يعرض 1 - 20 نتائج من 161 نتيجة بحث عن '"Fluido de perforación"', وقت الاستعلام: 0.88s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Dissertation/ Thesis

    المساهمون: Fidel Vladimir Chuchuca Aguilar

    وصف الملف: application/pdf

    Relation: Tasinchano Tite, Jenny Marisol; Anguasha Ayuy, Israel Mauricio (2024). Diseño de un fluido de perforación para condiciones de alta temperatura en la formación hollín del campo Pungarayacu. La Libertad UPSE, Matriz. Facultad de Ciencias de la Ingeniería. 66p.; UPSE-TIP-2024-0030; https://repositorio.upse.edu.ec/handle/46000/11868

  3. 3
    Dissertation/ Thesis

    المساهمون: Flórez Prieto, Miguel Ángel

    وصف الملف: 68 p.; application/pdf

    Relation: AGENCIA NACIONAL DE HIDROCARBUROS. (n.d.). https://www.anh.gov.co/es/hidrocarburos/información-geológica-y-geofísica/; American Petroleum Institute. (2017). Recommend Practice for Field Testing Water-Based Drilling Fluids - 13B-1. API Publishing Services, 2008(March), 121.; Avila Cordero, N. A. (2010). Aplicación de Datos de Afloramiento en el Modelo de Facies de las Formaciones Colorado y Mugrosa en el Campo Casabe Sur en la Cuenca del Valle Medio del Magdalena (V.M.M). 1–143.; Betancur-Márquez, S., & Alzate-Espinosa, G. A. (2014). Mejoramiento De Los Fluidos De Perforación Usando Nanopartículas Funcionalizadas: Educción De Las Pérdidas De Filtrado Y Del Espesor De La Retorta Optimization of Drilling Fluids Using Functionalized Nanoparticles: Loss Filtration Reduction and Thickness . 35, 5–14.; Bianco, V., Manca, O., Nardini, S., & Vafai, K. (2015). Heat transfer enhancement with nanofluids. Heat Transfer Enhancement with Nanofluids, May, 1–458. https://doi.org/10.1201/b18324; Carlos, I. J., & Alcántara, S. (2005). Equipos y Herramientas de Perforación de Pozos Equipos de Perforación: Sistema de Rotación.; Comisión Europea. (2012). Comunicación de la comisión al parlamento europeo, al consejo y al comité económico y social. Segunda revisión de la normativa sobre los nanomateriales. Production, 1–16.; Congreso de Colombia. (2023). Ley 2294 de 2023. Congreso Nacional de La Republica, mayo-19. https://cdn.actualicese.com/normatividad/2023/Leyes/L2294- 23.pdf?_gl=1*8vnzq4*_ga*MTA0NTMwNjY5NC4xNjY1NzY0MzY0*_ga_3ZLYF144TH *MTY4NjQzMDQxMC4xMi4xLjE2ODY0MzA0MjUuNDUuMC4w; Definición de Definition of nanomateriales para Nanomaterials for Colombia Colombia Definição de nanomateriais para a Colômbia. (2016).; ENERDATA. (2023). https://datos.enerdata.net/productos-petroliferos/estadisticasconsumo-mundial-petroleo-consumo-domestico.html; Ferrando, M. C. S. (2020). Estudio de la dispersión de nanopartículas en medio acuoso para su posterior aplicación como fluido térmico. 361.; Gallardo, F. E., Erdmann, E., & Abalos, R. (2018). Evaluación reológica de fluidos de perforación base agua con nanosílice. Revista Materia, 23(2). https://doi.org/10.1590/S1517-707620180002.0470; Grupocomsurlab. (n.d.). http://www.grupocomsurlab.com/horno-de-rolado-de-5- rodillos/#:~:text=Descripción,de forma simultánea o independiente.; Guillermo Foladori, Noela Invernizzi, J. F. O. y É. Z. L. (n.d.). Cadenas de producción de las nanotecnologías en America Latina: Argentina, Brasil, Colombia y México. Este libro es resultado de una investigación de largo aliento, impulsada por la Red Latinoamericana de Nanotecnología y Sociedad, con el propósito de tener una visión preliminar del estado de avance de las empresas que manipulan con nanotecnologías en Amé; HandBook. (n.d.). No Title.; Laboratorio de química analítica. (n.d.). https://cris.ulima.edu.pe/es/equipments/balanzadigital#:~:text=Las balanzas digitales son instrumentos,deposita el objeto a pesar.; Lizarazo Salcedo, C. G., González Jiménez, E. E., Arias Portela, C. Y., & Guarguati Ariza, J. (2018). Nanomateriales: un acercamiento a lo básico. In Nanomateriales: Artículo especial Med Segur Trab (Internet) (Vol. 64, Issue 251). https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465-546X2018000200109; Ludeña, E. V, Cornejo, M., Baykara, H., Iza, P., Arroyo, D., & Corregidor, J. (2018). Nanotechnology and the Oil Industry : Potential Applications in Ecuador Nanotecnología Y La Industria Petrolera: Aplicaciones Potenciales En El Ecuador. Momento, Revista de Física, 56, 54–64.; Marín, R. (2014). Principios para el desarrollo de una industria petrolera nacional con proyección internacional Fundamentals for the Development of a World Class National Oil and Gas Industry. Revista de Ingeniería 48, 40, 40–49. https://ojsrevistaing.uniandes.edu.co/ojs/index.php/revista/article/view/659/846; Mendoza Uribe, G., & Rodríguez López, J. L. (2007). La nanociencia y la nanotecnología: una revolución en curso. Revista Perfiles Latinoamericanos, 14(29), 161–186. http://perfilesla.flacso.edu.mx/index.php/perfilesla/article/view/209; Schlumberger. (2023). The Schumberger Energy Glossary. https://glossary.slb.com/es/; Vera, R., Matteo, C., Candido, P., & Francesca, V. (2012). Current and Future Nanotech Applications in the Oil Industry. American Journal of Applied Sciences, 9(6), 784–793. http://www.magforce.de; Williamson, D. (2013). Definición De Fluidos De Perforación. Oilfield Review, 1, 67–69. http://www.paginaspersonales.unam.mx/app/webroot/files/4676/Asignaturas/1458/Arc hivo2.3223.pdf; N/A; https://repositorio.ecci.edu.co/handle/001/3799

