-
1Academic Journal
المؤلفون: O. A. Beylerli, I. F. Gareev, V. N. Pavlov, E. R. Musaev, G. E. Chmutin, C. Wang, О. А. Бейлерли, И. Ф. Гареев, В. Н. Павлов, Э. Р. Мусаев, Г. Е. Чмутин, Ч. Вонг
المصدر: Creative surgery and oncology; Том 14, № 2 (2024); 163-173 ; Креативная хирургия и онкология; Том 14, № 2 (2024); 163-173 ; 2076-3093 ; 2307-0501
مصطلحات موضوعية: пролиферация клетки, spine, bone tissue, pathogenesis, mechanisms of metastasis, cell proliferation, позвоночник, костная ткань, патогенез, механизмы метастазирования
وصف الملف: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/953/604; Wu M.Y., Li C.J., Yiang G.T., Cheng Y.L., Tsai A.P., Hou Y.T., et al. Molecular regulation of bone metastasis pathogenesis. Cell Physiol Biochem. 2018;46(4):1423–38. DOI:10.1159/000489184; McCabe F.J., Jadaan M.M., Byrne F., Devitt A.T., McCabe J.P. Spinal metastasis: The rise of minimally invasive surgery. Surgeon. 2021:S1479-666X(21)00140-2. DOI:10.1016/j.surge.2021.08.007; Luksanapruksa P., Buchowski J.M., Hotchkiss W., Tongsai S., Wilartratsami S., Chotivichit A. Prognostic factors in patients with spinal metastasis: a systematic review and meta-analysis. Spine J. 2017;17(5):689–708. DOI:10.1016/j.spinee.2016.12.003; Kim H.J., McLawhorn A.S., Goldstein M.J., Boland P.J. Malignant osseous tumors of the pediatric spine. J Am Acad Orthop Surg. 2012;20(10):646–56. DOI:10.5435/JAAOS-20-10-646; Patnaik S., Turner J., Inaparthy P., Kieffer W.K. Metastatic spinal cord compression. Br J Hosp Med (Lond). 2020;81(4):1–10. DOI:10.12968/hmed.2019.0399; Choi D., Bilsky M., Fehlings M., Fisher C., Gokaslan Z. Spine oncology-metastatic spine tumors. Neurosurgery. 2017;80(3S):S131–7. DOI:10.1093/neuros/nyw084; Challapalli A., Aziz S., Khoo V., Kumar A., Olson R., Ashford R.U., et al. Spine and non-spine bone metastases — current controversies and future direction. Clin Oncol (R Coll Radiol). 2020;32(11):728–44. DOI:10.1016/j.clon.2020.07.010; Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care (Engl). 2017;26(6). DOI:10.1111/ecc.12740 9 Mizoguchi T., Ono N. The diverse origin of bone-forming osteoblasts. J Bone Miner Res. 2021;36(8):1432–47. DOI:10.1002/jbmr.4410; Kim J.M., Lin C., Stavre Z., Greenblatt M.B., Shim J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9(9):2073. DOI:10.3390/cells9092073; Robling A.G., Bonewald L.F. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485–506. DOI:10.1146/annurev-physiol-021119-034332; Zalfa C., Paust S. Natural killer cell interactions with myeloid derived suppressor cells in the tumor microenvironment and implications for cancer immunotherapy. Front Immunol. 2021;12:633205. DOI:10.3389/fimmu.2021.633205; Wein M.N., Kronenberg H.M. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med. 2018;8(8):a031237. DOI:10.1101/cshperspect.a031237; Zhu S., Liu M., Bennett S., Wang Z., Pfleger K.D.G., Xu J. The molecular structure and role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases. J Cell Physiol. 