يعرض 1 - 20 نتائج من 329 نتيجة بحث عن '"G. A. Pavlova"', وقت الاستعلام: 0.73s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المؤلفون: G. A. Pavlova, I. V. Belyaeva

    المصدر: Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 3(28), Pp 152-162 (2012)

    مصطلحات موضوعية: Mathematics, QA1-939

    وصف الملف: electronic resource

  3. 3
    Academic Journal

    المصدر: Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 5(21), Pp 117-124 (2010)

    مصطلحات موضوعية: Mathematics, QA1-939

    وصف الملف: electronic resource

  4. 4
    Academic Journal

    المصدر: Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 2(17), Pp 143-151 (2008)

    مصطلحات موضوعية: Mathematics, QA1-939

    وصف الملف: electronic resource

  5. 5
    Academic Journal

    المساهمون: This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-1343 dated October 4, 2021).

    المصدر: Biomedical Photonics; Том 12, № 3 (2023); 4-10 ; 2413-9432

    وصف الملف: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/602/419; https://www.pdt-journal.com/jour/article/view/602/449; Majós C., Julià-Sapé M., Alonso J. et al. Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE, AJNR. American journal of neuroradiology, 2004, vol. 25(10), pp. 1696–1704.; Gao P., Shan W., Guo Y. et al. Development and Validation of a Deep Learning Model for Brain Tumor Diagnosis and Classification Using Magnetic Resonance Imaging, JAMA Network Open, 2022, vol. 5(8), pp. e2225608. doi:10.1001/jamanetworkopen.2022.25608.; Rynda A. Yu., Rostovtsev D. M., Olyushin V. E. et al. Therapeutic pathomorphosis in malignant glioma tissues after photodynamic therapy with сhlorin e6 (reports of two clinical cases), Biomedical Photonics, 2020, vol. 9(2), pp. 45–54. doi:10.24931/2413-94322020-9-2-45-54.; Kozlikina E. I., Trifonov I. S., Sinkin M. V. et al. The Combined Use of 5-ALA and Chlorin e6 Photosensitizers for Fluorescence-Guided Resection and Photodynamic Therapy under Neurophysiological Control for Recurrent Glioblastoma in the Functional Motor Area after Ineffective Use of 5-ALA: Preliminary Results, Bioengineering, 2022, vol. 9(3), pp. 104. doi:10.3390/bioengineering9030104.; Valdés P. A., Leblond F., Kim A. et al. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker: Clinical article, Journal of Neurosurgery, 2011, vol. 115(1), pp. 11–17. doi:10.3171/2011.2.JNS101451.; Valdés P. A., Jacobs V., Harris B. T. et al. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery, Journal of Neurosurgery, 2015, vol. 123(3), pp. 771–780. doi:10.3171/2014.12.JNS14391.; Stepp H., Stummer W. 5‐ALA in the management of malignant glioma, Lasers in Surgery and Medicine, 2018, vol. 50(5), pp. 399–419. doi:10.1002/lsm.22933.; Rynda A. Yu., Olyushin V. E., Rostovtsev D. M. et al. Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma, Biomedical Photonics, 2021, vol. 10(4), pp. 35–43. doi:10.24931/2413-9432-2021-10-4-35-43.; Hollon T., Lewis S., Freudiger C. W. et al. Improving the accuracy of brain tumor surgery via Raman-based technology, Neurosurgical Focus, 2016, vol. 40(3), pp. E9. doi:10.3171/2015.12.FOCUS15557.; Pekmezci M., Morshed R. A., Chunduru P. et al. Detection of glioma infiltration at the tumor margin using quantitative stimulated Raman scattering histology, Scientific Reports, 2021, vol. 11(1), pp. 12162. doi:10.1038/s41598-021-91648-8.; Potapov A. A., Goriaĭnov S. A., Loshchenov V. B. et al. Intraoperative combined spectroscopy (optical biopsy) of cerebral gliomas, Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko, 2013, vol. 77(2), pp. 3–10.; Savelieva T. A., Romanishkin I. D., Maklygina Y. S. et al. Optical biopsy: fundamentals and applications in neurosurgery, Journal of Physics: Conference Series, 2021, vol. 2058(1), pp. 012024. doi:10.1088/1742-6596/2058/1/012024.; Romanishkin I. D., Ospanov A., Savelyeva T. A. et al. Multimodal Method of Tissue Differentiation in Neurooncology Using Raman Spectroscopy, Fluorescence and Diffuse Reflectance Spectroscopy, Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko, 2022, vol. 86(5), pp. 5–12. doi:10.17116/neiro2022860515.; Goryaynov S. A., Okhlopkov V. A., Golbin D. A. et al. Fluorescence Diagnosis in Neurooncology: Retrospective Analysis of 653 Cases, Frontiers in Oncology, 2019, vol. 9, pp. 830. doi:10.3389/fonc.2019.00830.; Ospanov A., Romanishkin I., Savelieva T. et al. Optical Differentiation of Brain Tumors Based on Raman Spectroscopy and Cluster Analysis Methods, International Journal of Molecular Sciences, 2023, vol. 24(19), pp. 14432. doi:10.3390/ijms241914432.; Romanishkin I., Savelieva T., Kosyrkova A. et al. Differentiation of glioblastoma tissues using spontaneous Raman scattering with dimensionality reduction and data classification, Frontiers in Oncology, 2022, vol. 12, pp. 944210. doi:10.3389/fonc.2022.944210.; https://www.pdt-journal.com/jour/article/view/602