  4. 4
  5. 5
    Dissertation/ Thesis

    المساهمون: Portilla Lazo, Carlos

    وصف الملف: application/pdf

    Relation: Rosales Obregón, Evelyn Daniela; Briones Sánchez Eric Joel (2023) Optimización en la perforación de dos pozos horizontales mediante la evaluación de los programas de fluidos de perforación en el campo Tambococha - oriente ecuatoriano. La Libertad UPSE Matríz Facultad de Ciencias de la Ingeniería. 51p.; UPSE-TIP-2023-0024; https://repositorio.upse.edu.ec/handle/46000/10031

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
  10. 10
    Dissertation/ Thesis

    المساهمون: Portilla Lazo, Carlos Alberto

    وصف الملف: application/pdf

    Relation: Cevallos Tigrero, Katherine Andrea (2022). Análisis comparativo de dos programas de fluido de perforación para evaluar su rendimiento operativo en pozos direccionales del campo Sacha. UPSE, Matriz. Facultad de Ciencias de la Ingeniería. 86p.; UPSE-TIP-2022-0020; https://repositorio.upse.edu.ec/handle/46000/8461

  11. 11
  12. 12
  13. 13
    Academic Journal

    المصدر: Boletín de Ciencias de la Tierra; Núm. 35 (2014); 5-14 ; Boletín de Ciencias de la Tierra; No. 35 (2014); 5-14 ; 2357-3740 ; 0120-3630

