يعرض 1 - 20 نتائج من 59 نتيجة بحث عن '"Fernández Da Silva, Rafael"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Gestión y Ambiente; Vol. 24 Núm. 2 (2021); 98607 ; Gestión y Ambiente; Vol. 24 No. 2 (2021); 98607 ; 2357-5905 ; 0124-177X

    جغرافية الموضوع: Venezuela, Carabobo, Puerto Cabello

    Time: Puerto Cabello

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/gestion/article/view/98607/82500; Almeida Júnior, E., Martinez, J., Gonçalves, A., Canhoto, C., 2020. Combined effects of freshwater salinization and leaf traits on litter decomposition. Hydrobiologia 847, 3427-3435. DOI:10.1007/s10750-020-04348-1; Artigas, J., Romaní, A., Sabater, S., 2008. Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. Aquat. Bot. 88(1), 32-38. DOI:10.1016/j.aquabot.2007.08.005; Asif, N., Malik, M., Chaudhry, F., 2018. A review of on environmental pollution bioindicators. Pollution 4(1), 111-118. DOI:10.22059/poll.2017.237440.296; Bai, Y., Wang, Q., Liao, K., Jian, Z., Zhao, C., Qu, J., 2018. Fungal community as a bioindicator to reflect anthropogenic activities in a river ecosystem. Front. Microbiol. 9, 3152. DOI:10.3389/fmicb.2018.03152; Bärlocher, F., 1992. Community organization. En: Bärlocher, F. (Eds.), The ecology of aquatic hyphomycetes. Vol. 94. Springer-Verlag, Berlin. pp. 38-76. DOI:10.1007/978-3-642-76855-2_3; Bärlocher, F., 2016. Aquatic hyphomycetes in a changing environment. Fungal Ecol. 19,14-27. DOI:10.1016/j.funeco.2015.05.005; Bärlocher, F., Helson, J., Dudley, W., 2010. Aquatic hyphomycete communities across a land-use gradient of Panamanian streams. Fundam. Appl. Limnol., Arch. Hydrobiol. 177(3), 209-221. DOI:10.1127/1863-9135/2010/0177-0209; Bergmann, M., Graça, M., 2020. Uranium affects growth, sporulation, biomass and leaf-litter decomposition by aquatic hyphomycetes. Limnetica 39(1), 141-154. DOI:10.23818/limn.39.10; Betancourt, C., Cruz, J., Garcia, J., 1987. Los hifomicetos acuáticos de la Quebrada Doña Juana en el Bosque Estatal de Toro Negro, Villalba, Puerto Rico. Caribb. J. Sci. 23(2), 278-284.; Castela, J., Ferreira, V., Graça, M., 2008. Evaluation of stream ecological integrity using litter decomposition and benthic invertebrates. Environ. Pollut. 153(2), 440-449. DOI:10.1016/j.envpol.2007.08.005; Chauvet, E., 1991. Aquatic hyphomycete distribution in South-Western France. J. Biogeogr. 18(6), 699-706. DOI:10.2307/2845551; Chauvet, E., Cornut, J., Sridhar, K., Selosse, M.-A., Bärlocher, F., 2016. Beyond the water column: aquatic hyphomycetes outside their preferred habitat. Fungal Ecol. 19, 112-127. DOI:10.1016/j.funeco.2015.05.014; Cressa, C., Smits, G., 2007. Aquatic hyphomycetes in two blackwater streams of Venezuela. Ecotropicos 20(2), 82-85.; Cudowski, A., Pietryczukm A., Hauschild, T., 2015. Aquatic fungi in relation to the physical and chemical parameters of water quality in the Augustów Canal. Fungal Ecol. 13, 193-204. DOI:10.1016/j.funeco.2014.10.002; Da Silva, G., Castañeda-Ruiz, R., Malosso, E., 2019. Comparison of aquatic hyphomycetes communities between lotic and lentic enviroments in the Atlantic rain forest of Pernambuco. Fungal Biol. 123(9), 660-668. DOI:10.1016/j.funbio.2019.05.013; Dang, C., Gessner, M., Chauvet, E., 2007. Influence of conidial traits and leaf structure on attachment success of aquatic hyphomycetes on leaf litter. Mycology 99(1), 24-32. DOI:10.1080/15572536.2007.11832597; Descals, E., 2005. Diagnostic characters of propagules of Ingoldian fungi. Mycol. Res. 109, 545-555. DOI:10.1017/S0953756205002728; Descals, E., Moralejo, E., 2001. El agua y la reproducción asexual en los hongos ingoldianos. Bot. Comp. 25, 13-71.; Duarte, S., Bärlocher, F., Pascoal, C., Cassio, F., 2016. Biogeography of aquatic hyphomycetes: Current knowledge and future perspectives. Fungal Ecol. 19, 169-181. DOI:10.1016/j.funeco.2015.06.002; Duarte, S., Cássio, F., Pascoal, C., 2017. Environmental drivers are more important for structuring fungal decomposer communities than the geographic distance between streams. Limnetica 36(2), 491-506. DOI:10.23818/limn.36.17; Fernández, R., Smits, G., 2005. Estudio preliminar de los hongos acuáticos en el Río Cabriales (Parque San Esteban, Edo. Carabobo). Saber 17, 147-149.; Fernández, R., Smits, G., 2009. Registro de la presencia de hifomicetos en ríos de la cordillera de la costa, Venezuela. Interciencia 34(8), 589-592.; Fernández, R., Smits, G., 2011. Hifomicetos acuáticos en la cabecera del río Guárico en el Estado Carabobo, Venezuela. Interciencia 36(11), 831-834.; Fernández, R., Smits, G., 2013. Diversidad de Hifomicetos acuáticos en la quebrada “La Estación” de la Hacienda Ecológica “La Guáquira”, Yaracuy, Venezuela. Interciencia 38(7), 496-501.; Fernández, R., Smits, G., 2015. Actualización de inventario de especies de hifomicetos acuáticos en Venezuela. Gest. Ambient. 18(2), 153-180.; Fernández, R., Smits, G., 2016. Hifomicetos acuáticos en la cabecera del río Chirgua, Carabobo, Venezuela. Interciencia 41(2),110-113.; Fernández, R., Smits, G., 2018. Registro de hifomicetos acuáticos en el río Guáquira de la Reserva Ecológica Guáquira (San Felipe, Venezuela). Gest. Ambient. 21(1), 121-128. DOI:10.15446/ga.v21n1.71778; Fernández, R., Smits, G., 2020. Hifomicetos acuáticos como bioindicadores de calidad ambiental en el río Vigirima (Guacara, Carabobo-Venezuela). Gest. Ambient. 