2021;236(10):7211–22. DOI:10.1002/jcp.30375; Udagawa N., Koide M., Nakamura M., Nakamichi Y., Yamashita T., Uehara S., et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39(1):19–26. DOI:10.1007/s00774-020-01162-6; Kitaura H., Marahleh A., Ohori F., Noguchi T., Shen W.R., Qi J., et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci. 2020;21(14):5169. DOI:10.3390/ijms21145169; Yang L., Kang M., He R., Meng B., Pal A., Chen L., et al. Microanatomical changes and biomolecular expression at the PDL-entheses during experimental tooth movement. J Periodontal Res. 2019;54(3):251–8. DOI:10.1111/jre.12625; Yang D., Wan Y. Molecular determinants for the polarization of macrophage and osteoclast. Semin Immunopathol. 2019;41(5):551–63. DOI:10.1007/s00281-019-00754-3; De Cicco P., Ercolano G., Ianaro A. The new era of cancer immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 2020;11:1680. DOI:10.3389/fimmu.2020.01680; Li X., Liu Y., Wu B., Dong Z., Wang Y., Lu J., et al. Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncol Rep. 2014;32(6):2605–11. DOI:10.3892/or.2014.3511; Deligiorgi M.V., Panayiotidis M.I., Griniatsos J., Trafalis D.T. Harnessing the versatile role of OPG in bone oncology: counterbalancing RANKL and TRAIL signaling and beyond. Clin Exp Metastasis. 2020;37(1):13–30. DOI:10.1007/s10585-019-09997-8; Takegahara N., Kim H., Choi Y. RANKL biology. Bone. 2022;159:116353. DOI:10.1016/j.bone.2022.116353; Jaffee W.F. Tumors and tumorous conditions of the bones and joints. Philadelphia, PA: Lea and Febiger; 1958.; Gao Z.Y., Zhang T., Zhang H., Pang C.G., Xia Q. Effectiveness of preoperative embolization in patients with spinal metastases: a systematic review and meta-analysis. World Neurosurg. 2021;152:e745–57. DOI:10.1016/j.wneu.2021.06.062; Perrin R.G., Laxton A.W. Metastatic spine disease: epidemiology, pathophysiology, and evaluation of patients. Neurosurg Clin N Am. 2004;15(4):365–73. DOI:10.1016/j.nec.2004.04.018; Nater A., Sahgal A., Fehlings M. Management — spinal metastases. Handb Clin Neurol. 2018;149:239–55. DOI:10.1016/B978-0-12- 811161-1.00016-5; Gilbert R.W., Kim J.H., Posner J.B. Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol. 1978;3(1):40–51. DOI:10.1002/ana.410030107; Turajlic S., Swanton C. Metastasis as an evolutionary process. Science. 2016;352(6282):169–75. DOI:10.1126/science.aaf2784; Hofbauer L.C., Bozec A., Rauner M., Jakob F., Perner S., Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol. 2021;18(8):488–505. DOI:10.1038/s41571-021-00499-9; Santos J.L.M., Kalhorn S.P. Anatomy of the posterolateral spinal epidural ligaments. Surg Neurol Int. 2021;12:33. DOI:10.25259/SNI_894_2020; Nathoo N., Caris E.C., Wiener J.A., Mendel E. History of the vertebral venous plexus and the significant contributions of Breschet and Batson. Neurosurgery. 2011;69(5):1007–14; disc. 1014. DOI:10.1227/NEU.0b013e3182274865; Onuigbo W.I. Batson’s theory of vertebral venous metastasis: a review. Oncology. 1975;32(3–4):145–50. DOI:10.1159/000225060. PMID: 1221328; Wu S., Pan Y., Mao Y., Chen Y., He Y. Current progress and mechanisms of bone metastasis in lung cancer: a narrative review. Transl Lung Cancer Res. 2021;10(1):439–51. DOI:10.21037/tlcr-20-835; Sturge J., Caley M.P., Waxman J. Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat Rev Clin Oncol. 2011;8(6):357–68. DOI:10.1038/nrclinonc.2011.67; Spano D., Heck C., De Antonellis P., Christofori G., Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012;22(3):234–49. DOI:10.1016/j.semcancer.2012.03.006; Satcher R.L., Zhang X.H. