يعرض 1 - 20 نتائج من 158 نتيجة بحث عن '"Fondriest Michele"', وقت الاستعلام: 0.61s تنقيح النتائج
  1. 1
    Report
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal

    المساهمون: Dipartimento di Geoscienze, Università degli Studi di Padova, Padua, Italy, Institut des Sciences de la Terre (ISTerre), Université Grenoble-Alpes, Grenoble, France, CIGIDEN, Santiago, Chile, Department of Earth Sciences, University College London, London, United Kingdom, Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Santiago, Chile, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia

    وصف الملف: application/pdf

    Relation: Tectonics; /40 (2021); Acocella, V., Bellier, O., Sandri, L., Sébrier, M., & Pramumijoyo, S. (2018). Weak tectono-magmatic relationships along an obliquely convergent plate boundary: Sumatra, Indonesia. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00003 Allmendinger, R. W., Cardozo, N., & Fisher, D. M. (2011). Structural geology algorithms: Vectors & tensors. Cambridge University Press. Anderson, E. M. (1951). Dynamics of faulting and dyke formations with application to Britain. Oliver & Boy. Arabasz, W. J. J. (1971). Geological and geophysical studies of the Atacama fault zone in northern Chile (PhD thesis). California Institute of Technology. Arancibia, G., Fujita, K., Hoshino, K., Mitchell, T. M., Cembrano, J., Gomila, R., et al. (2014). Hydrothermal alteration in an exhumed crustal fault zone: Testing geochemical mobility in the Caleta Coloso Fault, Atacama Fault System, Northern Chile. Tectonophysics, 623, 147–168. https://doi.org/10.1016/j.tecto.2014.03.024 Balázs, A., Matenco, L., Vogt, K., Cloetingh, S., & Gerya, T. (2018). Extensional polarity change in continental rifts: Inferences from 3-D numerical modeling and observations. Journal of Geophysical Research: Solid Earth, 123(9), 8073–8094. https://doi.org/10.1029/2018JB015643 Becker, T. W., Hashima, A., Freed, A. M., & Sato, H. (2018). Stress change before and after the 2011 M9 Tohoku-oki earthquake. Earth and Planetary Science Letters, 504, 174–184. https://doi.org/10.1016/j.epsl.2018.09.035 Bellahsen, N., & Daniel, J. M. (2005). Fault reactivation control on normal fault growth: An experimental study. Journal of Structural Geology, 27(4), 769–780. https://doi.org/10.1016/j.jsg.2004.12.003 Bistacchi, A., Massironi, M., & Menegon, L. (2010). Three-dimensional characterization of a crustal-scale fault zone: The Pusteria and Sprechenstein fault system (Eastern Alps). Journal of Structural Geology, 32(12), 2022–2041. https://doi.org/10.1016/j.jsg.2010.06.003 Bistacchi, A., Massironi, M., Menegon, L., Bolognesi, F., & Donghi, V. (2012). On the nucleation of non-Andersonian faults along phyllosilicate- rich mylonite belts. Geological Society, London, Special Publications, 367(1), 185–199. https://doi.org/10.1144/SP367.13 Bradbury, K. K., Davis, C. R., Shervais, J. W., Janecke, S. U., & Evans, J. P. (2015). Composition, alteration, and texture of fault-related rocks from SAFOD core and surface outcrop analogs: Evidence for deformation processes and fluid-rock interactions. Pure and Applied Geophysics, 172(5), 1053–1078. https://doi.org/10.1007/s00024-014-0896-6 Brown, M., Diàz, F., & Grocott, J. (1993). Displacement history of the Atacama Fault System 25°00’S-27°00’S, northern Chile. The Geological Society of America Bulletin, 102, 1165–1174. https://doi.org/10.1130/0016-7606(1993)1052.3.co;2 Butler, R. W. H., Bond, C. E., Shipton, Z. K., Jones, R. R., & Casey, M. (2008). Fabric anisotropy controls faulting in the continental crust. Journal of the Geological Society, 165(2), 449–452. https://doi.org/10.1144/0016-76492007-129 Cao, W., Kaus, B. J. P., & Paterson, S. (2016). Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: Numerical simulations. Tectonics, 35(6), 1575–1594. https://doi.org/10.1002/2015TC004076 Cardozo, N., & Allmendinger, R. W. (2013). Spherical projections with OSXStereonet. Computers & Geosciences, 51, 193–205. https://doi. org/10.1016/j.cageo.2012.07.021 Cembrano, J., González, G., Arancibia, G., Ahumada, I., Olivares, V., & Herrera, V. (2005). Fault zone development and strain partitioning in an extensional strike-slip duplex: A case study from the Mesozoic Atacama Fault System, Northern Chile. Tectonophysics, 400(1–4), 105–125. https://doi.org/10.1016/j.tecto.2005.02.012 Chemenda, A. I., Cavalié, O., Vergnolle, M., Bouissou, S., & Delouis, B. (2016). Numerical model of formation of a 3-D strike-slip fault system. Comptes Rendus Geoscience, 348(1), 61–69. https://doi.org/10.1016/j.crte.2015.09.008 Christiansen, P. P., & Pollard, D. D. (1997). Nucleation, growth and structural development of mylonitic shear zones in granitic rock. Journal of Structural Geology, 19(9), 1159–1172. https://doi.org/10.1016/S0191-8141(97)00025-4 Clemens, J. D. (1998). Observations on the origins and ascent mechanisms of granitic magmas. Journal of the Geological Society, 155, 843–851. https://doi.org/10.1144/gsjgs.155.5.0843 Collanega, L., Siuda, K., Jackson, A.-L. C., Bell, R. E., Coleman, A. J., Lenhart, A., et al. (2019). Normal fault growth influenced by basement fabrics: The importance of preferential nucleation from pre-existing structures. Basin Research, 31(4), 659–687. https://doi. org/10.1111/bre.12327 Cowan, D. S. (1999). Do faults preserve a record of seismic slip? A field geologist's opinion. Journal of Structural Geology, 21(8–9), 995– 1001. https://doi.org/10.1016/S0191-8141(99)00046-2 Crider, J. G. (2015). The initiation of brittle faults in crystalline rock. Journal of Structural Geology, 77, 159–174. https://doi.org/10.1016/j. jsg.2015.05.001 Crider, J. G., & Peacock, D. C. P. (2004). Initiation of brittle faults in the upper crust: A review of field observations. Journal of Structural Geology, 26(4), 691–707. https://doi.org/10.1016/j.jsg.2003.07.007 d'Alessio, M. A., & Martel, S. J. (2004). Fault terminations and barriers to fault growth. Journal of Structural Geology, 26(10), 1885–1896. https://doi.org/10.1016/j.jsg.2004.01.010 d'Alessio, M., & Martel, S. J. (2005). Development of strike-slip faults from dikes, Sequoia National Park, California. Journal of Structural Geology, 27(1), 35–49. https://doi.org/10.1016/j.jsg.2004.06.013 Davatzes, N. C., & Aydin, A. (2003). The formation of conjugate normal fault systems in folded sandstone by sequential jointing and shearing, Waterpocket monocline, Utah. Journal of Geophysical Research: Solid Earth, 108(B10). https://doi.org/10.1029/2002JB002289 Di Toro, G., & Pennacchioni, G. (2005). Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps). Tectonophysics, 402(1–4), 55–80. https://doi.org/10.1016/j.tecto.2004.12.036 Di Toro, G., Pennacchioni, G., & Nielsen, S. (2009). Pseudotachylytes and earthquake source mechanics. Fault-zone properties and earthquake rupture dynamics (pp. 87–133). https://doi.org/10.1016/S0074-6142(08)00005-3 Domagala, J. P., Escribano, J., De La Cruz, R., Saldias, J., & Joquera, R. (2016). Cartas Blanco Encalada y Pampa Remiendos, Region de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 187-188 mapa escala 1:100.000. Santiago. Dunai, T. J., González López, G. A., & Juez-Larré, J. (2005). Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology, 33(4), 321. https://doi.org/10.1130/G21184.1 Espinoza, M., Contreras, J. P., Jorquera, R., De La Cruz, R., Kraus, S., Ramirez, C., & Naranjo, J. (2014). Carta Cerro del Pingo, Regiones de Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 169, 1 mapa escala 1:100.000. Santiago. Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong, R. H., & Onasch, C. M. (2004). Calcite twin morphology: A low-temperature deformation geothermometer. Journal of Structural Geology, 26(8), 1521–1529. https://doi.org/10.1016/j.jsg.2003.11.028 Fondriest, M., Balsamo, F., Bistacchi, A., Clemenzi, L., Demurtas, M., Storti, F., & Di Toro, G. (2020). Structural complexity and mechanics of a shallow crustal seismogenic source (Vado di Corno Fault Zone, Italy). Journal of Geophysical Research: Solid Earth, 125(9). https:// doi.org/10.1029/2019JB018926 Fondriest, M., Smith, S. A. F., Di Toro, G., Zampieri, D., & Mittempergher, S. (2012). Fault zone structure and seismic slip localization in dolostones, an example from the Southern Alps, Italy. Journal of Structural Geology, 45, 52–67. https://doi.org/10.1016/j.jsg.2012.06.014 