23(2), 165-181. DOI:10.15446/ga.v23n2.95686; Fernández, R., Smits, G., Pinto, M., 2010. Características e importancia de los hifomicetos acuáticos y registro de especies en Venezuela. Faraute Cienc. Tec. 5(2), 56-73.; Fernández, R., Storaci, V., Smits, G., 2017. Evaluación de los hifomicetos acuáticos como bioindicadores de calidad ambiental en el río Chirgua (Bejuma, Venezuela). Gest. Ambient. 20(1), 82-94.DOI:10.15446/ga.v20n1.62241; Ferreira, M., Raposeiro, P., Pereira, A., Cruz, A., Costa, A., Graça, M. Gonçalves, V., 2016. Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshw. Biol. 61(5), 783-799. DOI:10.1111/fwb.12749; Fiuza, P., Cantillo-Pérez, T., Monteiro, J., Gulis, V., Pascholati Gusmão, L., 2017. Rare hyphomycetes from freshwater environments from Chapada Diamantina, Bahia, Brazil. Nova Hedwigia 104(4), 451-466. DOI:10.1127/nova_hedwigia/2016/0375; Gönczol, J., Révay, A., 1999. Studies on the aquatic hyphomycetes of the Morgò stream, Hungary. II. Seasonal periodicity of conidial populations. Arch. Hydrobiol. 144(4), 495-508. DOI:10.1127/archiv-hydrobiol/144/1999/495; Hammer, Ø., Harper, D., Ryan, P., 2001. PAST: paquete de programas de estadística paleontológica para enseñanza y análisis de datos. Palaeontol. Electrón, 4, art. 4.; Harrington, T., 1997. Aquatic hyphomycetes of 21 rivers in southern Ireland. Biol. Environ. 97B, 139-148.; Huber, O., Alarcón, C., 1988. Mapa de vegetación de Venezuela. 1:2.000.000. MARNR, The Nature Conservancy; Oscar Todtmann Editores, Caracas.; Ingold, C., 1975. An illustrated guide to aquatic and water-borne hyphomycetes (fungi imperfecti) with notes on their biology. Scientific Publication N° 30. Freshwater Biological Association, Ambleside, UK.; Iqbal, S., 1997. Species diversity of freshwater hyphomycetes in some streams of Pakistan. II. Seasonal differences of fungal communities on leaves. Ann. Bot. Fennici. 34,165-178.; Jabiol, J., Bruder, A., Geesner, M., Makkonen, M., Mckie, B., Peeters, E., Vos, V., Chauvet, E., 2013. Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient. Fungal Ecol. 6(5), 439-448. DOI:10.1016/j.funeco.2013.04.002; Justiniano, J., Betancourt, C., 1989. Hongos ingoldianos presentes en el río Maricao, Puerto Rico. Caribb. J. Sci. 25,111-114.; Juvigny-Khenafou, N., Zhang, Y., Piggott, J., Atkinson, D., Matthaei, C., Van Bael, S., Wu, N., 2020. Anthropogenic stressors affect fungal more than bacterial communities in decaying leaf litter: a stream mesocosm experiment. Sci. Total Environ. 716, 135053. DOI:10.1016/j.scitotenv.2019.135053; Koske, R., Duncan, I., 1974. Temperature effects on growth, sporulation and germination of some aquatic hyphomycetes. Can. J. Bot. 52, 1387-1391. DOI:10.1139/b74-180; Kirk, P., 1969. Aquatic hyphomycetes on wood in an estuary. Mycologia 61(1), 177-181. DOI:10.1080/00275514.1969.12018713; Krauss, G., Bärlocher, F., Schreck, P., Wennrich, R., Glässer, W., Krauss, G., 2001. Aquatic hyphomycetes occur in hyperpolluted waters in central Germany. Nova Hedwigia 72(3-4), 419-428. DOI:10.1127/nova.hedwigia/72/2001/419; Lecerf, A., Chauvet, E., 2008. Diversity and functions of leaf-associated fungi in human-altered streams. Freshw. Biol. 53(8), 1658-1672. DOI:10.1111/j.1365-2427.2008.01986.x; Markert, B., Breure, A. and Zechmeister, H., 2003. Definitions, strategies and principles for bioindication/biomonitoring of the environment. En: Markert, B., Breure, A., Zechmeister, H (Eds.), Bioindicators and biomonitors: Principles concepts and applications. Vol. 6. Elsevier Science, The Netherlands. pp: 3-39. DOI:10.1016/S0927-5215(03)80131-5; Michaelides, J., Kendrick, B., 1982. The bubble-trap propagules of beverwykella, helicoon and other aero-aquatic fungi. Mycotaxon 14, 247-260.; Mille-Lindblom, C., Tranvik, L., 2003. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb. Ecol. 45, 173-182. DOI:10.1007/s00248-002-2030-z; Nieves-Rivera, A., Santos-Flores, C., 2005. Aquatic fungi from estuaries in Puerto Rico: Mouth of the Manatí River. J. Agric. Univ. P.R. 89(1-2), 97-105.; Nilsson, S., 1962. Some aquatic hyphomycetes from South America. Svensk Bot. Tidskr. 56, 351-361.; Paliwal, P., Sati, S., 2009. Distribution of aquatic fungi in relation to physicochemical factors of Kosi River in Kumaun Himalaya. Nat. Sci. 7(3), 70-74.; Parmar, T., Rawtani, D., Agrawal, Y., 2016. Bioindicators: the natural indicator of environmental pollution. Front. Life Sci. 9(2), 110-118. DOI:10.1080/21553769.2016.1162753; Pascoal, C., Cássio, F., 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl. Environ. Microbiol. 70, 5266-5273. DOI:10.1128/aem.70.9.5266-5273.2004; Pascoal, C., Cássio, F., Marvanová, L., 2005. Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low-order stream. Arch. Hydrobiol. 