يعرض 1 - 20 نتائج من 80 نتيجة بحث عن '"Fijación Biológica del Nitrógeno"', وقت الاستعلام: 0.71s تنقيح النتائج
  1. 1
    Conference
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المصدر: Biology and Fertility of Soils

    وصف الملف: p. 321-331; application/pdf

    Relation: Teutscherová, N.; Vázquez, E.; Trubač, J.; Villegas, D.M.; Subbarao, G.V.; Pulleman, M.; Arango, J. (2021) Gross N transformation rates in soil system with contrasting Urochloa genotypes do not confirm the relevance of BNI as previously assessed in-vitro. Biology and Fertility of Soils 11 p. ISSN: 0178-2762; https://hdl.handle.net/10568/118150; https://doi.org/10.1007/s00374-021-01610-z

  7. 7
    Academic Journal

    المصدر: Agronomía Colombiana; Vol. 38 Núm. 1 (2020); 61-72 ; Agronomía Colombiana; Vol. 38 No. 1 (2020); 61-72 ; Agronomía Colombiana; v. 38 n. 1 (2020); 61-72 ; 2357-3732 ; 0120-9965

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/agrocol/article/view/79803/74911; Akbar, N., A. Iqbal, H.Z. Khan, M.K. Hanif, and U. Bashir. 2010. Effect of different sowing dates on the yield and yield components of direct seeded fine rice (Oryza sativa L.). J. Plant Breed. Crop Sci. 2(10), 312-315.; Alvarado, O., G. Garces, and H. Restrepo. 2017. The effects of nighttime temperatures on physiological and biochemical traits in rice. Not. Bot. Horti. Agrobot. Cluj-Napoca 45(1), 157-163. Doi:10.15835/nbha45110627; Bashir, M.U., N. Akbar, A. Iqbal, and H. Zaman. 2010. Effect of different sowing dates on yield and yield components of direct seeded coarse rice (Oryza sativa L). Pak. J. Agri. Sci. 47(4), 361-365.; Castanheira, N., A. Dourado, P. Alves, A. Cortés, A. Delgado, Â. Prazeres, B. Nuno, C. Sánchez, M. Barreto, and P. Freleira. 2014. Annual ryegrass-associated bacteria with potential forplant growth promotion. Microbiol. Res. 169(9-10), 768-779. Doi:10.1016/j.micres.2013.12.010; Ceotto, E., M. Di, F. Castelli, F. Badeck, F. Rizza, C. Soave, A. Volta, G. Villani, and V. Marletto. 2013. Comparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo donax L.) and sweet sorghum (Sorghum bicolor L. Moench). Field Crops Res. 149, 159-166. Doi:10.1016/j.fcr.2013.05.002; Da Silva, J.R., A.E. Patterson, W.P. Rodrigues, E. Campostrini, and K.L. Griffin. 2017. Photosynthetic acclimation to elevated CO2 combined with partial rootzone drying results in improved water use efficiency, drought tolerance and leaf carbon balance of grapevines (Vitis labrusca). Environ. Exp. Bot. 134, 82-95. Doi:10.1016/j.envexpbot.2016.11.007; Delerce, S., H. Dorado, A. Grillon, M.C. Rebolledo, S.D. Prager, V.H. Patiño, G. Garcés, and D. Jiménez. 2016. Assessing weatheryield relationships in rice at local scale using data mining approaches. PLOS ONE 11(8), 1-25. Doi:10.1371/journal.pone.0161620; Fang, H., W. Li, S. Wei, and C. Jiang. 2014. Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agr. Forest. Meteorol. 198-199, 126-141. Doi:10.1016/j.agrformet.2014.08.005; Garcés, G. and H. Restrepo. 2015. Growth and yield of rice cultivars sowed on different dates under tropical conditions. Cienc. Investig. Agrar. 42(2), 217-226. Doi:10.4067/S0718-16202015000200008; García de Salamone, I.E., J.M. Funes, L.P. Di Salvo, J.S. Escobar- Ortega, F. D’Auria, L. Ferrando, and A. Fernandez-Scavino. 2012. Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: Impact of plant genotypes on rhizosphere microbial communities and field crop production. Appl. Soil Ecol. 61, 196-204. Doi:10.1016/j.apsoil.2011.12.012; Hallmann, J., A. Quadt, W.F. Mahaffee, and J. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43(10), 895-914. Doi:10.1139/m97-131; Han, H., C. Building, S. Campus, and S. Bonington. 2018. Appraisal of biofertilizers in rice: To supplement inorganic chemical fertilizer. Rice Sci. 25(6), 357-362. Doi:10.1016/j.rsci.2018.10.006; Hidayati, N., T. Triadiati, and I. Anas. 2016. Photosynthesis and transpiration rates of rice cultivated under the system of sice intensification and the effects on growth and yield. HAYATI J. Biosci. 23(2), 67-72. Doi:10.1016/j.hjb.2016.06.002; Iizumi, T., J. Luo, A. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, M. Brown, and T. Yamagata. 2014. Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat. Commun. 5(3712), 1-7. Doi:10.1038/ncomms4712; Imai, K., Y. Suzuki, T. Mae, and A. Makino. 2008. Changes in the synthesis of Rubisco in rice leaves in relation to senescence and N influx. Ann. Bot. 101(1), 135-144. Doi:10.1093/aob/mcm270; IPCC - Intergovernmental Panel on Climate Change. 2014. Cambio Climático 2014: Informe de síntesis. IPCC, Geneva, Switzerland.; Ju, C., R. Buresh, Z. Wang, H. Zhang, L. Liu, J. Yang, and J. Zhang. 2015. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res. 175, 47-55. Doi:10.1016/j.fcr.2015.02.007; Khalifa, A., W. Elkhoby, and E. Okasha. 2014. Effect of sowing dates and seed rates on some rice cultivars. Afr. J. Agric. Res. 9(2), 196-201. Doi:10.5897/ajar08.233; Krüger, O. and C. Adam. 2017. Phosphorus in recycling fertilizers - analytical challenges. Environ. Res. 155, 353-358. Doi:10.1016/j.envres.2017.02.034; Lavakush, J., J. Yadav, J. Verma, D. Jaiswal, and A. Kumar. 2014. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa L). Ecol. Eng. 62, 123-128. Doi:10.1016/j.ecoleng.2013.10.013; Lee, Y., C. Yang, K. Chang, and Y. Shen. 2011. Effects of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice. Bot. Stud. 52, 295-303.; Li, L., D. Kang, Z. Chen, and L. Qu. 2007. Hormonal regulation of leaf morphogenesis in arabidopsis. J. Integr. Plant Biol. 49(1), 75-80. Doi:10.1111/j.1744-7909.2006.00410.x; Mae, T., A. Inaba, Y. Kaneta, S. Masaki, M. Sasaki, M. Aizawa, S. Okawa, S. Gasegawa, and A. Makino. 2006. A large-grain rice cultivar, Akita 63, exhibits high yields with high physiological N-use efficiency. Field Crops Res. 97(2-3), 227-237. Doi:10.1016/j.fcr.2005.10.003; Mohammadi, K. and Y. Sohrabi. 2012. Bacterial biofertilizers for sustainable crop production: a review. ARPN J. Agric. Biol. Sci. 7(5), 307-316.; Osman, K., A. Mustafa, Y. Elsheikh, E. Idris, and P. Box. 2015. Influence of different sowing dates on growth and yield of direct seeded rice (Oryza sativa L.) in semi-arid zone (Sudan). Int. J. Agron. Agric. Res. 6(6), 38-48.; Pal, R., G. Mahajan, V. Sardana, and B. Chauhan. 2017. Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry-seeded rice in North- West India. Field Crops Res. 206, 138-148. Doi:10.1016/j.fcr.2017.01.025; Parry, M., M. Reynolds, M. Salvucci, C. Raines, P. Andralojc, X. Zhu, D. Price, A. Condon, and R.T. Furbank. 2011. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 62(2), 453-467. Doi:10.1093/jxb/erq304; Patel, D., A. Das, G. Munda, P. Ghosh, J. Sandhya, and M. Kumar. 2010. Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem. Agric. Water Manage. 97(9), 1269-1276. Doi:10.1016/j.agwat.2010.02.018; Peraudeau, S., T. Lafarge, S. Roques, C.O. Quiñones, A. Clement, P. Ouwerkerk, J. Van Rie, D. Fabre, K. Jagadish, and M. Dingkuhn. 