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer. 2022;22(2):85– 101. DOI:10.1038/s41568-021-00406-5 37 Raubenheimer E.J., Noffke C.E. Pathogenesis of bone metastasis: a review. J Oral Pathol Med. 2006;35(3):129–35. DOI:10.1111/j.1600-0714.2006.00360.x; Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52. DOI:10.1038/nrc2618; Liu Y., Qing H., Su X., Wang C., Li Z., Liu S. Association of CD44 gene polymorphism with survival of NSCLC and risk of bone metastasis. Med Sci Monit. 2015;21:2694–700. DOI:10.12659/MSM.894357; Chen F., Han Y., Kang Y. Bone marrow niches in the regulation of bone metastasis. Br J Cancer. 2021;124(12):1912–20. DOI:10.1038/s41416-021-01329-6; Clézardin P., Coleman R., Puppo M., Ottewell P., Bonnelye E., Paycha F., et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev. 2021;101(3):797–855. DOI:10.1152/physrev.00012.2019; Fornetti J., Welm A.L., Stewart S.A. Understanding the bone in cancer metastasis. J Bone Miner Res. 2018;33(12):2099–113. DOI:10.1002/jbmr.3618; Eleraky M., Papanastassiou I., Vrionis F.D. Management of metastatic spine disease. Curr Opin Support Palliat Care. 2010;4(3):182–8. DOI:10.1097/SPC.0b013e32833d2fdd; Kaur M., Nagpal M., Singh M. Osteoblast-n-Osteoclast: making headway to osteoporosis treatment. Curr Drug Targets. 2020;21(16):1640– 51. DOI:10.2174/1389450121666200731173522; Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond). 2019;39(1):76. DOI:10.1186/s40880-019-0425-1; Tahara R.K., Brewer T.M., Theriault R.L., Ueno N.T. Bone metastasis of breast cancer. Adv Exp Med Biol. 2019;1152:105–29. DOI:10.1007/978-3-030-20301-6_7; Győri D.S., Mócsai A. Osteoclast signal transduction during bone metastasis formation. Front Cell Dev Biol. 2020;8:507. DOI:10.3389/fcell.2020.00507; Zhang R., Li J., Assaker G., Camirand A., Sabri S., Karaplis A.C., et al. Parathyroid hormone-related protein (PTHrP): an emerging target in cancer progression and metastasis. Adv Exp Med Biol. 2019;1164:161– 78. DOI:10.1007/978-3-030-22254-3_13; Edwards C.M., Johnson R.W. From good to bad: the opposing effects of PTHrP on tumor growth, dormancy, and metastasis throughout cancer progression. Front Oncol. 2021;11:644303. DOI:10.3389/fonc.2021.644303; Zheng X., Kang W., Liu H., Guo S. Inhibition effects of total flavonoids from Sculellaria barbata D. Don on human breast carcinoma bone metastasis via downregulating PTHrP pathway. Int J Mol Med. 2018;41(6):3137–46. DOI:10.3892/ijmm.2018.3515; Okamoto K. Role of RANKL in cancer development and metastasis. J Bone Miner Metab. 2021;39(1):71–81. DOI:10.1007/s00774-020-01182-2; David Roodman G., Silbermann R. Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey Rep. 2015;4:753. DOI:10.1038/bonekey.2015.122; Fang J., Xu Q. Differences of osteoblastic bone metastases and osteolytic bone metastases in clinical features and molecular characteristics. Clin Transl Oncol. 2015;17(3):173–9. DOI:10.1007/s12094-014-1247-x; Buijs J.T., Stayrook K.R., Guise T.A. The role of TGF-β in bone metastasis: novel therapeutic perspectives. Bonekey Rep. 2012;1:96. DOI:10.1038/bonekey.2012.96; Syed V. TGF-β signaling in cancer. J Cell Biochem. 2016;117(6):1279– 87. DOI:10.1002/jcb.25496; Trivedi T., Pagnotti G.M., Guise T.A., Mohammad K.S. The role of TGF-β in bone metastases. Biomolecules. 