162, 481-496. DOI:10.1127/0003-9136/2005/0162-0481; Pascoal, C., Pinho, M., Cássio, F., Gomes, P. 2003. Assessing structural and functional ecosystem condition using leaf breakdown: studies on a polluted river. Freshw. Biol. 48, 2033-2044. DOI:10.1046/j.1365-2427.2003.01130.x; Pinto, M., Fernández, R., Smits, G., 2009. Comparación de métodos en la caracterización de la biodiversidad de hifomicetos acuáticos en el río Cúpira, Estado Carabobo, Venezuela. Interciencia 34(7), 497-501.; Pinto, M., Smits, G., 2012. Evaluación preliminar de la riqueza de especies de hifomicetos acuáticos en ríos de la vertiente norte de la cordillera de la costa, Estado Aragua-Venezuela. Intropica 7, 31-36.; Presidencia de Venezuela, 1995. Decreto 883, normas para la clasificación control de la calidad de los cuerpos de agua y vertidos o efluentes líquidos. GOE 5.021. Caracas.; Raghu, P., Sridhar, K., Kaveriappa, K., 2001. Diversity and conidial output of aquatic hyphomycetes in a heavy metal polluted river, Southern India. Sydowia 53(2), 236-246.; Rajashekhar, M., Kaveriappa, K., 2003. Diversity of aquatic hyphomycetes in the aquatic ecosystems of the Western Ghats of India. Hydrobiologia 501(1-3), 167-177. DOI:10.1023/A:1026239917232; Rossi, F., Mallet, C., Portelli, C., Donnadieu, F., Bonnemoy, F., Artigas, J., 2019. Stimulation or inhibition: Leal microbial decomposition in streams subjected to complex chemical contamination. Sci. Total Environ. 648, 1371-1383. DOI:10.1016/j.scitotenv.2018.08.197; Sajina, A., Sudheesan, D., Kumar, L., Sandhya K. 2021. Fish as ecological health indicators of freshwater ecosystems. Biotica Res. Today 3(1),77-80.; Samson, R., Rajput, V., Shah, M., Yadav, R., Sarode P., Dastager, S., Dharne, M., Khairnar, K., 2019. Fungal communities (Mycobiome) as potential ecological indicators within confluence stretch of Ganges and Yamuna Rivers, India. BioRxiv 848259. DOI:10.1101/848259; Santos-Flores, C., Betancourt-López, C., 1997. Aquatic and water-borne hyphomycetes (Deuteromycotina) in streams of Puerto Rico (Including records from other Neotropical locations). Caribb. J. Sci. Spec. Publ. 2. 116 pp.; Schoenlein-Crusius, I., Grandi, R., 2003. The diversity of aquatic hyphomycetes in South America. Braz. J. Microbiol. 34(3), 183-193. DOI:10.1590/S1517-83822003000300001; Schoenlein-Crusius, I., Moreira, C., Gomes, E., 2015. Riqueza dos fungos ingoldianos e dos fungos aquáticos facultativos do Parque Municipal da Aclimação, São Paulo, SP, Brasil. Hoehnea 42, 239-251. DOI:10.1590/2236-8906-52/2014; Seena, S., Graça, D., Bartels, A., Cornut, J., 2019. Does nanosized plastic affect aquatic fungal litter decomposition?. Fungal Ecol. 39, 388-392. DOI:10.1016/j.funeco.2019.02.011; Solé, M., Fetzer, I., Wennrich, R., Sridhar, K. R., Harms, H., Krauss, G., 2008. Aquatic hyphomycete communities as potential bioindicators for assessing anthropogenic stress. Sci. Total Environ. 389(2-3), 557-565. DOI:10.1016/j.scitotenv.2007.09.010; Smits, G., Fernández, R., Cressa, C., 2007. Preliminary study of aquatic hyphomycetes from Venezuelan streams. Acta Bot. Venez. 30(2), 345-355.; Sridhar, K., Bärlocher, F., 1997. Water chemistry and sporulation by aquatic hyphomycetes. Mycol. Res. 101, 591-596. DOI:10.1017/S0953756296003024; Sridhar, K., Bärlocher, F., 1998. Breakdown of Ficus and Eucalyptus leaves in an organically polluted river in India: fungi diversity and ecological functions. Freshw. Biol. 39, 537-545. DOI:10.1046/j.1365-2427.1998.00303.x; Sridhar, K., Kaveriappa, K., 1988. Occurrence and survival of aquatic hyphomycetes in brackish and sea water. Arch. Hydrolobiol. 113(1),153-160.; Sridhar, K., Sudheep, N., 2010. Diurnal fluctuation of spores of freshwater hyphomycetes in two tropical streams. Mycosphere 1(2), 89-101.; Steinke, T., Lubke, R., 2003. Arenicolous marine fungi from southern Africa. South African J. Botany 69(4), 540-545. DOI:10.1016/S0254-6299(15)30292-1; Storaci, V., Fernández, R., Smits, G., 2013. Evaluación de la calidad de agua del río Cúpira (La cumaca, Estado Carabobo, Venezuela) mediante bioindicadores microbiologicos y parámetros fisicoquímicos. Interciencia 38(7), 480-487.; Storaci, V., Fernández, R., Smits, G., 2014. Hifomicetos acuáticos en el río Cúpira (La Cumaca, Estado Carabobo, Venezuela). Ciencia 22(1), 21-27.; Sumudumali, R., Jayawardana, J., 2021. A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environ. Manage. 67, 263-276. DOI:10.1007/s00267-020-01423-0; Tolkkinen, M., Mykrä, H., Annala, M., Markkola, A., Vuori, K., Muotka, T., 2015. Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. Ecology 96, 672-683. DOI:10.1890/14-0743.1; Tsui, C., Baschien, C., Goh, T., 2016. Biology and ecology of freshwater fungi. En: Li, D.-W. (ed.), Biology of microfungi. Fungal biology. Springer, Cham, Alemania. pp. 285-313. DOI:10.1007/978-3-319-29137-6_13; Valencia-G., S., Lizarazo-M., P., 2009. Caracterización de la composición microbiana de cuatro quebradas del Parque Nacional Natural Gorgona. Actual. Biol. 91, 213-226.; Vélez-Azañero, A., Lozano, S., Cáceres-Torres, K., 2016. Diversidad de fitoplancton como indicador de calidad de agua en la cuenca baja del río Lurín, Lima, Perú. Ecol. Apl. 15(2), 69-79. DOI:10.21704/rea.v15i2.745; Zaghloul, A., Saber, M., Gadow, S., Awad, F., 2020. Biological indicators for pollution detection in terrestrial and aquatic ecosystems. Bull. Natl Res. Cent. 44, 127-137. DOI:10.1186/s42269-020-00385-x; Zhang, T., Wang, N.-F., Zhang, Y.-Q., Liu, H., Yu, L.-Y., 2016. Diversity and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic). Microb. Ecol. 71, 543-554. DOI:10.1007/s00248-015-0689-1; https://revistas.unal.edu.co/index.php/gestion/article/view/98607