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
  9. 9
    Academic Journal
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    المصدر: Medical Visualization; Том 24, № 2 (2020); 105-118 ; Медицинская визуализация; Том 24, № 2 (2020); 105-118 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/917/603; Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016; 131: 803– 820. https://doi.org/10.1007/s00401-016-1545-1; Потапов А.А., Горяйнов С.А., Охлопков В.А., Жуков В.Ю., Чумакова А.П., Шишкина Л.В., Лощенов В.Б., Савельева Т.А., Варюхина М.Д., Гольдберг М.Ф. Опыт использования флуоресцентной навигации и лазерной спектроскопии с применением 5-аминолевулиновой кислоты в хирургии опухолей головного мозга. Вестник РФФИ. 2016; 2 (90): 50–62. https://doi.org/10.22204/2410-4639-2016-090-02-50-62; Потапов А.А., Чобулов С.А., Никитин П.В., Охлопков В.А., Горяйнов С.А., Косырькова А.В., Маряхин А.Д., Чёлушкин Д.М., Рыжова М.В., Захарова Н.Е., Баталов А.И., Пронин И.Н., Данилов Г.В., Савельева Т.А., Лощенов В.Б., Яшин К.С., Чехонин В.П. Интраоперационная флуоресценция сосудов в структуре глиобластом головного мозга и их гистологическая характеристика. Журнал “Вопросы нейрохирургии” имени Н.Н. Бурденко. 2019; 83 (6): 21–34. https://doi.org/10.17116/neiro20198306121; Ballester L.Y., Huse J.T., Tang G., Fuller G.N. Molecular classification of adult diffuse gliomas: conflicting IDH1/IDH2, ATRX and 1p/19q results. Hum. Pathol. 2017; 69: 15–22. https://doi.org/10.1016/j.humpath.2017.05.005; Giannini C., Scheithauer B.W., Weaver A.L., Burger P.C., Kros J.M., Mork S., Graeber M.B., Bauserman S., Buckner J.C., Burton J., Riepe R., Tazelaar H.D., Nascimento A.G., Crotty T., Keeney G.L., Pernicone P., Altermatt H. Oligodendrogliomas: reproducibility and prognostic value of histologic diagnosis and grading. J. Neuropathol. Exp. Neurol. 2001; 60 (3): 248–262. https://doi.org/10.1093/jnen/60.3.248; Scott J.N., Brasher P.M., Sevick R.J., Rewcastle N.B., Forsyth P.A. How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology. 2002; 59 (6): 947–949. https://doi.org/10.1212/wnl.59.6.947; Шульц Е.И., Пронин И.Н., Калинин П.Л., Туркин А.М., Кутин А.М., Тоноян А.С., Золотова С.В., Щуров И.Н., Пронин А.И., Фомичев Д.В., Шарипов О.И., Фадеева Л.М., Корниенко В.Н. СКТ-перфузия в диагностике опухолей селлярной и околоселлярной локализации. Журнал “Вопросы нейрохирургии” имени Н.Н. Бурденко. 2015; 79 (4): 71–77. https://doi.org/10.17116/neiro201579471-77; Баталов А.И., Захарова Н.Е., Погосбекян Э.Л., Фадеева Л.М., Горяйнов С.А., Баев А.А., Шульц Е.И., Челушкин Д.М., Потапов А.А., Пронин И.Н. Бесконтрастная ASL-перфузия в предоперационной диагностике супратенториальных глиом. Журнал “Вопросы нейрохирургии” имени Н.Н. Бурденко. 2018; 82 (6): 15–22. https://doi.org/10.17116/neiro20188206115; Тюрина А.Н., Пронин И.Н., Фадеева Л.М., Баталов А.И., Захарова Н.Е., Подопроигора А.Е., Шульц Е.И., Корниенко В.Н. Протонная 3D-МР-спектроскопия в диагностике глиальных опухолей головного мозга. Медицинская визуализация. 2019; 23 (3): 8–18. https://doi.org/10.24835/1607-0763-2019-3-8-18; Saito T., Yamasaki F., Kajiwara Y., Abe N., Akiyama Y., Kakuda T., Takeshima Y., Sugiyama K., Okada Y., Kurisu K. Role of perfusion-weighted imaging at 3T in the histopathological differentiation between astrocytic and oligodendroglial tumors. Eur. J. Radiol. 2012; 81: 1863– 1869. https://doi.org/10.1016/j.ejrad.2011.04.009; Jia Z., Geng D., Liu Y., Chen X., Zhang J. Low-grade and anaplastic oligodendrogliomas: differences in tumour microvascular permeability evaluated with dynamic contrast-enhanced magnetic resonance imaging. J. Clin. Neurosci. 2013; 20: 1110–1113. https://doi.org/10.1016/j.jocn.2012.09.019; Yordanova Y., Duffau H. Supratotal resection of diffuse gliomas- an overview of its multifaceted implications. Neurochirurgie. 