2021;11(11):1643. DOI:10.3390/biom11111643; Tiedemann K., Hussein O., Komarova S.V. Role of altered metabolic microenvironment in osteolytic metastasis. Front Cell Dev Biol. 2020;8:435. DOI:10.3389/fcell.2020.00435; Teicher B.A. TGFβ-directed therapeutics: 2020. Pharmacol Ther. 2021;217:107666. DOI:10.1016/j.pharmthera.2020.107666; Wan L., Pantel K., Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med. 2013;19(11):1450–64. DOI:10.1038/nm.3391; Weidle U.H., Birzele F., Kollmorgen G., Rüger R. Molecular mechanisms of bone metastasis. Cancer Genomics Proteomics. 2016;13(1):1– 12. PMID: 26708594; Loreth D., Schuette M., Zinke J., Mohme M., Piffko A., Schneegans S., et al. CD74 and CD44 expression on CTCs in cancer patients with brain metastasis. Int J Mol Sci. 2021;22(13):6993. DOI:10.3390/ijms22136993; Miwa S., Mizokami A., Keller E.T., Taichman R., Zhang J., Namiki M. The bisphosphonate YM529 inhibits osteolytic and osteoblastic changes and CXCR-4-induced invasion in prostate cancer. Cancer Res. 2005;65(19):8818–25. DOI:10.1158/0008-5472.CAN-05-0540; Wang J., Loberg R., Taichman R.S. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 2006;25(4):573–87. DOI:10.1007/s10555-006-9019-x; Cheng X., Wang Z. Immune modulation of metastatic niche formation in the bone. Front Immunol. 2021;12:765994. DOI:10.3389/fimmu.2021.765994; Mohammad K.S., Guise T.A. Mechanisms of osteoblastic metastases: role of endothelin-1. Clin Orthop Relat Res. 2003;(415 Suppl):S67–74. DOI:10.1097/01.blo.0000093047.96273.4e; Tocci P., Blandino G., Bagnato A. YAP and endothelin-1 signaling: an emerging alliance in cancer. J Exp Clin Cancer Res. 2021;40(1):27. DOI:10.1186/s13046-021-01827-8; Clines G.A., Mohammad K.S., Bao Y., Stephens O.W., Suva L.J., Shaughnessy J.D. Jr, et al. Dickkopf homolog 1 mediates endothelin1-stimulated new bone formation. Mol Endocrinol. 2007;21(2):486–98. DOI:10.1210/me.2006-0346; Leth J.M., Ploug M. Targeting the urokinase-type plasminogen activator receptor (uPAR) in human diseases with a view to non-invasive imaging and therapeutic intervention. Front Cell Dev Biol. 2021;9:732015. DOI:10.3389/fcell.2021.732015; Sabur V., Untan I., Tatlisen A. Role of PSA kinetics in hormone-refractory prostate cancer. J Coll Physicians Surg Pak. 2021;30(6):673–8. DOI:10.29271/jcpsp.2021.06.673; Chaoying L., Chao M., Xiangrui Y., Yingjian H., Gang Z., Yunhan R., et al. Risk factors of bone metastasis in patients with newly diagnosed prostate cancer. Eur Rev Med Pharmacol Sci. 2022;26(2):391–8. DOI:10.26355/eurrev_202201_27863; Kaplan Z., Zielske S.P., Ibrahim K.G., Cackowski F.C. Wnt and β-Catenin signaling in the bone metastasis of prostate cancer. Life (Basel). 2021;11(10):1099. DOI:10.3390/life11101099; Supsavhad W., Hassan B.B., Simmons J.K., Dirksen W.P., Elshafae S.M., Kohart N.A., et al. Effect of Dickkopf-1 (Dkk-1) and SP600125, a JNK inhibitor, on Wnt signaling in canine prostate cancer growth and bone metastases. Vet Sci. 2021;8(8):153. DOI:10.3390/vetsci8080153; Cai X., Luo J., Yang X., Deng H., Zhang J., Li S., et al. In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration, inflammation and decreased adhesion. Oncotarget. 2015;6(26):22905–17. DOI:10.18632/oncotarget.4416; Kfoury Y., Baryawno N., Severe N., Mei S., Gustafsson K., Hirz T., et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell. 2021;39(11):1464–78.e8. DOI:10.1016/j.ccell.2021.09.005; Weitzmann M.N. Bone and the immune system. Toxicol Pathol. 