  3. 3
    Electronic Resource
  4. 4
  5. 5
    Academic Journal

    المصدر: Acta Biológica Colombiana; Vol. 22 Núm. 1 (2017); 85-100 ; Acta Biológica Colombiana; Vol. 22 No. 1 (2017); 85-100 ; 1900-1649 ; 0120-548X

    وصف الملف: application/pdf; text/html

    Relation: https://revistas.unal.edu.co/index.php/actabiol/article/view/56933/pdf_22%281%29_art9; https://revistas.unal.edu.co/index.php/actabiol/article/view/56933/60064; Acevedo M, Castrillo W, Belmonte U. Origen, evolución y diversidad del arroz. Agronomía Trop. 2006;56(2):151-170.; Agrios G. Fitopatología. México: Limusa; 1991. 756 p. Barreto T. Caracterización de los filtrados tóxicos de Sclerotium rolfsii Sacc. y su efecto sobre callos de tabaco (N. tabacum L.). Rev Fac Agron. 1993;19:99-100.; Bay P, Muoi L, Thanh N. In vitro screening of Indica rice cultivars for resistance to blast disease using phytotoxin. Institute of Biotechnology. National Center for Natural science and technology:Vietnam; 1997. p. 10-15.; Bevitori R, Popielarska M, dos Santos E, Grossi M, Petrofeza S. Morpho-anatomical characterization of mature embryo-derived callus of rice (Oryza sativa L.) suitable for transformation. Protoplasma. 2014;251(3):545-54.; Brookes G, Barfoot P. Will this lead the way for global acceptance of GM crop technology? Cornell University, USA: ISAAA Briefs; 2003. 62 p.; Chand R, Sen D, Prasad K, Singh A, Bashyal B, Prasad l, Joshi A. Screening for disease resistance in barley cultivars against Bipolaris sorokiniana using callus culture method. Indian J Exp Biology. 2008;46(4):249-253.; Cornide M, Lima H, Gálvez G, Sigarroa A. Mecanismo de resistencia a las enfermedades: Genética Vegetal y Fitomejoramiento. Editorial Científico-Técnica, Cuba. 1995;400-414.; Cordero V, Rivero L. Principales enfermedades fungosas que inciden en el cultivo del arroz en Cuba. Boletín Técnico del Arroz, IIA, Minagri, 2001;3-7.; Correa F, Guimaraes E. Utilización del concepto de linaje genético de Pyricularia grisea en un programa de selección recurrente. Primer Taller Internacional de Selección Recurrente en Arroz, Goiania, Brasil. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia. 1995;19. DANAC. Fundación DANAC. Informe de gestión 2005-2006. [On line]. 2009. Available at: www.danac.org.ve/areas_disciplinarias/index.php. [Accessed: 2010, diciembre 18].; Daub M. Tissue culture and the selection of resistance to pathogens. Ann Rev Phytopathology. 1986;24:159-186.; D’Ávila L, Lehner M, Filippi M, Scheuermann K, Del Ponte E. Genetic structure and mating type analysis of the Pyricularia oryzae population causing widespread epidemics in southern Brazil. Trop Plant Pathol. 2016;1-9. Doi:10.1007 / s40858-016-0101-9; Diez J, Gil L. Efecto de los filtrados de cultivos de Ophiostoma novo-ulmi Brasier sobre el crecimiento de callo de olmos con diferente susceptibilidad a la grafiosis. Invest Agr Sist Recur For. 2002;11(1):67-76.; Dissanayaka D, Dahanayake N. Effect of plant growth regulators on micro-propagation of selected Sri Lankan traditional and improved rice cultivars (Oryza sativa L.). Sabaragamuwa University J. 2014;13(1):33-41.; El-Banna A, Khatab I. Biochemical characterization of rice somaclones resistant to blast. Curr Res J Biological Sci. 2012;4(2):137-142.; El-Kazzaz A, Hanafy M, Andel-Kader M. In vitro selection of resistant rice plants against rice blast caused by Pyricularia oryzae via tissue cultura technique. Arch Phyto Plant Protection. 2009;42(9):847–856. Doi:10.1080/03235400701492715; FAO. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Seguimiento del mercado del arroz. [On line]. 2015. Available at: [http://www.fao.org/economic/est/publications/publicaciones-sobre-el-arroz/seguimiento-del-mercado-del-arroz-sma/es/]; Fernández R. Influencia del estrés hídrico inducido por desecación en la regeneración in vitro de variedades venezolanas de arroz (Oryza sativa L.). Acta Biol Venez. 2010;30 (1-2):63-74.; Fernández R. Sistema de regeneración in vitro por embriogénesis somática indirecta en variedades venezolanas de arroz (Oryza sativa L.). Revista Científica UDO Agrícola. 2012;12(1):55-68.; Fernández R, Cardona A. Establecimiento de un sistema de regeneración in vitro de cultivares venezolanos de arroz (Oryza sativa L.). Revista Faraute de Ciencia y Tecnología. 2010;5(1):5-17.; Fernández M, Fernández M, Centeno l, Cañal M, Rodriguez R. Reaction of common bean callus to culture filtrate of Colletotrichum lindemuthianum: Differences in the composition and toxic activity of fungal culture filtrates. Plant Cell Tiss Organ Cult 2000;61:41-49. Doi:10.1023/A:1006486203315; Flores P, Otoni W, Dhingra O, Diniz S, dos Santos T, Bruckner C. In vitro selection of yellow passion fruit genotypes for resistance to Fusarium vascular wilt. Plant Cell Tiss Organ Cult. 2012;108:37-45. Doi:10.1007/s11240-011-0009-5; Ganesan M, Jayabalan N. Isolation of disease-tolerant cotton (Gossypium hirsutum L. cv. SVPR 2) plants by screening somatic embryos with fungal culture filtrate. Plant Cell Tiss Organ Cult. 2006;87:273-284. Doi:10.1007/s11240-006-9164-5; Ge X, Chu Z, Lin Y. A tissue culture system for different germplasm of indica rice. Plant Cell Rep. 2006;25:392-402. Doi:10.1007/s00299-005-0100-7; Ghobeishavi H, Dorani E, Siamak S, Valizadeh M. Study of factors influencing somatic embryogenesis in rice (Oryza Sativa L.). Int J Adv Biol Biom Res. 2015;3(1):43-50.; Guimaraes E, Ospina Y, Correa- Victoria F. Empleo del concepto de linajes de Pyricularia grisea para escoger germoplasma de arroz resistente. Fitopatología Venezolana. 