2015. Effect of carbohydrates and night temperature on night respiration in rice. J. Exp. Bot. 66(13), 3931-3944. Doi:10.1093/jxb/erv193; Quevedo, Y., J. Beltrán, and E. Barragán. 2019. Identification of climatic and physiological variables associated with rice (Oryza sativa L.) yield under tropical conditions. Rev. Fac. Nac. Agron. Medellín 72(1), 8699-8706. Doi:10.15446/rfnam.v72n1.72076; Ray, C. 2013. Reference sufficiency ranges for plant analysis in the southern region of the united states. URL: www.ncagr.gov/agronomi/saaesd/scsb394.pdf (accessed January 2019).; Reinhold, B. and T. Hurek. 2011. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14(4), 435-443. Doi:10.1016/j.pbi.2011.04.004; Roberts, T. and A. Johnston. 2015. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 105, 275-281. Doi:10.1016/j.resconrec.2015.09.013; Roger, P. and J. Ladha. 1992. Biological N2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. Plant Soil 141(1-2), 41-55. Doi:10.1007/bf00011309; Romero, F., J. Abril, M. Camelo, A. Moreno-Galván, I. Pastrana, D. Rojas-Tapias, and R. Bonilla. 2017. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Rev. Argent. Microbiol. 49(4), 377-383. Doi:10.1016/j.ram.2017.04.006; Shabanamol, S., K. Divya, T. George, K. Rishad, T. Sreekumar, and M. Jisha. 2018. Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiol. Mol. Plant Pathol. 102, 46-54. Doi:10.1016/j.pmpp.2017.11.003; Tilman, D. 2001. Diversity and productivity in a long-term grassland experiment. Science 294(5543), 843-845. Doi:10.1126/science.1060391; Van Ittersum, M.K., F. Ewert, T. Heckelei, J. Wery, J. Alkan Olsson, E. Andersen, I. Bezlepkina, F. Brouwer, M. Donatelli, G. Flichman, L. Olsson, A. Rizzoli, T. Van der Wal, E. Wien, and J. Wolf. 2008. Integrated assessment of agricultural systems - a component-based framework for the European Union (SEAMLESS). Agr. Syst. 96(1-3), 150-165. Doi:10.1016/j.agsy.2007.07.009; Velázquez, M., M. Cabello, L. Elíades, M. Russo, N. Allegrucci, and S. Schalamuk. 2017. Combinación de hongos movilizadores y solubilizadores de fósforo con rocas fosfóricas y materiales volcánicos para la promoción del crecimiento de plantas de lechuga (Lactuca sativa L.). Rev. Argent. Microbiol. 49(4), 347-355. Doi:10.1016/j.ram.2016.07.005; Wang, Y., J. Lu, T. Ren, S. Hussain, C. Guo, S. Wang, R. Cong, and X. Li. 2017. Effects of nitrogen and tiller type on grain yield and physiological responses in rice. AoB Plants 9(2), 1-14. Doi:10.1093/aobpla/plx012; Xue, D.W., H. Jiang, J. Hu, X.Q. Zhang, L.B. Guo, D.L. Zeng, G.J. Dong, G.C. Sung, and Q. Qian. 2012. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings. Plant Physiol. Biochem. 61, 46-53. Doi:10.1016/j.plaphy.2012.08.011; Yosef Tabar, S. 2013. Role of biological nitrogen fixation in rice. Int. J. Geol. Agric. Environ. Sci. 1(1), 9-12.; Zhang, Y., Q. Tang, S. Peng, Y. Zou, S. Chen, W. Shi, J. Quin, and M.R.C. Laza. 2013. Effects of high night temperature on yield and agronomic traits of irrigated rice under field chamber system condition. Aust. J. Crop Sci. 7(1), 7-13.; Zhao, S., J. Xiang, and H. Xue. 2013. Studies on the rice leaf inclination1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol. Plant 6(1), 174-187. Doi:10.1093/mp/sss064; Zhu, L., F. Shah, L. Nie, K. Cui, T. Shah, W. Wu, Y. Chen, C. Chen, K. Wang, Q. Wang, Y. Lian, and J. Huang. 2013. Efficacy of sowing date adjustment as a management strategy to cope with rice (Oryza sativa L.) seed quality deterioration due to elevated temperature. Aust. J. Crop Sci. 7(5), 543-549.; https://revistas.unal.edu.co/index.php/agrocol/article/view/79803