2017;45(7):911–24. DOI:10.1177/0192623317735316; Okamoto K., Takayanagi H. Osteoimmunology. Cold Spring Harb Perspect Med. 2019;9(1):a031245. DOI:10.1101/cshperspect.a031245; Amarasekara D.S., Yun H., Kim S., Lee N., Kim H., Rho J. Regulation of Osteoclast Differentiation by Cytokine Networks. Immune Netw. 2018;18(1):e8. DOI:10.4110/in.2018.18.e8; D’Oronzo S., Coleman R., Brown J., Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J Bone Oncol. 2018;15:004–4. DOI:10.1016/j. jbo.2018.10.004; Gabrilovich D.I. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5(1):3–8. DOI:10.1158/2326-6066.CIR-16-0297; Botta C., Gullà A., Correale P., Tagliaferri P., Tassone P. Myeloidderived suppressor cells in multiple myeloma: pre-clinical research and translational opportunities. Front Oncol. 2014;4:348. DOI:10.3389/fonc.2014.00348; Cook K.D., Finger E.C., Santos C.D., Rock D.A. A quantitative method for detection of circulating fms related tyrosine kinase 3 (FLT-3) in acute myeloid leukemia (AML) patients. J Immunol Methods. 2019;470:55–8. DOI:10.1016/j.jim.2019.04.010; Schrijver I.T., Théroude C., Roger T. Myeloid-derived suppressor cells in sepsis. Front Immunol. 2019;10:327. DOI:10.3389/fimmu.2019.00327; Dysthe M., Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1224:117–40. DOI:10.1007/978-3-030-35723-8_8; Groth C., Hu X., Weber R., Fleming V., Altevogt P., Utikal J., et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120(1):16–25. DOI:10.1038/s41416-018-0333-1; Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021;277:119627. DOI:10.1016/j.lfs.2021.119627; Pan Y., Yu Y., Wang X., Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084. DOI:10.3389/fimmu.2020.583084; https://www.surgonco.ru/jour/article/view/953
-
2Academic Journal
المؤلفون: M. A. Kolcheva, E. V. Kumirova, M. I. Livshits, D. A. Skobeev, V. N. Umerenkov, B. I. Oleynikov, A. A. Kuznetsova, G. E. Chmutin, М. А. Колчева, Э. В. Кумирова, М. И. Лившиц, Д. А. Скобеев, В. Н. Умеренков, Б. И. Олейников, А. А. Кузнецова, Г. Е. Чмутин
المساهمون: The study was performed without external funding, Исследование проведено без спонсорской поддержки
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 9, № 4 (2022); 88-95 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 9, № 4 (2022); 88-95 ; 2413-5496 ; 2311-1267
مصطلحات موضوعية: сосудистая опухоль, brain tumor, multiple intracranial masses, vascular tumor, опухоли мозга, множественные внутричерепные образования
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/887/784; Weiss S. W., Enzinger F. M. Epitheloid hemangioendothelioma. A vascular tumor often mistaken for a carcinoma. Cancer. 1982; 50 (5): 970–81. doi:10.1002/1097-0142(19820901)50:53.0.co;2-z.; Louis D. N., Ohgaki H., Wiestier O. D., Cavenee W. K., Ellison D. W., Figarella-Branger D., editors. WHO Classifi cation of Tumours of the Central Nervous System (IARC WHO Classification of Tumours), revised 4 th edn., Agency for Research on Cancer, World Health Organization 2016-05-13, Pp. 11, 258. doi:10.1007/s00401-016-1545-1.; Díaz R., Segura Á., Calderero V., Cervera I., Aparicio J., Jordá M. V., Pellín L. Central nervous system metastases of a pulmonary epitheloid haemangioendothelioma. Eur Respiratory J. 2004; 23: 483–6. doi:10.1183/09031936.04.00060104.; Endo T., Su C. C., Numagami Y., Shirane R. Malignant intracranial epithelioid hemangioendothelioma presumably originating from the lung: Case report. J Neurooncol. 