1996;9(1):2-6.; Huang W, Liu L. Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Bot Bull Acad Sin. 2002;43:107-113.; Ilahi I, Bano S, Jabeen M, Rahim F. Micropropagation of rice (Oryza sativa L. CV Swat-II) through somatic embriogénesis. Pak J Bot. 2005;37(2):237-242.; Jan Q, Hassan M, Fatima T, Hasnai T. Tissue culture response of local varieties of rice (Oryza sativa L.) of NWFP. J Biol Sci. 2001;1:387-390. Johansen D. Plant Microtechnique. McGraw-Hill:New York; 1940. 523 p.; Joyia F, Khan M. Reproducible and expedient rice regeneration system using in vitro grown plants. Afr J Biotechnol. 2012;11(1):138-144.; Kadhimi A, Naji A, Isahak A, Farshad M, Mohamad A, Doni F, Mohtar W, Radziah C. Effect of genotype and growth regulators in induction of embryogenic callus in rice. J. Pure App Microb. 2014;8(6):1-6.; Khan M.A.I., Ali M.A., Monsur M.A., Kawasaki-Tanaka A., Hayashi N., Yanagihara S., Obara M., Mia M. A. T., Latif M. A., Fukuta Y. Diversity and Distribution of Rice Blast (Pyricularia oryzae Cavara) Races in Bangladesh. Plant Disease. 2016;100(10):2025-2033. Doi:http://dx.doi.org/10.1094/PDIS-12-15-1486-RE; Krishna H., Alizadeh M., Singh D., Singh U., Chauhan N., Eftekhan M., Sadh R. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech. 2016;6(1):54. Doi:10.1007/s13205-016-0389-7; Mahajan R, Sharma S. Comparison of regeneration efficiency of three different genotypes of basmati rice under in vitro condition. IJBTT. 2015;11(1):16-24.; Murashige T, Skoog, F. A revised medium for rapid growth and biassars with tobacco culture. Plant Physiol. 1962;15:473-497.; Michaux-Ferriére N, Carrón M. Histology of early somatic embryogenesisin Hevea brasiliensis. The importance of the timing of subculturing. Plant Cell Tiss Organ Cult. 1989;19:243-256.; Montoya M., Rodriguez N., Perez-Almeida I., Cova J., Aleman L. Caracterización morfológica de 13 variedades de arroz venezolanas. Agronomía Trop. 2007;57(4):299-311.; Narayan R, Singburaudom N, Sommartya T, Sarobol E. Pathogenicity determination of crude extract toxin produced by the fungus (P. oryzae Cav). The causal agent of rice blast. Nat Sci. 1995;29:498-507.; Pérez-Clemente E., Vives V., Zandalinas S., López-Climent M., Muñoz V., Gómez-Cadenas A. Biotechnological Approaches to Study Plant Responses to Stress. BioMed Res Int. 2013;1-9. Doi:10.1155/2013/654120; Pieters A., Graterol E., Reyes E., Álvarez R., González A. Cincuenta años de mejoramiento genético del arroz en Venezuela. ¿Qué se ha logrado?. Interciencia. 2011;36(12):943-948.; Prabhu A, Rush M. Differential sensitivity of callus derived from immature panicles of rice cultivars to the non-specific toxin of Pyricularia grisea. Plant Cell Tiss Organ Cult. 1997;50:13–18.; Raemakers C, Jacobsen E., Visser G. Secondary somatic embryogenesis and application in plant breeding. Euphytica. 1995;81:93-107.; Rai M, Kalia R, Singh R, Gangola M, Dhawan. Developing stress tolerant plants in vitro selection- An overreview of the recent progress. Envir Exp Bot. 2011;71:89-98.; Roly Z, Islam M, Shaekh P, Arman S, Shahik S, Das D, Haamem M, Khalekuzzaman M. In vitro induction and regeneration potentiality of aromatic rice (Oryza sativa L.) cultivars in differential growth regulators. Int J Appl Sci Biotechnol. 2014;2(2):160-167.; Sangduen N, Klamsomboon P. Histological and scanning electron observations on embryogenic and non-embryogenic calli of aromatic Thai rice (Oryza sativa L. cv. Khao Daw Mali 105). Kasetsart J. Nat. Sci. 2001;35:427-432.; Shahsavari E. Evaluation and optimizations of media on the tissue culture system of Upland rice. International J Agric Biol. 2010;12(4):537-540.; Shahsavari E, Maheran A, Akmar A, Hanafi M. The effect of plant growth regulators on optimizations of tissue culture system in Malaysian upland rice. African J Biotechnology. 2010;9(14):2089-2094.; Slavov S. Phytotoxinas and in vitro screening for improved diseased resistant plants. Biotechnol. Biotechnol. 2005;40-45.; Talbot N, Mccafferty H, Kershaw M, Dixon K. Identification of pathogenicity determinants in the rice blast fungus Magnaporthe grisea. In Mayor Fungal Diseases of rice. Netherlands: Springer; 2001. 21-34 p. Doi:10.1007/978-94-017-2157-8_3; Tariq M, Ali G, Hadi F, Ahmad S, Ali N, Shah A. Callus induction and in vitro plant regeneration of rice (Oryza sativa L.) under various conditions. Pak J Biol Sci. 2008;11(2):255-259.; Uchiyama T, Ogasawa N. Disappearence of cuticle and wax in outermost layer of callus cultures and decrease of protective ability against microorganisms. Agric Biol Chem. 1977;41:1401–1405.; Vasil I. Developing cell and tissue culture systems for the improvement of cereal and grass crops. J Plant Physiol. 1987;128:193-218.; Wei S, Liu W, Yu Y. Effects of Pyricularia grisea toxin on the survival and ultrastructure in the calli of rice. J Shenyang Agric University. 1999.; Zaidi M, Narayanan M, Sardana R, Taga I, Postel S, Johns R, McNulty M, Mao J, Loit E, Altosar I. Optimizing tissue culture media for efficient transformation of different indica rice genotypes. Agronomy Res. 2006;4(2):563-575.; Zhang H, Zheng X, Zhang Z. The Magnaporthe grisea species complex and plant pathogenesis. Mol Plant Pathol. 2015;17(6):796-804. Doi:10.1111/mpp.12342; Zhuang J, Jia X. Increesing differentiation frequencies in Wheat pollen callus. In: Cell and tissue culture techniques for cereal crop improvement. Proceedings of a workshop. Responsores by Institute of Genetic Academic Sinica: Science press; 1983. p. 453-459.; https://revistas.unal.edu.co/index.php/actabiol/article/view/56933