2017; 63: 243–249. https://doi.org/10.1016/j.neuchi.2016.09.006; Lee J.Y., Ahn K.J., Lee Y.S., Jang J.H., Jung S.L., Kim B.S. Differentiation of grade II and III oligodendrogliomas from grade II and III astrocytomas: a histogram analysis of perfusion parameters derived from dynamic contrastenhanced (DCE) and dynamic susceptibility contrast (DSC) MRI. Acta Radiol. 2018; 59 (6): 723–731. https://doi.org/10.1177/0284185117728981; Fortin D., Cairncross G.J., Hammond R.R. Oligodendroglioma: an appraisal of recent data pertaining to diagnosis and treatment. Neurosurgery. 1999; 45 (6): 1279–1291. https://doi.org/10.1097/00006123-199912000-00001; Arvinda H.R., Kesavadas C., Sarma P.S., Thomas B., Radhakrishnan V.V., Gupta A.K., Kapilamoorthy T.R., Nair S. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J. Neurooncol. 2009; 94 (1): 87–96. https://doi.org/10.1007/s11060-009-9807-6; Roy B., Awasthi R., Bindal A., Sahoo P., Kumar R., Behari S., Ojha B.K., Husain N., Pandey C.M., Rathore R.K., Gupta R.K. Comparative evaluation of 3-dimensional pseudocontinuous arterial spin labeling with dynamic contrast-enhanced perfusion magnetic resonance imaging in grading of human glioma. J. Comput. Assist. Tomogr. 2013; 37 (3): 321–326. https://doi.org/10.1097/rct.0b013e318282d7e2; Корниенко В.Н., Пронин И.Н. Диагностическая нейрорадиология. 2-е изд. В 3-х томах. Т. 2, приложение. М.: Из-во ИП “Т.М. Андреева”, 2009. 462 с.; Li X., Zhu Y., Kang H., Zhang Y., Liang H., Wang S., Zhang W. Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer Imaging. 2015; 15 (1): 4. https://doi.org/10.1186/s40644-015-0039-z; Jung S.C., Yeom J.A., Kim J.H., Ryoo I., Kim S.C., Shin H., Lee A.L., Yun T.J., Park C.K., Sohn C.H., Park S.H., Choi S.H. Glioma: application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading. Am. J. Neuroradiol. 2014; 35 (6): 1103–1110. https://doi.org/10.3174/ajnr.a3825; Hempel J., Schittenhelm J., Klose U., Bender B., Bier G., Skardelly M., Tabatabai G., Castaneda Vega S., Ernemann U., Brendle C. In Vivo Molecular Profiling of Human Glioma. Clin. Neuroradiol. 2019; 29: 479–491. https://doi.org/10.1007/s00062-018-0676-2; Jain R. Perfusion CT imaging of brain tumors: an overview. Am. J. Neuroradiol. 2011; 32 (9): 1570–1577. https://doi.org/10.3174/ajnr.a2263; Cha S., Tihan T., Crawford F., Fischbein N., Chang S., Bollen A., Nelson S., Prados M., Berger M., Dillon W. Differentiation of low-grade oligodendrogliomas from lowgrade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. Am. J. Neuroradiol. 2005; 26: 266–273.; Osborn A. Osborn’s brain imaging pathology anatomy. Salt Lake City, UT: Amirsys, Inc., 2012. 553 p.; Smits M. Imaging of oligodendroglioma. Br. J. Radiol. 2016; 89 (1060): 20150857. https://doi.org/10.1259/bjr.20150857; Khalid L., Carone M., Dumrongpisutikul N., Intrapiromkul J., Bonekamp D., Barker P.B., Yousem D.M. Imaging characteristics of oligodendrogliomas that predict grade. Am. J. Neuroradiol. 2012; 33: 852–857. https://doi.org/10.3174/ajnr.a2895; Zulfiqar M., Dumrongpisutikul N., Intrapiromkul J., Yousem D.M. Detection of intratumoral calcification in oligodendrogliomas by susceptibility-weighted MR imaging. Am. J. Neuroradiol. 2012; 33: 858–864. https://doi.org/10.3174/ajnr.a2862; Пронин И.Н., Захарова Н.Е., Фадеева Л.М., Пронин А.И., Шульц Е.И., Баталов А.И. Импульсная последовательность SWI/SWAN в МРТ-диагностике микрокровоизлияний и сосудистых мальформаций. Онкологический журнал: лучевая диагностика, лучевая терапия. 2018; 1 (3): 49–59. https://doi.org/10.37174/2587-7593-2018-1-3-49-57; https://medvis.vidar.ru/jour/article/view/917

  17. 17
    Academic Journal
  18. 18
  19. 19
    Academic Journal
  20. 20