2004; 67: 337–43. PMID: 23759830.; Fernandes A. L., Ratilal B., Mafra M., Magalhaes C. Aggressive intracranial and extra-cranial epithelioid hemangioendothelioma: A case report and review of the literature. Neuropathology. 2006; 26: 201–5. doi:10.11477/mf.1436203671.; Gu H. L., Zeng S. X., Chang Y. B., Lin Z., Zheng Q. J., Zheng X. Q., Peng Z. W., Zhan S. Q. Multidisciplinary treatment based on surgery leading to long-term survival of a patient with multiple asynchronous rare primary malignant neoplasms: a case report and literature review. Oncol Lett. 2015; 9 (3): 1135–41. doi:10.3892/ol.2014.2833.; Soape M. P., Verma R., Payne J. D., Wachtel M., Hardwicke F., Cobos E. Treatment of hepatic epithelioid hemangioendothelioma: finding uses for thalidomide in a new era of medicine. Case Rep Gastrointest Med. 2015; 2015: 326795. doi:10.1155/2015/326795.; Engel E. R., Cournoyer E., Adams D. M., Stapleton S. A retrospective review of the use of sirolimus for pediatric patients with epithelioid hemangioendothelioma. J Pediatr Hematol Oncol. 2020; 42: e826–9. PMID: 31714437. doi:10.1097/MPH.0000000000001643.; Rosenberg A., Agulnik M. Epithelioid Hemangioendothelioma: Update on Diagnosis and Treatment. Curr Treat Options Oncol. 2018; 19 (4): 19. doi:10.1007/s11864-018-0536-y.; Ji Y., Chen S., Yang K., Xia C., Li L. Kaposiform hemangioendothelioma: current knowledge and future perspectives. Orphanet J Rare Dis. 2020; 15 (1): 39. doi:10.1186/s13023-020-1320-1.; Fryer J. A., Biggs M. T., Katz I. A., Brazier D. H., Shakespeare T. P. Intracranial epithelioid hemangioendothelioma arising at site of previously excised atypical meningioma. Pathology. 1998; 30 (2): 95–9. doi:10.1080/00313029800169026.; Baehring J. M., Dickey P. S., Bannykh S. I. Epithelioid hemangioendothelioma of the suprasellar area: A case report and review of the literature. Arch Pathol Lab Med. 2004; 128: 1289–93. PMID: 27656318.; Chan Y. L., Ng H. K., Poon W. S., Cheung H. S. Epithelioid haemangioendothelioma of the brain: A case report. Neuroradiology. 2001; 43: 848–50. PMID: 11688702.; Chen T. C., Gonzalez-Gomez I., Gilles F. H., McComb J. G. Pediatric intracranial hemangioendotheliomas: Case report. Neurosurgery. 1997; 40: 410–4. PMID: 9007881.; Chow L. T., Chow W. H., Fong D. T. Epithelioid hemangioendothelioma of the brain. Am J Surg Pathol. 1992; 16: 619–25. PMID: 1376023.; Hodaie M., Becker L., Teshima I., Rutka J. T. Total resection of an intracerebral hemangioendothelioma in an infant. Case report and review of the literature. Pediatr Neurosurg. 2001; 34: 104–12. PMID: 11287811. doi:10.1159/000056003.; Llena J. F., Hirano A., Inoue A. Vasoformative tumor of the brain – Immunohistology and ultrastructure. Clin Neuropathol. 1984; 3: 155–9. PMID: 6434214.; Mohan S. M., Symss N. P., Pande A., Chakravarthy V. M., Ramamurthi R. Intracranial epithelioid hemangioendothelioma. Childs Nerv Syst. 2008; 24: 863–8. PMID: 15218955. doi:10.1023/b:neon.0000027760.84461.c7.; D’Annibale M., Piovanello P., Carlini P., Del Nonno F., Sciarretta F., Rossi M., Berloco P., Iappelli M., Lonardo M. T., Perrone R., Donnorso R. Epithelioid hemangioendothelioma of the liver: case report and review of the literature. Transplant Proc. 2002; 34: 1248–51. doi:10.1016/s0041-1345(02)02751-3.; Gelin M., Van de Stadt J., Rickaert F., Adler M., Lambilliotte J. P. Epithelioid hemangioendothelioma of the liver following contact with vinyl chloride. Recurrence after orthotopic liver transplantation. J Hepatol. 