Gomila, R., Arancibia, G., Mitchell, T. M., Cembrano, J. M., & Faulkner, D. R. (2016). Palaeopermeability structure within fault-damage zones: A snap-shot from microfracture analyses in a strike-slip system. Journal of Structural Geology, 83, 103–120. https://doi. org/10.1016/j.jsg.2015.12.002 Gomila, R., Fondriest, M., Jensen, E., Spagnuolo, E., Masoch, S., Mitchell, T. M., et al. (2021). Frictional Melting in Hydrothermal Fluid- Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile). Geochemistry, Geophysics, Geosystems, 22(7). https://doi.org/10.1029/2021gc009743 González, G. (1999). Mecanismo y profundidad de emplazamiento del Pluton de Cerro Cristales, Cordillera de la Costa, Antofagasta, Chile. Revista Geologica de Chile, 26(1), 43–66. https://doi.org/10.4067/s0716-02081999000100003 González, G., Cembrano, J., Carrizo, D., Macci, A., & Schneider, H. (2003). The link between forearc tectonics and Pliocene-Quaternary deformation of the Coastal Cordillera, northern Chile. Journal of South American Earth Sciences, 16(5), 321–342. https://doi. org/10.1016/S0895-9811(03)00100-7 González, G., Dunai, T., Carrizo, D., & Allmendinger, R. (2006). Young displacements on the Atacama Fault System, northern Chile from field observations and cosmogenic 21Ne concentrations. Tectonics, 25(3), 1–n. https://doi.org/10.1029/2005TC001846 González, G., & Niemeyer, H. (2005). Cartas Antofagasta y Punta Tetas, Region de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 89 mapa escala 1:100.000. Santiago. Griffith, W. A., Di Toro, G., Pennacchioni, G., & Pollard, D. D. (2008). Thin pseudotachylytes in faults of the Mt. Abbot quadrangle, Sierra Nevada: Physical constraints for small seismic slip events. Journal of Structural Geology, 30(9), 1086–1094. https://doi.org/10.1016/j. jsg.2008.05.003 Grocott, J., Brown, M., Dallmeyer, R. D., Taylor, G. K., & Treloar, P. J. (1994). Mechanisms of continental growth in extensional arcs: An example from the Andean plate-boundary zone. Geology, 22, 391–394. https://doi.org/10.1130/0091-7613(1994)0222.3.co;2 Grocott, J., & Taylor, G. K. (2002). Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30’S to 27°00’S). Journal of the Geological Society, 159(4), 425–443. https://doi. org/10.1144/0016-764901-124 Hardebeck, J. L., & Okada, T. (2018). Temporal stress changes caused by earthquakes: A review. Journal of Geophysical Research: Solid Earth, 123(2), 1350–1365. https://doi.org/10.1002/2017JB014617 Herrera, V., Cembrano, J., Olivares, V., Kojima, S., & Arancibia, G. (2005). Precipitación por despresurización y ebullición en vetas hospedadas en un dúplex de rumbo extensional: Evidencias microestructurales y microtermométricas. Revista Geologica de Chile, 32(2), 207–227. https://doi.org/10.4067/s0716-02082005000200003 Hervé, F., Faundez, V., Calderón, M., Massonne, H.-J., & Willner, A. P. (2007). Metamorphic and plutonic basement complexes. In T. Moreno, & W. Gibbons (Eds.), The geology of Chile (pp. 5–19). https://doi.org/10.1144/GOCH.2 Hodge, M., Fagereng, Å., Biggs, J., & Mdala, H. (2018). Controls on early-rift geometry: New perspectives from the Bilila-Mtakataka Fault, Malawi. Geophysical Research Letters, 45(9), 3896–3905. https://doi.org/10.1029/2018GL077343 Holdsworth, R. E., van Diggelen, E. W. E., Spiers, C. J., de Bresser, J. H. P., Walker, R. J., & Bowen, L. (2011). Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas Fault, California. Journal of Structural Geology, 33(2), 132–144. https://doi.org/10.1016/j.jsg.2010.11.010 Holland, T., & Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4), 433–447. https://doi.org/10.1007/BF00310910 Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. (2009). Fundamentals of rock mechanics (4th ed.). Wiley-Blackwell. Jaillard, E., Soler, P., Carlier, G., & Mourier, T. (1990). Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: A Tethyan model. Journal of the Geological Society, 147(6), 1009–1022. https://doi.org/10.1144/gsjgs.147.6.1009 Jensen, E., Cembrano, J., Faulkner, D., Veloso, E., & Arancibia, G. (2011). Development of a self-similar strike-slip duplex system in the Atacama Fault system, Chile. Journal of Structural Geology, 33(11), 1611–1626. https://doi.org/10.1016/j.jsg.2011.09.002 Kim, Y. S., Peacock, D. C. P., & Sanderson, D. J. (2003). Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5), 793–812. https://doi.org/10.1016/S0191-8141(02)00200-6 Kim, Y. S., Peacock, D. C. P., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26(3), 503–517. https://doi. org/10.1016/j.jsg.2003.08.002 Kirkpatrick, J. D., Bezerra, F. H. R., Shipton, Z. K., Do Nascimento, A. F., Pytharouli, S. I., Lunn, R. J., & Soden, A. M. (2013). Scale-dependent influence of pre-existing basement shear zones on rift faulting: A case study from NE Brazil. Journal of the Geological Society, 170(2), 237–247. https://doi.org/10.1144/jgs2012-043 Lara, L. E., Naranjo, J. A., & Moreno, H. (2004). Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5°S) after the 1960 (Mw: 9.5) Chilean earthquake: A structural interpretation. Journal of Volcanology and Geothermal Research, 138(1–2), 127–138. https:// doi.org/10.1016/j.jvolgeores.2004.06.009 Lucassen, F., & Franz, G. (1994). Arc related Jurassic igneous and meta-igneous rocks in the Coastal Cordillera of northern Chile/Region Antofagasta. Lithos, 32(3–4), 273–298. https://doi.org/10.1016/0024-4937(94)90044-2 Lucassen, F., & Thirlwall, M. F. (1998). Sm–Nd ages of mafic rocks from the Coastal Cordillera at 24°S , northern Chile. Geologische Rundschau, 86, 767–774. https://doi.org/10.1007/s005310050175 Lupi, M., & Miller, S. A. (2014). Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes. Solid Earth, 5(1), 13–24. https://doi.org/10.5194/se-5-13-2014 Lupi, M., Trippanera, D., Gonzalez, D., D'amico, S., Acocella, V., Cabello, C., et al. (2020). Transient tectonic regimes imposed by megathrust earthquakes and the growth of NW-trending volcanic systems in the Southern Andes. Tectonophysics, 774, 228204. https://doi. org/10.1016/j.tecto.2019.228204 Mancktelow, N., & Pennacchioni, G. (2020). Intermittent fracturing in the middle continental crust as evidence for transient switching of principal stress axes associated with the subduction zone earthquake cycle. Geology, 48, 1072–1076. https://doi.org/10.1130/G47625.1 Mandl, G. (1988). Mechanics of tectonic faulting: Models and basic concepts. In H. J. Zwart (Ed.). Elsevier. Martel, S. J. (1990). Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California. Journal of Structural Geology, 12(7), 869–882. https://doi.org/10.1016/0191-8141(90)90060-C Massironi, M., Bistacchi, A., & Menegon, L. (2011). Misoriented faults in exhumed metamorphic complexes: Rule or exception? Earth and Planetary Science Letters, 307(1–2), 233–239. https://doi.org/10.1016/j.epsl.2011.04.041 Miller, R. B., & Paterson, S. R. (1999). In defense of magmatic diapirs. Journal of Structural Geology, 21(8–9), 1161–1173. https://doi. org/10.1016/S0191-8141(99)00033-4 Mitchell, T. M., & Faulkner, D. R. (2009). The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama Fault System, northern Chile. Journal of Structural Geology, 31(8), 802–816. https:// doi.org/10.1016/j.jsg.2009.05.002 Mittempergher, S., Zanchi, A., Zanchetta, S., Fumagalli, M., Gukov, K., & Bistacchi, A. (2021). Fault reactivation and propagation in the northern Adamello pluton: The structure and kinematics of a kilometer-scale seismogenic source. Tectonophysics, 806, 228790. https:// doi.org/10.1016/j.tecto.2021.228790 Molina, J. F., Moreno, J. A., Castro, A., Rodríguez, C., & Fershtater, G. B. (2015). Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232, 286–305. https://doi.org/10.1016/j.lithos.2015.06.027 Morton, N., Girty, G. H., & Rockwell, T. K. (2012). Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: A model for focused post-seismic fluid flow and heat transfer in the shallow crust. Earth and Planetary Science Letters, 329(330), 71–83. https://doi.org/10.1016/j.epsl.2012.02.013 Naliboff, J. B., Glerum, A., Brune, S., Péron-Pinvidic, G., & Wrona, T. (2020). Development of 3-D rift heterogeneity through fault network evolution. Geophysical Research Letters, 47(13), e2019GL086611. https://doi.org/10.1029/2019GL086611 Nasseri, M. H., Rao, K. S., & Ramamurthy, T. (1997). Failure mechanism in schistose rocks. International Journal of Rock Mechanics and Mining Sciences, 34(3–4), 219.e1–219.e15. https://doi.org/10.1016/S1365-1609(97)00099-3 Nasseri, M. H., Rao, K. S., & Ramamurthy, T. (2003). Anisotropic strength and deformational behavior of Himalayan schists. International Journal of Rock Mechanics and Mining Sciences, 40(1), 3–23. https://doi.org/10.1016/S1365-1609(02)00103-X Naylor, M., Mandl, G., & Supesteijn, C. H. (1986). Fault geometries in basement-induced wrench faulting under different initial stress states. Journal of Structural Geology, 8(7), 737–752. https://doi.org/10.1016/0191-8141(86)90022-2 Olivares, V., Herrera, V., Cembrano, J., Arancibia, G., Reyes, N., & Faulkner, D. (2010). Tectonic significance and hydrothermal fluid migration within a strike-slip duplex fault-vein network: An example from the Atacama Fault System. Andean Geology, 37, 473–497. https:// doi.org/10.5027/andgeov37n2-a12 Pachell, M. A., & Evans, J. P. (2002). Growth, linkage, and termination processes of a 10-km-long strike-slip fault in jointed granite: The Gemini fault zone, Sierra Nevada, California. Journal of Structural Geology, 24(12), 1903–1924. https://doi.org/10.1016/S0191-8141(02)00027-5 Parada, M. A., López-Escobar, L., Oliveros, V., Fuentes, F., Morata, D., Calderón, M., et al. (2007). Andean magmatism. In T. Moreno, & W. Gibbons (Eds.), The geology of Chile (pp. 115–146). https://doi.org/10.1144/GOCH.4 Pardo-Casas, F., & Molnar, P. (1987). Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time. Tectonics, 6(3), 233–248. https://doi.org/10.1029/TC006i003p00233 Paterson, S. R., & Vernon, R. H. (1995). Bursting the bubble of ballooning plutons: A return to nested diapirs emplaced by multiple processes. The Geological Society of America Bulletin, 107(11), 1356–1380. https://doi.org/10.1130/0016-7606(1995)1072.3.co;2 Peacock, D. C. P., & Sanderson, D. J. (1995). Strike-slip relay ramps. Journal of Structural Geology, 17(10), 1351–1360. https://doi. org/10.1016/0191-8141(95)97303-W Pearce, R. K., Sánchez de la Muela, A., Moorkamp, M., Hammond, J. O. S., Mitchell, T. M., Cembrano, J., et al. (2020). Reactivation of fault systems by compartmentalized hydrothermal fluids in the Southern Andes revealed by magnetotelluric and seismic data. Tectonics, 39. https://doi.org/10.1029/2019TC005997 Pennacchioni, G. (2005). Control of the geometry of precursor brittle structures on the type of ductile shear zone in the Adamello tonalites, Southern Alps (Italy). Journal of Structural Geology, 27(4), 627–644. https://doi.org/10.1016/j.jsg.2004.11.008 Pennacchioni, G., Di Toro, G., Brack, P., Menegon, L., & Villa, I. M. (2006). Brittle-ductile-brittle deformation during cooling of tonalite (Adamello, Southern Italian Alps). Tectonophysics, 427(1–4), 171–197. https://doi.org/10.1016/j.tecto.2006.05.019 Pennacchioni, G., & Mancktelow, N. S. (2013). Initiation and growth of strike-slip faults within intact metagranitoid (Neves area, eastern Alps, Italy). Bulletin of the Geological Society of America, 125(9–10), 1468–1483. https://doi.org/10.1130/B30832.1 Pennacchioni, G., & Mancktelow, N. S. (2018). Small-scale ductile shear zones: Neither extending, nor thickening, nor narrowing. Earth-Science Reviews, 184, 1–12. https://doi.org/10.1016/j.earscirev.2018.06.004 Pennacchioni, G., & Zucchi, E. (2013). High temperature fracturing and ductile deformation during cooling of a pluton: The Lake Edison granodiorite (Sierra Nevada batholith, California). Journal of Structural Geology, 50, 54–81. https://doi.org/10.1016/J.JSG.2012.06.001 Pérez-Flores, P., Cembrano, J., Sánchez-Alfaro, P., Veloso, E., Arancibia, G., & Roquer, T. (2016). Tectonics, magmatism and paleo-fluid distribution in a strike-slip setting: Insights from the northern termination of the Liquiñe–Ofqui fault System, Chile. Tectonophysics, 680, 192–210. https://doi.org/10.1016/j.tecto.2016.05.016 Perrin, C., Manighetti, I., Ampuero, J.-P., Cappa, F., & Gaudemer, Y. (2016). Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. Journal of Geophysical Research: Solid Earth, 121(5), 3666–3685. https://doi.org/10.1002/2015JB012671 Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C. A.