    وصف الملف: application/pdf; text/html

    Relation: https://revistas.unal.edu.co/index.php/rbct/article/view/43179/45914; https://revistas.unal.edu.co/index.php/rbct/article/view/43179/46129; Abdo Jamil, Danish M., 2010, Nanoparticles: Promising solution to overcome stern drilling problems. En Nanotech Conference and Exhibition, Anaheim, California.; Ariza León E., Cely C., Gómez Cañon J. D., 2013, Factibilidad del uso del almidón de achira como agente controlador de filtrado en lodos de perforación base agua. Revista ION, vol. 26, no 1, pp 63-71.; Baker Hugues INTEQ, 2006, Drilling fluids Reference Manual, pp, 8-12.; Baroid-Halliburton Company, 2000, Manual de fluidos, pp. 13-12.; Brunauer, S., Emmett, P.H., Teller E., 1938, Adsorption of gases in multi-molecular layers, J. Am. Chem. Soc., vol. 60, pp 309-319.; Franco, C. A., Nassar N., Ruiz, M., Pereira P. R. & Cortés F., 2013, Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy & Fuels, vol. 27, no 6, pp. 2899-2907.; Hoelscher K., Guido de Stefano, Meghan R., Young S., 2012, Application of nanotechnology in drilling fluids. In SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers, SPE 157031.; Husein M., Mohammad F., Zacaria & Hareland G., 2012, Novel nanoparticles-based drilling fluids with improved characteristics. In SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers, SPE 156992.; Javeri M., Zishaan W., Haindade & Chaitanya B. Jere, 2011, Mitigating loss circulation and differential sticking problems using silicon nanoparticles. In SPE/IADC Middle East Drilling Technology Conference and Exhibition, Society of Petroleum Engineers, SPE/IADC 145840.; Klug, H., Alexander L., 1974, X-ray diffraction procedures for polycrystalline and amorphous materials, John Wiley and Sons, vol 1, no 2, p. 618. 1974.; Nassar N., 2010, Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies. Energy Fuels, vol. 24, no 8, pp. 4116-4122.; Rouquerol F. & Rouquerol J., Sing KSW., 1999, Adsorption by powders and porous solids: principles, methodology and applications, London (UK): Academic Press.; Saboori R., Sabbaghi S., Mowla D. & Soltani A., 2012, Decreasing of water loss and mud cake thickness by CMC nanoparticles in mud drilling. International Journal of Nano Dimension, vol. 3, no 2, pp 101-104.; Sensoy T., Chenevert M. & Mukul M. Sharma, 2009, Minimizing water invasion in shale using nanoparticles. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE 124429.; Sharma M., Zhang R., Chenevert M., Ji L., Guo Q. & Friedheim J., 2012, A new family of nanoparticles based drilling fluids. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE 160045.; https://revistas.unal.edu.co/index.php/rbct/article/view/43179

  14. 14
    Academic Journal

    وصف الملف: application/pdf; text/html

    Relation: http://revistas.unal.edu.co/index.php/rbct/article/view/43179; Universidad Nacional de Colombia Revistas electrónicas UN Boletín Ciencias de la Tierra; Boletín Ciencias de la Tierra; Boletín Ciencias de la Tierra; núm. 35 (2014); 5-14 2357-3740 0120-3630; Betancur Márquez, Stefanía and Cortés Correa, Farid Bernardo and Alzate Espinosa, Guillermo Arturo (2014) Mejoramiento de los fluidos de perforación usando nanopartículas funcionalizadas: reducción de las pérdidas de filtrado y del espesor de la retorta. Boletín Ciencias de la Tierra; núm. 35 (2014); 5-14 2357-3740 0120-3630 .; https://repositorio.unal.edu.co/handle/unal/49034; http://bdigital.unal.edu.co/42491/

  15. 15
    Dissertation/ Thesis

    المساهمون: Tovar Moreno, Jorge Andrés

    وصف الملف: application/pdf

    Relation: APA 7th - Aguirre Mogollón, A. y Ortiz Romero, J. D. (2021) Desempeño de un almidón natural obtenido de las cascaras de plátano en el control de propiedades de reología, lubricidad y filtrado de un fluido de perforación polimérico a nivel de laboratorio. [Trabajo de grado, Fundación Universidad de América] Repositorio Institucional Lumieres. https://hdl.handle.net/20.500.11839/8772; https://hdl.handle.net/20.500.11839/8772

  16. 16
    Dissertation/ Thesis

    المساهمون: Franco Ariza, Camilo Andrés, Henao Bejarano, Adriana Milena

    وصف الملف: application/pdf

    Relation: APA 7th - Noy Rojas, N. M. y Portela Molano, K. A. (2021) Evaluación del comportamiento de nanomateriales obtenidos a partir de botellas pet para la reducción del volumen de filtrado en un fluido de perforación base agua. [Trabajo de grado, Fundación Universidad de América] Repositorio Institucional Lumieres. https://hdl.handle.net/20.500.11839/8636; https://hdl.handle.net/20.500.11839/8636