1989; 8 (1): 99–106. doi:10.1016/0168-8278(89)90168-2.; Golash A., Strang F. A., Reid H. Intracranial haemangioendothelioma mimicking a meningioma. Br J Neurosurg. 1999; 13: 594–7. PMID: 10715730. doi:10.1080/02688699943123.; Hamlat A., Casallo-Quilliano C., Saikali S., Lesimple T., Brassier G. Epithelioid hemangioendothelioma of the infundibular-hypothalamic region: Case report and literature review. J Neurooncol. 2004; 67: 361–6. PMID: 15164993. doi:10.1023/b:neon.0000024240.97378.d0.; Hurley T. R., Whisler W. W., Clasen R. A., Smith M. C., Bleck T. P., Doolas A., Dampier M. F. Recurrent intracranial epithelioid hemangioendothelioma associated with multicentric disease of liver and heart: Case report. Neurosurgery. 1994; 35: 148–51. PMID: 7936138. doi:10.1227/00006123-199407000-00024.; Kitaichi M., Nagai S., Nishimura K., Itoh H., Asamoto H., Izumi T., Dail D. H. Pulmonary epithelioid haemangioendothelioma in 21 patients, including three with partial spontaneous regression. Eur Respir J. 1998; 12: 89–96. PMID: 9701420. doi:10.1183/09031936.98.12010089.; Kubota T., Sato K., Takeuchi H., Handa Y. Successful removal after radiotherapy and vascular embolization in a huge tentorial epithelioid hemangioendothelioma: A case report. J Neurooncol. 2004; 68: 177–83. PMID: 15218955. doi:10.1023/b:neon.0000027760.84461.c7.; Louis D. N., Ohgaki H., Wiestler O. D., Cavenee W. K., Burger P. C., Jouvet A., Scheithauer B. W., Kleihues P. The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathol. 2007; 114: 97–109. doi:10.1007/s00401-007-0243-4.; Mistry A. M., Gorden D. L., Busler J. F., Coogan A. C., Kelly B. S. Diagnostic and therapeutic challenges in hepatic epithelioid hemangioendothelioma. J Gastrointest Cancer. 2012; 43: 521–5. PMID: 22544493. doi:10.1007/s12029-012-9389-y.; Zheng J., Liu L., Wang J., Wang S., Cao Y., Zhao J. Primary intracranial epithelioid hemangioendothelioma: A low-proliferation tumor exhibiting clinically malignant behavior. J Neurooncol. 2012; 110: 119–27. doi:10.1007/s11060-012-0945-x.; Tammam A. G., Lewis P. D., Crockard H. A. Cerebellopontine angle epithelioid haemangioendothelioma in a 4-year-old boy. Childs Nerv Syst. 1997; 13: 648–50. PMID: 9454988. doi:10.1007/s003810050162.; Taratuto A. L., Zurbriggen G., Sevlever G., Saccoliti M. Epithelioid hemangioendothelioma of the central nervous system. Immunohistochemical and ultrastructural observations of a pediatric case. Pediatr Neurosci. 1998; 14: 11–4. PMID: 3217280. doi:10.1159/000120355.; Venizelos I. D., Paradinas F. J. Primary paediatric intracranial epithelioid haemangioendothelioma. Histopathology. 2002; 41: 172–4. PMID: 12147098. doi:10.1046/j.1365-2559.2002.01424_3.x.; Aniba K., Laghmari M., Lmejjati M., Ghannane H., Ait Benali S. A tragical paediatric case history of intraorbital and intracranial epithelioid hemangioendothelioma. Case Rep Neurol Med. 2012; 2012: 396097. doi:10.1155/2012/396097. PMID: 23133764.; Frota Lima L. M., Packard A. T., Broski S. M. Epithelioid hemangioendothelioma: evaluation by 18 F-FDG PET / CT. Am J Nucl Med Mol Imaging. 2021; 11 (2): 77–86. PMID: 34079637.; Parajón A., Vaquero J. Meningel intracranial epithelioid hemangioendothelioma: Case report and literature review. J Neurooncol. 2008; 88: 169–73. PMID: 18278439. doi:10.1007/s11060-008-9543-3.; https://journal.nodgo.org/jour/article/view/887
