchenko A.A. et al. Adaptation disorders in the military: Problems of diagnosis and examination. 3rd Asia-Pacific Congress on Military Medicine. Collection of works. St. Petersburg, 2016. 216 с. (In Russ.)].; Purves D. Principles of Cognitive Neuroscience // Sunderland: Sinauer Associates. 2013. No. 601. P. 38–39.; Zhang Y. et al. Distinct resting-state brain activities in heroindependent individuals // Brain Res. 2011. Vol. 1402. P. 46–53.; Tekin S., Cummings J.L. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update // J. Psychosom Res. 2002. Vol. 53, No. 2. P. 647–654.; https://radiag.bmoc-spb.ru/jour/article/view/433
-
5Academic Journal
المؤلفون: S. Bardakov N., A. Belskykh N., N. Ryzhman N., I. Zheleznyak S., S. Bagnenko S., V. Tsargush A., A. Emelyantsev A., G. Romanov G., M. Mavllikeev O., R. Deev V., С. Бардаков Н., А. Бельских Н., Н. Рыжман Н., И. Железняк С., С. Багненко С., В. Царгуш А., А. Емельянцев А., Г. Романов Г., М. Мавликеев О., Р. Деев В.
المصدر: Diagnostic radiology and radiotherapy; № 2 (2019); 91-101 ; Лучевая диагностика и терапия; № 2 (2019); 91-101 ; 2079-5343 ; 10.22328/2079-5343-2019-2
مصطلحات موضوعية: acute compartment syndrome, postexercise rhabdomyolysis, muscle MRI, extracorporeal hemocorrection, острый компартмент-синдром, постнагрузочный рабдомиолиз, МРТ мышц, экстракорпоральная гемокоррекция
وصف الملف: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/419/350; Long S. et al. Multimodality imaging findings in rhabdomyolysis and a brief review of differential diagnoses // Emerg. Radiol. 2017. Vol. 24 (4). P. 387–392.; Beetham R. Biochemical investigation of suspected rhabdomyolysis // Ann. Clin. Biochem. 2000. Vol. 37 (Pt 5). P. 581–587.; Jabur W.L. et al. An Observational Epidemiological Study of Exerciseinduced Rhabdomyolysis Causing Acute Kidney Injury: A Singlecenter Experience // Indian J. Nephrol. 2018. Vol. 28 (2). P. 101–104.; Huerta-Alardin A.L., Varon J., Marik P.E. Bench-to-bedside review: Rhabdomyolysis — an overview for clinicians // Crit Care. 2005. Vol. 9 (2). P. 158–169.; Lappalainen H. et al. Elimination kinetics of myoglobin and creatine kinase in rhabdomyolysis: implications for follow-up // Crit Care Med. 2002. Vol. 30 (10); Pierson E.H., Bantum B.M., Schaefer M.P. Exertional rhabdomyolysis of the elbow flexor muscles from weight lifting // Pmr. 2014. Vol. 6 (6). P. 556–559.; Mattiassich G. et al. Paravertebral compartment syndrome after training causing severe back pain in an amateur rugby player: report of a rare case and review of the literature // BMC Musculoskelet Disord. 2013. Vol. 14. P. 259.; Kok S.X.S., Tan T.J. Clinics in diagnostic imaging (179). Severe rhabdomyolysis complicated by myonecrosis // Singapore Med. J. 2017. Vol. 58 (8). P. 467–472.; Melli G., Chaudhry V., Cornblath D.R. Rhabdomyolysis: an evaluation of 475 hospitalized patients // Medicine (Baltimore). 2005. Vol. 84 (6). P. 377–385.; Ji J.W. Acute Compartment Syndrome Which Causes Rhabdomyolysis by Carbon Monoxide Poisoning and Sciatic Nerve Injury Associated with It: A Case Report // Hip Pelvis. 2017. Vol. 29 (3). P. 204–209.; Shellock F.G. et al. Acute effects of exercise on MR imaging of skeletal muscle: concentric vs eccentric actions // AJR Am. J. Roentgenol. 1991. Vol. 156 (4). P. 765–768.; Vanholder R. et al. Rhabdomyolysis // J. Am. Soc. Nephrol. 2000. Vol. 11 (8). P. 1553–1561.; Tibana R.A., Sousa N.M.F. Exertional Rhabdomyolysis after an Extreme Conditioning Competition. A Case Report. 2018. Vol. 6 (2).; Moratalla M.B., Braun P., Fornas G.M. Importance of MRI in the diagnosis and treatment of rhabdomyolysis // Eur. J. Radiol. 2008. Vol. 65 (2). P. 311–315.; Mehta P. et al. Magnetic Resonance Imaging of Musculoskeletal Emergencies // Semin Ultrasound CT MR. 2017. Vol. 38 (4). P. 439–452.; May D.A. et al. Abnormal signal intensity in skeletal muscle at MR imaging: patterns, pearls, and pitfalls // Radiographics. 2000. Vol. 20 Spec. No. P. 295–315.; De Meijer A.R. et al. Serum creatine kinase as predictor of clinical course in rhabdomyolysis: a 5-year intensive care survey // Int. Care Med. 2003. Vol. 29 (7). P. 1121–1125.; Takeda S. et al. Two cases of unidentified acute compartment syndrome // BMJ Case Rep. 2018. Vol. January 2018.; Hargens A.R. et al. Quantitation of skeletal-muscle necrosis in a model compartment syndrome // J. Bone Joint Surg Am. 1981. Vol. 63 (4). P. 631–636.; Whitesides T.E. et al. Tissue pressure measurements as a determinant for the need of fasciotomy // Clin Orthop Relat Res. 1975. Vol. 113. P. 43–51.; Lamminen, A.E. et al. Acute rhabdomyolysis: evaluation with magnetic resonance imaging compared with computed tomography and ultrasonography // Br. J. Radiol. 1989. Vol. 62 (736). P. 326–330.; Nakahara K. et al. The value of computed tomography and magnetic resonance imaging to diagnose rhabdomyolysis in acute renal failure // Nephrol. Dial. Transplant. 1999. Vol. 14 (6). P. 1564–1567.; Kakuda W. et al. Rhabdomyolysis lesions showing magnetic resonance contrast enhancement // J. Neuroimaging. 1999. Vol. 9 (3). P. 182–184.; Yeon E.K. et al. Characteristic MR image finding of squatting exercise-induced rhabdomyolysis of the thigh muscles // Br. J. Radiol. 2017. Vol. 90 (1072). Р. 20160740.; Theodorou, D.J., S.J. Theodorou, and Y. Kakitsubata, Skeletal muscle disease: patterns of MRI appearances // Br. J. Radiol. 2012. Vol. 85 (1020). P. e1298–1308.; Lu C.H. et al. Rhabdomyolysis: magnetic resonance imaging and computed tomography findings // J. Comput Assist Tomogr. 2007. Vol. 31 (3). P. 368–374.; Fleckenstein J.L. et al. Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers // AJR Am. J. Roentgenol. 1988. Vol. 151 (2). P. 231–237.; Shintani S., Shiigai T. Repeat MRI in acute rhabdomyolysis: correlation with clinicopathological findings // J. Comput. Assist. Tomogr. 1993. Vol. 17 (5). P. 786–791.; https://radiag.bmoc-spb.ru/jour/article/view/419