  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المصدر: Diversity

    وصف الملف: 16 p.; application/pdf

    Relation: Villegas, D.M.; Velasquez, J.; Arango, J.; Obregon, K.; Rao, I.M.; Rosas, G.; Oberson, A. (2020) Urochloa grasses swap nitrogen source when grown in association with legumes in tropical pastures. Diversity 12(11) 419. ISSN: 1424-2818; https://hdl.handle.net/10568/110413; https://doi.org/10.3390/d12110419; PII-LAM_LivestockPlus

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Dissertation/ Thesis
  13. 13
    Academic Journal

    وصف الملف: application/pdf

    Relation: Domínguez A., Prieto RG., Achkar M. Perfil ambiental del Uruguay: 2000. 2007; 22: 35-36. Montevideo: Ecoteca Series.; Stein L., Klotz M. The nitrogen cycle. Curr Biol, 2016; 26: R94-R98. DOI: http://doi.org/10.1016/j.cub.2015.12.021; Bloom A. The increasing importance of distinguishing among plant nitrogen sources. Curr Opin Plant Biol. 2015; 25: 10-16. DOI: http://doi.org/10.1016/j.pbi.2015.03.002.; Da Silva Dia JC. Nutritional and health benefits os carrots and their seed extracts. Food Nutr Sci. 2014; 5: 2147-2156. DOI: http://doi.org/10.4236/fns.2014.522227.; Reina CE., Bonilla JF. Manejo postcosecha y evaluación de calidad para zanahoria (Daucus carota L.) que se comercializa en la ciudad de Neiva. Facultad de Ingeniería, Programa de Ingeniería Agrícola, 1997.; Compant S., Reiter B., Sessitsch A., Nowak J., Clément C., Barka E. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. Appl Enviro Microbiol. 2005; 71(4): 1685-1693. DOI: http://doi.org/10.1128/ AEM.71.4.1685-1693.2005.; Beneduzi A., Moreira F., Costa PB., Vargas LK., Lisboa BB., Favreto R., Baldani JI., Passaglia LMP. Diversity and growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl Soil Ecol. 2013; 63: 94- 104. DOI: http://doi.org/10.1016/j.apsoil.2012.08.010.; Cavalcante VA., Döbereiner J. A new acid –tolerant nitrogen– fixing bacterium associated with sugarcane. Plant Soil. 1988; 108: 23-31. DOI: http://doi.org/10.1007/BF02370096.; Baldani VLD., Döbereiner J. Host plant specificity in the infection of cereal with Azospirillum spp. Soil Biol Biochem. 1980; 12: 433-439. DOI: http://doi.org/10.1016/0038-0717(80)90021- 8.; Baldaniet AL. Meios de cultura específicos para o isolamento de bactérias enfofiticas que fixam N2. Comunicado técnico. CNPAB, 1996; 12:3.; Döbereiner J. Forrage grasses and grain crops. En: Methods for evaluating biological nitrogen fixation, 1980.; Dong Z., Heydrich M., Bernard K., McCully ME. Further evidence that the N2-fixing endophytic bacterium from the intercellular spaces of sugarcane stems is Acetobacter diazotrophicus. Appl Environ Microbiol. 1995; 61(5): 1843-1846.; Altschul SF., Gish W., Miller W., Myers EW., Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; (215): 403-410. DOI: http://doi.org/10.1016/S0022-2836(05)80360-2.; Muthukumarasamy R., Rebathi G., Lakshminarasimhan C. Influence of N fertilization on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biol Fertil Soils. 1999; 29: 157-164. DOI: http://doi. org/10.1007/s003740050539.; Videira S., Simões JL., Baldani V. Metodologia para isolamento e posicionamento taxonômico de bactérias diazotróficas oriundas de plantas não-leguminosas. Agrobiología. 2007; 234: 74.; Boddey LH., Boddey RM., Rodríguez BJ., Urquiaga S. A avaliação da fixação biológica de N2 associada a leguminosas e nãoleguminosas utilizando a técnica da redução do acetileno: histórica, teoria e prática. Agrobiología. 2007; 245: 43.; Gordon S., Werber R. Colorimetric estimation of indole acetic acid. Plant Physiol. 1950; 26: 192-195. DOI: http://doi. org/10.1104/pp.26.1.192.; Glickmann E., Dessaux Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol. 1995; 61(2): 793-796.; Sarwar M., Kremer RJ. Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol. 1995; 20: 282-285. DOI: http://doi.org/10.1111/j.1472-765X.1995. tb00446.x.; Nautiyal CS. An efficent microbial growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999; 170: 265-270. DOI: http://doi. org/10.1111/j.1574-6968.1999.tb13383.x.; Kumar V., Narula N. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chromococcum mutants. Biol Microbiol. 1999; 29: 301-305.; Nguyen CW., Yan WF., Tacon L., Lapayrie F. Genetic variability of phosphate solubilizing activity by monocaryotic and dicaryotic mycelia of the ectomycorrhizal fungus Laccaria bicolor (Maire) P.D. Orton. Plant Soil. 1992; 143: 193-199. DOI: http:// doi.org/10.1007/BF00007873.; Feller C., Bleiholder H., Buhr L., Hack H., Hess M., Klose R., Meier U., Stauss R., Van T. Phänologische entwicklungsstadien von gemüsepflanzen: I. Zwiebel, wurzel, knollen und blattgemüse codierung und beschreinbung nach der erweiterten BBCH-skala mit abbildungen. Nachrichtenbl. Deut. Pflanzenschtzd. 1995; 47: 193-206.; Surette MA., Sturz AV., Lada RR., Nowak J. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil. 2003; 254: 381-390. DOI: http://doi. org/10.1023/A:1024835208421.; Madhaiyan M., Saravanan VS., Bhakiya D., Hyoungseok L., Thenmozhi R., Hari K., Sa. T. Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol Res. 2004; 159: 233-243. DOI: http:// doi.org/10.1016/j.micres.2004.04.001.; Martínez NP., García G. Bacterias diazotróficas y solubilizadoras de fósforo aisladas de las especies forestales altoandinas colombianas Weinmannia tomentosa y Escallonia myrtilloides. Intropica. 2010; 5: 63-76.; Taulé C., Mareque C., Barlocco C., Hackembruch F., Sicardi M., Battistoni F. Bacterias promotoras del crecimiento vegetal asociadas a caña de azúcar. Serie FPTA-INIA. 2014; 54: 9-46.; Farina R., Beneduzi A., Ambrosini A., De Campos SB., Lisboa BB., Wendisch V., Vargas LK., Passaglia LMP. Diversity of plant growth-promoting rhizobacteria communities associated with the stage of canola growth. Appl Soil Ecol. 2012; 55: 44-52. DOI: http://doi.org/10.1016/j.apsoil.2011.12.011.; Datta C., Basu PS. Indole acetic acid production by Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res. 2000; 155(2): 123-127. DOI: http://doi. org/10.1016/S0944-5013(00)80047-6.; Idris ESE., Iglesias DJ., Talon M., Borriss R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZb42. Am Phytoplathol Soc. 2007; 20(6): 619-626.; Angulo VC., Sanfuentes EA., Rodríguez F., Sossa KE. Caracterización de rizobacterias promotoras de crecimiento en plántulas de Eucalyptus nitens. Rev Argent Microbiol. 2014; 46(4): 338-347. DOI: http://doi.org/10.1016/S0325-7541(14)70093-8.; Attar YC., Mali SD., Kamble PP. Study of phosphate solubilising Enterobacter cloacae sub sp. cloacae strain YCA for production of plant growth promoting substances. Int J Pure Appl Biosci. 2015; 3(1): 71-80.; Montañez A., Rodríguez BA., Barlocco C., Beracochea M. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol. 2012; 58: 21-28. DOI: http://doi.org/10.1016/j.apsoil.2012.02.009.; Bashan Y., Kamnev AA., Bashan LE. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils. 2013; 49: 465-479. DOI: http://doi.org/10.1007/s00374-012-0737-7.; Restrepo Franco GM., Marulanda Moreno S., de la Fe Pérez Y., Díaz de la Osa A., Baldani VL., Hernández-Rodríguez A. Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. Rev CENIC Ciencias Biol. 2015; 46(1): 63-76.; Revista Ciencia y Agricultura;Volumen 15, número 1 (Enero-Junio 2018); Gaviria Giraldo, J. y otros. (2018). Bacterias diazotróficas con actividad promotora del crecimiento vegetal en Daucus carota L. Ciencia y Agricultura, 15(1), 19-27. DOI: https://doi.org/10.19053/01228420.v15.n1.2018.7753.; http://repositorio.uptc.edu.co/handle/001/2290

  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    المصدر: Plant and Soil (Published: 15 April 2022)

    وصف الملف: application/pdf

    Relation: info:eu-repograntAgreement/INTA/PNCYO-1127033/AR./Manejo nutricional de cereales y oleaginosas para la intensificación sustentable de los sistemas productivos; info:eu-repograntAgreement/INTA/2019-PE-E1-I011-001/2019-PE-E1-I011-001/AR./Intensificacion Sustentable de la Agricultura en la Region Pampeana; http://hdl.handle.net/20.500.12123/11699; https://link.springer.com/article/10.1007/s11104-022-05418-0; https://doi.org/10.1007/s11104-022-05418-0

  17. 17
    Academic Journal
  18. 18
  19. 19
  20. 20