-
3Academic Journal
المؤلفون: I. O. Shchederkina, I. P. Vitkovskaya, I. E. Koltunov, M. I. Livshits, G. E. Chmutin, N. V. Buzina, D. B. Lavrukhin
المصدر: Русский журнал детской неврологии, Vol 13, Iss 1, Pp 7-19 (2018)
مصطلحات موضوعية: pediatric stroke, pediatric register, Neurology. Diseases of the nervous system, RC346-429
وصف الملف: electronic resource
-
4
المؤلفون: M. A. Kutin, V. V. Ivanov, G. E. Chmutin, P. L. Kalinin, K V Koval
المصدر: Vestnik nevrologii, psihiatrii i nejrohirurgii (Bulletin of Neurology, Psychiatry and Neurosurgery). :38-56
مصطلحات موضوعية: 03 medical and health sciences, Pediatrics, medicine.medical_specialty, 0302 clinical medicine, business.industry, Medicine, In patient, 030204 cardiovascular system & hematology, business, 030217 neurology & neurosurgery, Electrolyte Disorder
-
5Academic Journal
المؤلفون: D R Naskhletashvili, G E Chmutin, V B Karakhan, V A Aleshin, R G Fu, E A Moskvina, D M Belov, A B Luk'yanchenko, E A Ivanova
المصدر: Современная онкология, Vol 12, Iss 1, Pp 13-14 (2010)
مصطلحات موضوعية: Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
-
6Academic Journal
المؤلفون: D R Naskhletashvili, G E Chmutin
المصدر: Современная онкология, Vol 11, Iss 3, Pp 42-44 (2009)
مصطلحات موضوعية: рак молочной железы, метастатическое поражение головного мозга, химиотерапия, капецитабин, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
-
7Academic Journal
المؤلفون: D R Naskhletashvili, G E Chmutin, V B Karakhan, V A Aleshin, R G Fu, D M Belov, E A Ivanova
المصدر: Современная онкология, Vol 11, Iss 1, Pp 50-54 (2009)
مصطلحات موضوعية: Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
-
8
المؤلفون: Vladislav Karahan, Vladimir Aloshin, M. B. Bychkov, E. A. Moskvina, G. E. Chmutin, Vera Gorbunova, D. R. Naskhletashvili
المصدر: Journal of Clinical Oncology. 28:1125-1125
مصطلحات موضوعية: Oncology, Cisplatin, Cancer Research, medicine.medical_specialty, Chemotherapy, business.industry, medicine.medical_treatment, Advanced breast, Cancer, medicine.disease, Gemcitabine, Internal medicine, Toxicity, medicine, In patient, business, medicine.drug
-
9
المؤلفون: E. A. Moskvina, Vladislav Karahan, G. E. Chmutin, Vera Gorbunova, Vladimir Aloshin, M. B. Bychkov, S. B. Alieva, N. N. Blokhin, D. R. Naskhletashvili, Zoya Michina
المصدر: Journal of Clinical Oncology. 28:e12539-e12539
مصطلحات موضوعية: Oncology, CA15-3, Cancer Research, medicine.medical_specialty, Temozolomide, business.industry, Melanoma, Cancer, Combination chemotherapy, medicine.disease, Irinotecan, Breast cancer, Internal medicine, medicine, Lung cancer, business, medicine.drug
-
10
المؤلفون: M. B. Bychkov, V. A. Gorbounova, D. R. Naskhletashvili, V. B. Karakhan, G. E. Chmutin, V. B. Krat
المصدر: Journal of Clinical Oncology. 27:1102-1102
مصطلحات موضوعية: Oncology, Cancer Research, medicine.medical_specialty, Chemotherapy, business.industry, Advanced breast, medicine.medical_treatment, ECOG Performance Status, Cancer, Disease, medicine.disease, Capecitabine, Breast cancer, Internal medicine, medicine, Until Disease Progression, business, medicine.drug