  17. 17
    Dissertation/ Thesis

    وصف الملف: application/pdf

    Relation: APA 7th - Vargas León, J. R. y Jara Rodríguez, C. (2021) Determinación de la concentración óptima de un aditivo orgánico biodegradable fabricado a partir de las cáscaras de naranja para el control de filtrado y mejora de la reología en la formulación de un lodo de inicio base agua a nivel de laboratorio. [Trabajo de grado, Fundación Universidad de América] Repositorio Institucional Lumieres. https://hdl.handle.net/20.500.11839/8626; https://hdl.handle.net/20.500.11839/8626

  18. 18
    Dissertation/ Thesis

    المؤلفون: Vargas Clavijo, Johanna

    المساهمون: Lopera Castro, Sergio H., Cortés Correa, Farid Bernardo, Yacimientos de Hidrocarburos, Fenómenos de Superficie - Michael Polanyi

    وصف الملف: xxi, 152 páginas; application/pdf

    Relation: [1] A. Koohestanian, M. Hosseini, and Z. Abbasian, "The separation method for removing of colloidal particles from raw water," American-Eurasian J. Agric. & Environ. Sci, vol. 4, pp. 266-273, 2008. [2] V. Gitis, C. Dlugy, J. Gun, and O. Lev, "Studies of inactivation, retardation and accumulation of viruses in porous media by a combination of dye labeled and native bacteriophage probes," Journal of contaminant hydrology, vol. 124, pp. 43-49, 2011. [3] L. M. Vane and G. M. Zang, "Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation processes," Journal of Hazardous Materials, vol. 55, pp. 1-22, 1997. [4] D. Arab, P. Pourafshary, S. Ayatollahi, and A. Habibi, "Remediation of colloid-facilitated contaminant transport in saturated porous media treated by nanoparticles," International Journal of Environmental Science and Technology, vol. 11, pp. 207-216, 2014. [5] D. B. Genovese, J. E. Lozano, and M. A. Rao, "The rheology of colloidal and noncolloidal food dispersions," Journal of Food Science, vol. 72, pp. R11-R20, 2007. [6] I. J. Joye, V. A. Nelis, and D. J. McClements, "Gliadin-based nanoparticles: Fabrication and stability of food-grade colloidal delivery systems," Food Hydrocolloids, vol. 44, pp. 86-93, 2015. [7] D. Çiftçi, T. Kahyaoglu, S. Kapucu, and S. Kaya, "Colloidal stability and rheological properties of sesame paste," Journal of Food Engineering, vol. 87, pp. 428-435, 2008. [8] A. Kohut, S. Ranjan, A. Voronov, W. Peukert, V. Tokarev, O. Bednarska, et al., "Design of a new invertible polymer coating on a solid surface and its effect on dispersion colloidal stability," Langmuir, vol. 22, pp. 6498-6506, 2006. [9] D. Yang, G. Liao, and S. Huang, "Hand Painting of Noniridescent Structural Multicolor through the Self-Assembly of YOHCO3 Colloids and Its Application for Anti-Counterfeiting," Langmuir, vol. 35, pp. 8428-8435, 2019. [10] K. Kolman, O. Nechyporchuk, M. Persson, K. Holmberg, and R. Bordes, "Preparation of silica/polyelectrolyte complexes for textile strengthening applied to painting canvas restoration," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 532, pp. 420-427, 2017. [11] J. Dorman, I. Lakatos, G. Szentes, and A. Meidl, "Mitigation of formation damage and wellbore instability in unconventional reservoirs using improved particle size analysis and design of drilling fluids," in SPE European Formation Damage Conference and Exhibition, 2015. [12] A. Wojtanowicz, Z. Krilov, and J. Langlinais, "Study on the effect of pore blocking mechanisms on formation damage," in SPE Production Operations Symposium, 1987. [13] A. Wojtanowicz, Z. Krilov, and J. Langlinais, "Experimental determination of formation damage pore blocking mechanisms," 1988. [14] D. Jiao and M. M. Sharma, "Mechanism of cake buildup in crossflow filtration of colloidal suspensions," Journal of Colloid and Interface Science, vol. 162, pp. 454-462, 1994. [15] A. Kalantariasl, A. Zeinijahromi, and P. Bedrikovetsky, "External filter cake buildup in dynamic filtration: mechanisms and key factors," in SPE International Symposium and Exhibition on Formation Damage Control, 2014. [16] J. Eastman, "Colloid stability," Colloid science, pp. 36-49, 2005. [17] Y.