  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/actabiol/article/view/56933; Universidad Nacional de Colombia Revistas electrónicas UN Acta Biológica Colombiana; Acta Biológica Colombiana; Fernandez Da Silva, Rafael and Ramírez, Pedro and Silva, Jorge and Storaci, Vincenzo and Cuamo, Liaska and De Guglielmo, Zoraya and Smits, Gunta (2017) Establecimiento de un sistema de selección in vitro de variedades venezolanas de arroz (Oryza sativa L.) resistentes al hongo Pyricularia grisea. Acta Biológica Colombiana, 22 (1). pp. 85-100. ISSN 1900-1649; https://repositorio.unal.edu.co/handle/unal/61155; http://bdigital.unal.edu.co/59963/

  7. 7
    Academic Journal

    المصدر: Acta Biológica Colombiana; Vol. 21 Núm. 3 (2016); 581-592 ; Acta Biológica Colombiana; Vol. 21 No. 3 (2016); 581-592 ; 1900-1649 ; 0120-548X

    وصف الملف: application/pdf; text/html

    Relation: https://revistas.unal.edu.co/index.php/actabiol/article/view/52626/pdf_art12_21%283%29; https://revistas.unal.edu.co/index.php/actabiol/article/view/52626/57616; Allan E, Eeswara J, Johnson S, Mordue A, Morgan D, Stuchbury T. The production of azadirachtin by in vitro tissue cultures of neem Azadirachta indica. Pesticide Sci. 1994;42(1):147-152. Doi:http://dx.doi.org/10.1002/ps.2780420302; Artigas MD, Fernández R. Establecimiento del sistema de regeneración por embriogénesis somática de Azadirachta indica A. Juss. Acta biol Colomb. 2015;20(2):73-83. Doi:http://dx.doi.org/10.15446/abc.v20n2.44200; Chaicharoen S, Jansaengsri S, Umprai T, Kruatrachue M. Utilization of tissue culture technique for propagation of Melia azedaracht. J Sci Soc Thailand. 1996;22(1):217-226. Doi:http://dx.doi.org/10.2306/scienceasia1513-1874.1996.22.217; Chandra S, Bandopadhyay R, Kumar V, Chandra R. Acclimatization of tissue cultured plantlets: from laboratory to land. Biotech Lett. 2010;32(1):1199-1205. Doi:http://dx.doi.org/10.1007/s10529-010-0290-0; Chaturvedi R, Razdan M, Bhojwani S. An efficient protocol for the production of triploid plants from endosperm callus of neem, Azadirachta indica A. Juss. J Plant Physiol. 2003;160(1):557-564. Doi:http://dx.doi.org/10.1078/0176-1617-00884; Chaturvedi R, Razdan M, Bhojwani S. In vitro morphogenesis in zygotic embryo cultures of Neem (Azadirachta indica A. Juss.). Plant Cell Rep. 2004;22(1):801-809. Doi:http://dx.doi.org/10.1007/s00299-004-0768-0; Da Rocha SC. Quoirin M. Calogeneses e rizogenese em explantes do mogno (Swietenia macrophylla King) cultivados in vitro. Cienc Florest. 2004;14(1):91-101.; Daquinta M, Lezcano Y, Cid M, Pina D, Rodríguez R, Escalona M. Callogénesis en meliáceas exóticas (Khaya nyasica stapf y Toona ciliata). Biotecnol Veg. 2003;3(2):123-125.; Daquinta M, Lezcano Y, Cid M, Pina D, Rodríguez R. Morfogénesis in vitro de Toona ciliata a partir de raquis de hojas jóvenes con tidiazuron. Rev Col Biotecnol. 2005;7(2):5-9.; Das P. In Vitro somatic embryogenesis in some oil yielding tropical tree species. Am J Plant Sci. 2011;2(1):217-222. Doi:http://dx.doi.org/10.4236/ajps.2011.22023; De Oliveira LL, Henriques BA, Macedo FA. The effect growth regulators on two different in vitro cultured explants of Carapa guianensis. J Med Plant Res. 2015;96(6):169-178. Doi:https://doi.org/10.5897/JMPR2014.5644; Deb C. Somatic embryogenesis and plantlet regeneration of Melia azedarach L (Ghora Neem) from cotyledonary segments. J Plant Biochem Biotechnol. 2001;10(1):63-65. Doi:http://dx.doi.org/10.1007/BF03263110; Foan C, Othman R. In vitro direct shoot organogenesis and regeneration of planlets from leaf explants of Sentang (Azadirachta excelsa). Biotecnology. 2006;5(3):337-340. Doi:http://dx.doi.org/10.3923/biotech.2006.337.340; Gairi A, Rashid A. Direct differentiation of somatic embryos on cotyledons of Azadirachta indica. Biol Plant. 2005a;49(2):169-173. Doi:http://dx.doi.org/10.1007/s10535-005-0173-8; Gairi A, Rashid A. Direct differentiation of somatic embryos on different regions of intact seedlings of Azadirachta in response to thidiazurón. J Plant Physiol. 2005b;161(1):1073-1077. Doi:10.1016/j.jplph.2004.05.001; Goralski G, Popielarzka M, Slesak H, Siwinska D, Batycka M. Organogénesis in endosperm of Actinidia deliciosa cv. Hayward cultured in vitro. Acta Biol Gracoviensia Ser Bot. 2005;47(2):121-128.; Giagnacovo G, Pasqua G, Monacellis B, Van Der Esch A, CMaccioni O, Vitali F. Organogenesis and embryogenesis from callus cultures of Azadirachta excelsa. Plant Biosyst. 2001;135(1):13-18. Doi:http://dx.doi.org/10.1080/11263500112331350590 Hammer O, David A, Harper T, Ryan P. 2001. PAST: Paquete de programas de estadística paleontológica para enseñanza y análisis de datos. Version. 2.17. Palaeontologia Electronica. 4(1):9.; Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep. 2010;37(1):2493-2507. Doi:http://dx.doi.org/10.1007/s11033-009-9764-3; Kintzios S. Territorial plant derived anticancer agents and plant species used in anticancer research. Critic Rev Plant Physiol. 2006;25(2):79-113. Doi:http://dx.doi.org/10.1080 / 07352680500348824; Kota S, Rao R, Chary P. In vitro response of select regions of Azadirachta indica A. Juss (Meliaceae) as elucidated by biochemical and molecular variations. Curr Sci. 2006;91(6):770-776.; Martínez R, Rodríguez J, Vargas J, Azpiroz H. Embriogénesis somática a partir de callos de nim (Azadirachta indica A. Juss). Rev Chapingo Ser Cienc ForAmbient. 2001;7(2):107.114. Doi: http://dx.doi.org/1111; Meisner J, Ascher K, Aly R. Warthen J. Response of Spodoptera littoralis (Boisd.) and Earias insulana (Boisd.) larvae to azadirachtin and salannin. Phytoparasitica. 1981;9(1):27-32. Doi:http://dx.doi.org/10.1007/BF03158326 Mulanda E, Adero M, Wepukhulu D, Amogune N, Akunda E Kinyamario I. Thidiazuron-induced somatic embryogenesis and shoot organogenesis in cotyledon explants of Melia volkensii (Gürke). Propag Ornam Plants. 2014;14(1):40-46.; Mulanda E, Chuhila Y, Awori R, Adero M, Amogune N, Akunda E, Kinyamario I. Morphological and RAPD-marker characterization of Melia volkensii (Gürke) in vitro plants regenerated via direct and indirect somatic embryogenesis. Afr J Biotechnol. 