-L., Bell, R. E., et al. (2019). The influence of structural inheritance and multiphase extension on rift development, the Northern North Sea. Tectonics, 38(12), 4099–4126. https://doi. org/10.1029/2019TC005756 Rizza, M., Bollinger, L., Sapkota, S. N., Tapponnier, P., Klinger, Y., Karakaş, Ç., et al. (2019). Post earthquake aggradation processes to hide surface ruptures in thrust systems: The M8.3, 1934, Bihar-Nepal earthquake ruptures at Charnath Khola (Eastern Nepal). Journal of Geophysical Research: Solid Earth, 124(8), 9182–9207. https://doi.org/10.1029/2018JB016376 Rowe, C. D., & Griffith, W. A. (2015). Do faults preserve a record of seismic slip: A second opinion. Journal of Structural Geology, 78, 1–26. https://doi.org/10.1016/j.jsg.2015.06.006 Ruthven, R., Singleton, J., Seymour, N., Gomila, R., Arancibia, G., Stockli, D. F., et al. (2020). The geometry, kinematics, and timing of deformation along the southern segment of the Paposo fault zone, Atacama Fault System, northern Chile. Journal of South American Earth Sciences, 97, 102355. https://doi.org/10.1016/j.jsames.2019.102355 Sawyer, E. W. (2000). Grain-scale and outcrop-scale distribution and movement of melt in a crystallizing granite. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1–2), 73–85. https://doi.org/10.1017/S0263593300007306 Scheuber, E., & Andriessen, P. A. M. (1990). The kinematic and geodynamic significance of the Atacama fault zone, northern Chile. Journal of Structural Geology, 12(2), 243–257. https://doi.org/10.1016/0191-8141(90)90008-M Scheuber, E., & González, G. (1999). Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°- 26°S): A story of crustal deformation along a convergent plate boundary. Tectonics, 18(5), 895–910. https://doi.org/10.1029/1999TC900024 Scheuber, E., Hammerschmidt, K., & Friedrichsen, H. (1995). 40Ar/39Ar and Rb-Sr analyses from ductile shear zones from the Atacama Fault Zone, northern Chile: The age of deformation. Tectonophysics, 250(1–3), 61–87. https://doi.org/10.1016/0040-1951(95)00044-8 Scholz, C. H. (2019). The mechanics of earthquakes and faulting. https://doi.org/10.1017/9781316681473 Segall, P., & Pollard, D. P. (1983). Nucleation and growth of strike slip faults in granite. Journal of Geophysical Research, 88(B1), 555–568. https://doi.org/10.1029/JB088iB01p00555 Segall, P., & Simpson, C. (1986). Nucleation of ductile shear zones on dilatant fractures. Geology, 14(1), 56. https://doi.org/10.1130/0091-7 613(1986)142.0.CO;2 SERNAGEOMIN. (2003). Mapa Geológico de Chile: versión digital. Base geológica escala 1:1.000.000. Santiago: Servicio Nacional de Geología y Minería, Publicación Geológica Digital No. 4 (CD-ROM, versión1.0, 2003). Seymour, N. M., Singleton, J. S., Gomila, R., Mavor, S. P., Heuser, G., Arancibia, G., et al. (2021). Magnitude, timing, and rate of slip along the Atacama Fault System, northern Chile: Implications for Early Cretaceous slip partitioning and plate convergence. Journal of the Geological Society, 178, jgs2020-142. https://doi.org/10.1144/jgs2020-142 Seymour, N. M., Singleton, J. S., Mavor, S. P., Gomila, R., Stockli, D. F., Heuser, G., & Arancibia, G. (2020). The relationship between magmatism and deformation along the intra-arc strike-slip Atacama fault system, Northern Chile. Tectonics, 39(3), e2019TC005702. https:// doi.org/10.1029/2019TC005702 Shigematsu, N., Kametaka, M., Inada, N., Miyawaki, M., Miyakawa, A., Kameda, J., Fujimoto, K., et al. (2017). Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation. Tectonophysics, 696–697, 52–69. https://doi.org/10.1016/j.tecto.2016.12.017 Sibson, R. H. (1975). Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal of the Royal Astronomical Society, 43(3), 775–794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x Sibson, R. H. (1990). Faulting and fluid flow. In B. E. Nesbitt (Ed.), Fluids in tectonically active regimes of the continental crust. Mineralogical Association of Canada, Short Course on Crustal Fluids, Handbook 18 (pp. 93–132). Sielfeld, G., Lange, D., & Cembrano, J. (2019). Intra-arc crustal seismicity: Seismotectonic implications for the Southern Andes Volcanic Zone, Chile. Tectonics, 38(2), 552–578. https://doi.org/10.1029/2018TC004985 Smith, S. A. F., Bistacchi, A., Mitchell, T. M., Mittempergher, S., & Di Toro, G. (2013). The structure of an exhumed intraplate seismogenic fault in crystalline basement. Tectonophysics, 599, 29–44. https://doi.org/10.1016/j.tecto.2013.03.031 Snoke, A. W., Tullis, J., & Todd, V. R. (1998). Fault-related rocks: A photographic atlas. https://doi.org/10.2307/j.ctt7zvg0k Stewart, M., Holdsworth, R. E., & Strachan, R. A. (2000). Deformation processes and weakening mechanisms within the frictional–viscous transition zone of major crustal-scale faults: Insights from the Great Glen Fault Zone, Scotland. Journal of Structural Geology, 22(5), 543–560. https://doi.org/10.1016/S0191-8141(99)00164-9 Stipp, M., Stünitz, H., Heilbronner, R., & Schmid, S. M. (2002). The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. Journal of Structural Geology, 24(12), 1861–1884. https://doi.org/10.1016/ S0191-8141(02)00035-4 Storti, F., Holdsworth, R. E., & Salvini, F. (2003). In F. Storti, R. E. Holdsworth, & F. Salvini (Eds.), Intraplate strike-slip deformation belts (Vol. 210, pp. 1–14). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2003.210.01.01 Swanson, M. T. (1988). Pseudotachylyte-bearing strike-slip duplex structures in the Fort Foster Brittle Zone, S. Maine. Journal of Structural Geology, 10(8), 813–828. https://doi.org/10.1016/0191-8141(88)90097-1 Swanson, M. T. (1992). Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation. Tectonophysics, 204(3–4), 223–242. https://doi.org/10.1016/0040-1951(92)90309-T Swanson, M. T. (1999a). Dextral transpression at the Casco Bay restraining bend, Norumbega fault zone, coastal Maine. Norumbega Fault System of the Northern Appalachians. https://doi.org/10.1130/0-8137-2331-0.85 Swanson, M. T. (1999b). Kinematic indicators for regional dextral shear along the Norumbega fault system in the Casco Bay area, coastal Maine. Norumbega fault system of the Northern Appalachians (pp. 1–24). https://doi.org/10.1130/0-8137-2331-0.1 Swanson, M. T. (2006a). Late Paleozoic strike-slip faults and related vein arrays of Cape Elizabeth, Maine. Journal of Structural Geology, 28(3), 456–473. https://doi.org/10.1016/j.jsg.2005.12.009 Swanson, M. T. (2006b). Pseudotachylyte-bearing strike-slip faults in mylonitic host rocks, Fort Foster Brittle Zone, Kittery, Maine. In R. Abercrombie, A. McGarr, G. Di Toro, & H. Kanamori (Eds.), Earthquakes: Radiated energy and the physics of faulting (pp. 167–179). https://doi.org/10.1029/170GM17 Sylvester, A. G. (1988). Strike-slip faults. The Geological Society of America Bulletin, 100(11), 1666–1703. https://doi.org/10.1130/0016-760 6(1988)1002.3.CO;2 Veloso, E. E., Gomila, R., Cembrano, J., González, R., Jensen, E., & Arancibia, G. (2015). Stress fields recorded on large-scale strike-slip fault systems: Effects on the tectonic evolution of crustal slivers during oblique subduction. Tectonophysics, 664, 244–255. https://doi. org/10.1016/j.tecto.2015.09.022 Wedmore, L. N. J., Williams, J. N., Biggs, J., Fagereng, Å., Mphepo, F., Dulanya, Z., et al. (2020). Structural inheritance and border fault reactivation during active early-stage rifting along the Thyolo fault, Malawi. Journal of Structural Geology, 139, 104097. https://doi. org/10.1016/j.jsg.2020.104097 Weinberg, R. F. (2006). Melt segregation structures in granitic plutons. Geology, 34(4), 305. https://doi.org/10.1130/G22406.1 Whipp, P. S., Jackson, C. A.-L., Gawthorpe, R. L., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26(4), 523–549. https://doi. org/10.1111/bre.12050 Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https:// doi.org/10.2138/am.2010.3371 Williams, J. N., Toy, V. G., Smith, S. A. F., & Boulton, C. (2017). Fracturing, fluid-rock interaction and mineralization during the seismic cycle along the Alpine Fault. Journal of Structural Geology, 103, 151–166. https://doi.org/10.1016/j.jsg.2017.09.011 Woodcock, N. H. (1986). The role of strike-slip fault systems at plate boundaries. Philosophical Transactions of the Royal Society of London - Series A: Mathematical and Physical Sciences, 317(1539), 13–29. https://doi.org/10.1098/rsta.1986.0021