-J. Yang, "Experimental and Modeling Studies of Colloidal Suspension Stability of High-Density Particles in Aqueous Solutions," 2016. [18] G. Trefalt and M. Borkovec, "Overview of DLVO theory," Laboratory of Colloid and Surface Chemistry, University of Geneva, Switzerland, pp. 1-10, 2014. [19] D. Napper and A. Netschey, "Studies of the steric stabilization of colloidal particles," Journal of Colloid and Interface Science, vol. 37, pp. 528-535, 1971. [20] C. H. Chin, A. Muchtar, C. H. Azhari, M. Razali, and M. Aboras, "Optimization of pH and dispersant amount of Y-TZP suspension for colloidal stability," Ceramics International, vol. 41, pp. 9939-9946, 2015. [21] R. López-Esparza, B. Altamirano, E. Pérez, and A. Gama Goicochea, "Importance of molecular interactions in colloidal dispersions," Advances in Condensed Matter Physics, vol. 2015, 2015. [22] J. van Duijneveldt, "Effect of polymers on colloid stability," Colloid Science, pp. 143-157, 2005. [23] P. Bedrikovetsky, "Upscaling of stochastic micro model for suspension transport in porous media," Transport in Porous Media, vol. 75, pp. 335-369, 2008. [24] L. Chequer, P. Bedrikovetsky, A. Badalyan, and V. Gitis, "Water level and mobilisation of colloids in porous media," Advances in Water Resources, vol. 143, p. 103670, 2020. [25] S. Torkzaban, S. A. Bradford, M. T. van Genuchten, and S. L. Walker, "Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining," Journal of contaminant hydrology, vol. 96, pp. 113-127, 2008. [26] A. Kalantariasl and P. Bedrikovetsky, "Stabilization of external filter cake by colloidal forces in a “well–reservoir” system," Industrial & Engineering Chemistry Research, vol. 53, pp. 930-944, 2014. [27] C. Parsons, "Characteristics of Drilling Fluids," Transactions of the AIME, vol. 92, pp. 227-233, 1931. [28] A. Suri and M. M. Sharma, "Strategies for sizing particles in drilling and completion fluids," SPE Journal, vol. 9, pp. 13-23, 2004. [29] S. Cobianco, M. Bartosek, A. Lezzi, and A. Guarneri, "How to manage drill-in fluid composition to minimize fluid losses during drilling operations," SPE Drilling & Completion, vol. 16, pp. 154-158, 2001. [30] N. C. Mahajan and B. M. Barron, "Bridging particle size distribution: A key factor in the designing of non-damaging completion fluids," in SPE Formation Damage Symposium, 1980. [31] A. Abrams, "Mud design to minimize rock impairment due to particle invasion," Journal of petroleum technology, vol. 29, pp. 586-592, 1977. [32] M. Khalil and B. Mohamed Jan, "Viscoplastic modeling of a novel lightweight biopolymer drilling fluid for underbalanced drilling," Industrial & engineering chemistry research, vol. 51, pp. 4056-4068, 2012. [33] S. B. Hamed and M. Belhadri, "Rheological properties of biopolymers drilling fluids," Journal of Petroleum Science and Engineering, vol. 67, pp. 84-90, 2009. [34] R. Caenn, H. C. H. Darley, and G. R. Gray, "Chapter 13 - Drilling Fluid Components," in Composition and Properties of Drilling and Completion Fluids (Seventh Edition), R. Caenn, H. C. H. Darley, and G. R. Gray, Eds., ed Boston: Gulf Professional Publishing, 2017, pp. 537-595. [35] I. Ershaghi, "Modeling of Filter Cake Buildup Under Dynamic-Static Conditions," in SPE California Regional Meeting, 1980. [36] A. G. Iscan, F. Civan, and M. V. Kok, "Alteration of permeability by drilling fluid invasion and flow reversal," Journal of Petroleum Science and Engineering, vol. 58, pp. 227-244, 2007. [37] M. M. Barry, Y. Jung, J.-K. Lee, T. X. Phuoc, and M. K. Chyu, "Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids," Journal of Petroleum Science and Engineering, vol. 127, pp. 338-346, 2015. [38] Z. Vryzas, O. Mahmoud, H. A. Nasr-El-din, and V. C. Kelessidis, "Development and testing of novel drilling fluids using Fe2O3 and SiO2 nanoparticles for enhanced drilling operations," in International Petroleum Technology Conference, IPTC 2015, 2015. [39] M.