2015;14(15):1261-1274. Doi:http://dx.doi.org/10.5897/AJB2014.14372; Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15(1):473-497. Doi:http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x; Nunes E, de Castilho C, Moreno F, Viana A. In vitro culture of Cedrela fissilis Vellozo (Meliaceae). Plant Cell Tissue Organ Cult. 2002;70(3):259–268. Doi:http://dx.doi.org/10.1023/A:1016509415222; Pai MR, Acharya L, Udupa N. Evaluation of antiplague activity of Azadirachta indica leaf extracts gel – a 6 week clinical study. J Ethnopharmacol. 2004;90(1):99-103. Panda B, Hazea S. In vitro morphogenic response in cotyledon explants of Semecarpus anacardium L. Plant Biotechnol Rep. 2012;6(2):141–148. Doi:http://dx.doi.org/10.1007/s11816-011-0207-y; Parrotta A, Chaturvedi A. Azadirachta indica A. Juss. neem, margosa Meliaceae. Mahogany family. New Orleans: USDA Forest Service, International Institute of Tropical Forestry. 1994;8 p.; Pijut P, Beasley R, Lawson S, Palla K, Stevens M, Wang Y. In vitro propagation of tropical hardwood tree species- A review (2001-2011). Propag Ornam Plants. 2012;12(1):25-51.; Popielarska M, Slesak H, Goralski G. Histological and SEM studies on organogenesis in endosperm-derived callus of kiwifruit (Actinidia deliciosa cv. Hayward). Acta Biol Gracoviensia Ser Bot. 2006;48(2):97-104.; Rafiq M, Dahot M. Callus and azadiractin related limonoids through in vitro culture of Neem (Azadirachta indica A. Juss.). Afr J Biotechnol. 2010;9(4):449-453.; Rai V, McComb J. Direct somatic embryogenesis from mature embryos of sandalwood. Plant Cell Tissue Organ Cult. 2002;69(1):65-70. Doi:http://dx.doi.org/10.1023/A:1015037920529; Ranjan G. In vitro somatic embryogenesis in callus cultures of Azadirachta indica A. Juss. A multipurpose tree. J Forest Res. 2005;10(1):263-267. Doi:http://dx.doi.org/10.1007/s10310-004-0130-y; Rajasekaran C, Meignanam E, Vijayakumar V, Kalaivani T, Ramya S, Premkumar N, Siva R, Jayakumaraj R. Investigations on antibacterial activity of leaf extracts of Azadirachta indica A. Juss. (Meliacea): A traditional Medicinal plant of India. Ethnobot Leafl. 2008;12(1):1213-1217.; Ram B, Rathore TS, Bopanna BD. An efficient protocol for micropropagation and genetic stability analysis of Melia dubia Cav. - an important multipurpose tree. Int J Curr Microb App Sci. 2014;3(7):533-544.; Reyes E, Styles W, Garay D. Estudio preliminar de las propiedades físicas de la especie Azadirachta indica (neem), procedentes del estado Falcón (Venezuela). Rev For Venezuela. 2003;47(2):23-29.; Rodrigues M. Morfogênese in vitro, análise fitoquímica e caracterizaçao anatómica de nim (Azadirachta indica A. Juss) (tesis de maestría). Universidad Federal de Vicoça; 2009. 89 p.; Salvi N, Singh H, Tivarekar1 S, Eapen S. Plant regeneration from different explants of neem. Plant Cell Tissue Organ Cult. 2001;65(1):159-162. Doi:http://dx.doi.org/10.1023/A:1010672809141; Shekhawat G, Mtahur S, Batra A. Role of phytohormones and nitrogen in somatic embryogenesis induction in cell culture derived from leaflets of Azadirachta indica. Biol Plant. 2009;53(4):707-710. Doi:http://dx.doi.org/10.1007/s10535-009-0127-7; Srivastava P, Singh M, Mathur P, Chaturvedi R. In vitro organogenesis and plant regeneration from unpollinated ovary cultures of Azadirachta indica. Biol Plant. 2009;53(2):360-364. Dpi:http://dx.doi.org/10.1007/s10535-009-0067-2; Su W, Hwang W, Se Y, Sagawa Y. Induction of somatic embryogenesis in Azadirachta indica. Plant Cell Tissue Organ Cult. 1997;50(1):91-95. Doi:http://dx.doi.org/10.1023/A:1005891113815; Sunday E, Atawodi J. Azadirachta indica (neem): a plant of multiple biological and pharmacological activities. Phytochem Rev. 2009;8(1):601-620. Doi:http://dx.doi.org/10.1007/s11101-009-9144-6; Te-Chao S, Rungnoi O. Induction of somatic embryogenesis from leaves of Sadao Chang (Azadirachta excelsa (Jack) Jacobs). Sci Hortic. 2000;86(4):311-321. Doi:http://dx.doi.org/10.1016/S0304-4238(00)00153-9; Thomas T, Chaturvedi R. Endosperm culture: a novel method for triploid plant production. Plant Cell Tissue Organ Cult. 2008;93(1):1-14. Doi:http://dx.doi.org/10.1007/s11240-008-9336-6; Trujillo P, Zapata L, Hoyos R, Yepes F, Capataz J, Orozco F. Determinación de la dl50 y tl50 de extractos etanólicos de suspensiones celulares de Azadirachta indica sobre Spodoptera frugiperda. Rev Fac Nac Agron. 2008;61(2):4564-4575. Urdaneta M. Neem Un Árbol Milagroso. 1st ed. Maracaibo: Universidad del Zulia, Facultad de Agronomía; 2001. p.1-49.; Vila S, González A, Rey H, Mroginsky L. In vitro plant regeneration of Melia azederach L.: shoot organogenesis from leaf explants. Biol Plant. 2003;47(1):13-19. Doi:http://dx.doi.org/10.1023/A:1027364427795; Vila S, Gonzalez A, Rey H, Mroginski L. Effect of morphological heterogeneity of somatic embryos of Melia azedaracht on conversion into plants. Biocell. 2010;34(1):7-13.; Vila S, Rey H, Gonzalez A, Mroginski L. Somatic embryogenesis and plant regeneration in Cedrella fissilis. Biol Plant. 2009;53(2):382-386. Doi:http://dx.doi.org/10.1007/s10535-009-0072-5; Webster S, Mitchell S, Reid W, Ahmad, M. Somatic embryogenesis from leaf and zygotic embryo explants of Blighia sapida ‘cheese’ ackee. In Vitro Cell Devbiol-Plant. 2006;42(1):467-472. Doi:http://dx.doi.org/10.1079/IVP2006795; Yang L, Wang J, Bian L, Li Y, Shen H. Cyclic secondary somatic embryogenesis and efficient plant regeneration in mountain ash (Sorbus pohuashanensis). Plant Cell Tissue Organ Cult. 2012;111(2):173-182. Doi:http://dx.doi.org/10.1007/s11240-012-0181-2; You C, Fan T, Gong X, Bian F, Liang L Qu F. A high-frequency cyclic secondary somatic embryogenesis system for Cyclamen persicum Mill. Plant Cell Tissue Organ Cult. 2011;107(2):233–242. Doi:http://dx.doi.org/10.1007/s11240-011-9974-y; Zaidi M, Narayan M, Sardana R, Taga I, Postel S, Johns R, Nulty M, Mao J, Loit E, Altosar I. Optimizing tissue culture media for efficient transformation of different indica rice genotypes. Agron Res. 2006;4(2):563-575.; Zypman S, Applebaum S, Ziv M. Production of desert locust feeding deterrents from in vitro cultured neem (Azadirachta indica). Phytoparasitica, 2001;29(4):1-8. Doi:http://dx.doi.org/10.1007/BF02981844; https://revistas.unal.edu.co/index.php/actabiol/article/view/52626