  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المساهمون: Institut des Sciences de la Terre (ISTerre), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA)

    المصدر: ISSN: 0278-7407.

    Relation: BIBCODE: 2021Tecto.4006698D

  8. 8
  9. 9
    Report
  10. 10
    Academic Journal

    المساهمون: Leah, Harold, Fondriest, Michele, Lucca, Alessio, Storti, Fabrizio, Balsamo, Fabrizio, Di Toro, Giulio

    مصطلحات موضوعية: Geology, Faults. Earthquakes

    وصف الملف: STAMPA

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000447111300009; volume:114; firstpage:121; lastpage:138; numberofpages:18; journal:JOURNAL OF STRUCTURAL GEOLOGY; info:eu-repo/grantAgreement/EC/H2020/614705; http://hdl.handle.net/11577/3278228; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85049333458; http://www.sciencedirect.com/science/journal/01918141

  11. 11
    Academic Journal

    المصدر: Geochemistry, Geophysics, Geosystems: G3; Dec2023, Vol. 24 Issue 12, p1-21, 21p

    مصطلحات موضوعية: CALCITE, DOLOMITE, FAULT zones, SURFACE of the earth, THRUST, VISCOUS flow

    مصطلحات جغرافية: ITALY, APENNINES (Italy)

  12. 12
    Academic Journal

    المساهمون: Dipartimento di Geoscienze, Università degli Studi di Padova, Padua, Italy, Dipartimento di Ingegneria Edile, Civile ed Ambientale (ICEA), Università degli Studi di Padova, Padua, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia

    وصف الملف: application/pdf

    Relation: Journal of Structural Geology; /129(2019)

  13. 13
    Academic Journal

    المصدر: Lucca , A , Storti , F , Balsamo , F , Clemenzi , L , Fondriest , M , Burgess , R & di Toro , G 2019 , ' From submarine to subaerial out‐of‐sequence thrusting and gravity‐driven extensional faulting: Gran Sasso Massif, Central Apennines, Italy ' , Tectonics . https://doi.org/10.1029/2019TC005783

    وصف الملف: application/pdf

  14. 14
    Book

    المساهمون: #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia

    Relation: Fault Zone Dynamic Processes: Evolution of‐Fault Properties During Seismic Rupture, Geophysical Monograph 277; http://hdl.handle.net/2122/11447; https://doi.org/10.1002/9781119156895.ch5

  15. 15
  16. 16
    Academic Journal

    المصدر: Fondriest , M , Doan , M-L , Aben , F , Fusseis , F , Mitchel , T M , Voorn , M , Secco , M & Di Toro , G 2017 , ' Static versus dynamic fracturing in shallow carbonate fault zones ' , Earth and Planetary Science Letters , vol. 461 . https://doi.org/10.1016/j.epsl.2016.12.024

    وصف الملف: application/pdf

  17. 17
    Academic Journal

    المساهمون: Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), University College of London London (UCL), Institut de physique du globe de Strasbourg (IPGS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Manchester Manchester, University of Oslo (UiO), EU FP7 Marie Curie ITN "FlowTrans", grant agreement 316889NERC grant ref: NE/M004716/1Labex OSUG@2020: ANR10-LABX56, ANR-10-LABX-0056,OSUG@2020,Innovative strategies for observing and modelling natural systems(2010), European Project: 316889,EC:FP7:PEOPLE,FP7-PEOPLE-2012-ITN,FLOWTRANS(2013)

    المصدر: ISSN: 2169-9313 ; EISSN: 2169-9356.

    Relation: info:eu-repo/grantAgreement/EC/FP7/316889/EU/Flow in Transforming Porous Media/FLOWTRANS

  18. 18
    Academic Journal

    المصدر: Demurtas , M , Fondriest , M , Balsamo , F , Clemenzi , L , Storti , F , Bistacchi , A & Di Toro , G 2016 , ' Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy) ' , Journal of Structural Geology , vol. 90 , pp. 185-206 . https://doi.org/10.1016/j.jsg.2016.08.004

    وصف الملف: application/pdf

  19. 19
    Conference

    المساهمون: Di Toro, G, Fondriest, M, Mitchell, T, Gomila, R, Jensen, E, Masoch, S, Bistacchi, A, Magnarini, G, Faulkner, D, Cembrano, J, Mittempergher, S, Spagnuolo, E

    Relation: ispartofbook:EGU General Assembly 2020; EGU General Assembly 2020 4–8 May; http://hdl.handle.net/10281/299849

  20. 20
    Conference