-C. Li, Q. Wu, K. Song, Y. Qing, and Y. Wu, "Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids," ACS applied materials & interfaces, vol. 7, pp. 5006-5016, 2015. [40] O. Mahmoud, H. A. Nasr-El-Din, Z. Vryzas, and V. C. Kelessidis, "Nanoparticle-based drilling fluids for minimizing formation damage in HP/HT applications," in SPE International Conference and Exhibition on Formation Damage Control, 2016. [41] J. Aramendiz and A. Imqam, "Silica and graphene oxide nanoparticle formulation to improve thermal stability and inhibition capabilities of water-based drilling fluid applied to Woodford shale," SPE Drilling & Completion, vol. 35, pp. 164-179, 2020. [42] J. V. Clavijo, L. J. Roldán, L. Valencia, S. H. Lopera, R. D. Zabala, J. C. Cárdenas, et al., "Influence of size and surface acidity of silica nanoparticles on inhibition of the formation damage by bentonite-free water-based drilling fluids. Part I: nanofluid design based on fluid-nanoparticle interaction," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 10, p. 045020, 2019. [43] M. Sedaghatzadeh and A. Khodadadi, "An improvement in thermal and rheological properties of water-based drilling fluids using multiwall carbon nanotube (MWCNT)," Iranian Journal of Oil & Gas Science and Technology, vol. 1, pp. 55-65, 2012. [44] Z. Wang, Y. Wu, P. Luo, Y. Tian, Y. Lin, and Q. Guo, "Poly (sodium p-styrene sulfonate) modified Fe3O4 nanoparticles as effective additives in water-based drilling fluids," Journal of Petroleum Science and Engineering, vol. 165, pp. 786-797, 2018. [45] M.-C. Li, Q. Wu, K. Song, C. F. De Hoop, S. Lee, Y. Qing, et al., "Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: Rheological modeling and filtration mechanisms," Industrial & Engineering Chemistry Research, vol. 55, pp. 133-143, 2015. [46] Y. Wu, Z. Wang, Z. Yan, T. Zhang, Y. Bai, P. Wang, et al., "Poly (2-acrylamide-2-methylpropanesulfonic acid)-modified SiO2 nanoparticles for water-based muds," Industrial & Engineering Chemistry Research, vol. 56, pp. 168-174, 2016. [47] O. Contreras, G. Hareland, M. Husein, R. Nygaard, and M. Al-Saba, "Application of in-house prepared nanoparticles as filtration control additive to reduce formation damage," in SPE International Symposium and Exhibition on Formation Damage Control, 2014. [48] J. T. Srivatsa and M. B. Ziaja, "An experimental investigation on use of nanoparticles as fluid loss additives in a surfactant - Polymer based drilling fluid," in Society of Petroleum Engineers - International Petroleum Technology Conference 2012, IPTC 2012, 2012, pp. 2436-2454; https://repositorio.unal.edu.co/handle/unal/80298; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  19. 19
    Dissertation/ Thesis

    المساهمون: Garavito Linares, Benjamín Alexis

    وصف الملف: application/pdf

    Relation: APA 6th - Cárdenas Ibáñez, J. A. y Castiblanco Reinosa, C. C. (2019) Formulación de un modelo de ingeniería para la gestión integral del fluido base aceite en el campo Castilla como alternativa al fluido base agua en la sección de 12 ¼” (Trabajo de grado). Fundación Universidad de América. Retrieved from http://hdl.handle.net/20.500.11839/7641; http://hdl.handle.net/20.500.11839/7641

  20. 20
    Dissertation/ Thesis

    المساهمون: Cerón, John F.

    وصف الملف: application/pdf

    Relation: APA 7th - Amaya Cortes, D. y Gutiérrez Sánchez, F. J. (2020) Evaluación del desempeño del mineral barita de la Sierra Nevada de Santa Marta como densificante para la implementación en un fluido de perforación base agua a nivel de laboratorio. [Trabajo de grado, Fundación Universidad de América] Repositorio Institucional Lumieres. https://hdl.handle.net/20.500.11839/8206; https://hdl.handle.net/20.500.11839/8206