  8. 8
    Academic Journal

    المصدر: Revista Colombiana de Biotecnología; Vol. 18 Núm. 2 (2016); 119-128 ; Revista Colombiana de Biotecnología; Vol. 18 No. 2 (2016); 119-128 ; 1909-8758 ; 0123-3475

    مصطلحات موضوعية: Promoter, plant biotechnology, gene transcription

    وصف الملف: application/vnd.openxmlformats-officedocument.wordprocessingml.document; application/pdf; text/html

    Relation: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/61529/57921; https://revistas.unal.edu.co/index.php/biotecnologia/article/view/61529/58379; https://revistas.unal.edu.co/index.php/biotecnologia/article/view/61529/html; Ahmad, A, Bano, S, Riazuddin, S, & Sticklen, M. (2002). Expression of synthetic cry 1Aby cry 1Ac genes in Basmati rice via Agrobacterium-mediated transformation for the control of the european corn borer. In Vitro Plant Cell, 38 (1), 213-220.; Al-Kaff, N, Kreike, M, Pitcher, R, & Dale, P. (2000). Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppresion of a 35S promotor-regulated transgene. Nat Biotech, 18 (1), 995-999.; Alonso, R, Onate, L, Weltmeier, F, Ehlert, A, Díaz, I, Dietrich, K, Carbajosa, J, & Droge, W. (2009). A Pivotal Role of the Basic Leucine Zipper Transcription FactorbZIP53 in the Regulation of Arabidopsis Seed Maturation Gene Expression Based on Heterodimerization and Protein Complex Formation. Plant Cell, 21(1), 1747-1761.; An, G, Costa, MA, & Ha, SB. (1990). Nopaline synthase promoter is wound inducible and auxineinducible. Plant Cell, 2 (1), 225-233.; Annadana, S, Beekwilder, M, Kuipers, G, Visser, P, Outchkourov, N, Pereira, A, Udayakumar, M, De Jong, J, & Jongsma, M. (2002). Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthemagrandiflora. Transgenic Res,11 (1), 437–445.; Baroux, C, Branvillian, R, Betts, H, Batoco, H, Craft, C, Martínez, A, Gallois, P, & Moore, I. (2005). Predictable activation of tissue-specific expression from a single transgenelocus using the pOp/LhG4 transactivation system in Arabidopsis. Plant Biotech J, 3(1), 91-101.; Berrocal, M, Molina, A, & Solano, R. (2002). Constitutive expression of ethylene-response-factor1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 29 (1), 23–32.; Borghi, L. (2010). Inducible gene expression systems for plants. Methods Mol Biol., 655 (1), 65-75.; Bowling, S, Clarke, J, Liu, Y, Klessig, D, & Dong, X. (1997). The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell., 9 (1), 1573–1584.; Bruce, J, Aradottir, G, Smart, L, Martin, J, Caulfield, J, Doherty, A, Sparks, C, Woodcock, C, Birkett, M, Napier, J, Jones, H, & Pickett, J. (2015). The first crop plant genetically engineered to release an insect pheromone for defence. Scientific Reports, 5, 11183. doi:10.1038/srep11183.; CAMBIA. (2003). Promoters used to regulate gene expression. Disponible en: http://www.patentmaze.cougarlaw.com/linked_files/promoters-for-gene-regulation.pdf. Consultado: enero de 2013.; Chen, L, Zhang, S, Beachy, R, & Fauquet, C. (1998). A protocol for consistent, large-scale production of fertile transgenic rice plants. Plant Cell Rep.,18 (1), 25- 31.; Cheng, X, Sardana, R, Kaplan, H, & Altosaar, I. (1998). Agrobacterium transformed rice plants expressing synthetic cry1A b and c genes are highly toxic to striped stem borer and yellow stem borer. Proc Nat Acad Sci., 95 (1), 2767-2772.; Cho, H, Cao, J, Ren, J, & Earle, E. (2001). Control of lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapas sp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1AC gene. Plant Cell Rep., 20 (1), 1-7.; Cornejo, M, Luth, D, Blankenship, K, Anderson, O, & Blechl, A. (1993). Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol., 23 (1), 567-581.; Dahleen, L, Okubara, P, & Blechl, A. (2001). Transgenic approaches to combat Fusarium Head Blight in wheat and barley. Crop Sci., 41 (1), 628-637.; De Guglielmo, Z, Fernández, R, Hermoso, L, Altosaar, I, & Menéndez, A. (2010). Optimización de los parámetros de transformación genética de café mediante biobalística con el gen reportero Gus. Acta. Biol. Venez., 30 (1-2), 23-34.; Dorries, H, Remus, I, Gronewald, A, Gronewald, C, & Berghof, K. (2010). Development of a qualitative, multiplex real-time PCR kitfor screening of genetically modified organisms (GMOs). Anal Bioanal Chem., 396, 2043–2054.; Dutt, M, Dhekney, S, Soriano, L, Kandel, R, & Grosser, J. (2014). Temporal and spatial control of gene expression in horticultural crops. Horticulture Research, 1. doi:10.1038/hortres.2014.47.; Fernández, R, De Guglielmo, Z, & Menéndez, A. (2010). Cultivo de tejidos y transformación genética de café. Revista de Investigación (IUPC), 71 (3), 57-84.; Fernandez, R, & Menéndez-Yuffa, A. (2002). Transient gene expression in secondary somatic embryos from coffee tissues electroporated with the genes gus and bar. Electronic J Biotech., 6 (1), 1-9.; Gatz, C, & Lenk, L. (1998).Promoters that response to chemical inducers. Trends Plant Sci., 3 (1), 352-358.; Ghasimi, Z, Rahnama, H, Panahandeh, J, Kohneh, B, Arab, K, & Mahna, N. (2009). Green-tissue-specific, C4-PEPC-promoter-driven expression of Cry 1Ab makes transgenic potato plants resistant to tuber moth (Phthorimaeao perculella, Zeller). Plant Cell Rep., 28 (1), 1869-1879.; Gupta, P, Raghuvanshi, S, & Tyagi, A. (2001). Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloacrus-galli. Plant Biotech., 18 (1), 275–282.; Hiwasa-Tanase, K, Kuroda, H, Hirai, T, Aoki, K, Takane, K, & Ezura, H. (2012). Novel promoters that induce specific transgene expression during the green to ripening stages of tomato fruit development. Plant Cell Rep., 31, 1415–1424.; Hoff, T, Schnorr, K, & Mundy, J (2001). A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol., 45 (1), 41-49.; Htwe, N, Ling, H, Qamaruz, F, & Maziah, M. (2014). Plant genetic transformation efficiency of selected Malaysian rice based on selectable marker gene (hptII). Pakistan Journal of Biological Sciences, 17 (4), 472-481.; Hull, R, Covey, S, & Dale, P. (2000). Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Microb Ecol Health Dis., 12 (1), 1–5.; Iáñez, E. (2005). Introducción a la biotecnología. Instituto de Biotecnología, Universidad de Granada-España. Disponible en: http://www.urg.es/~eianez/biotecnología/introbiotec.htm. Consultado: enero de 2014.; Jakowitsch, J, Papp, I, Moscone, E, Winden, J, Matzke, M, & Matzke, A. (1999). Molecular and cytogenetic characterization of a transgen locus that induces silencing and methylation of homologous promoters in trans. Plant J., 17 (1), 131-140.; Kanno, T, Naito, S, & Shimamoto, K. (2000). Post-transcriptional gene silencing in cultured rice cells. Plant Cell Physiol., 41 (3), 321-326.; Kolachevskaya, O, Alekseeva, V, Sergeeva, L, Rukavtsova, E, Getman, I, Vreugdenhil, D, Buryanov, Y, & Romanov, G. (2014). Expression of auxin synthesis gene tms1 under control of tuber-specific promoter enhances potato tuberization in vitro. Journal of Integrative Plant Biology, Doi:10.1111/jipb.12314.; Lamacchia, C, Shewry, P, Di Fonzo, N, Forsyth, J, Harris, N, Lazzeri, P, Napier, J, Halford, N, & Barcelo, P. (2001). Endosperm specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot., 52 (1), 243–250.; Li, Z, Jayasankar, S, & Gray, D (2001). Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Sci., 160 (1), 877–887.; Liu, W, Yuan, J, & Stewart C, Jr. (2013). Advanced genetics tools for plant biotechnology. Nat Rev Genet., 14, 781-793.; Liu, W, & Stewart, C. (2015). Plant synthetic biology. Trends Plant Sci., 20, 309-317.; Leroy, T, Henry, A, Royer, M, Altosaar, I, Frutos, R, & Phillipe, R. (2000). Genetically modified coffee plants expressing the B. thuringiensiscry1Ac gene for resistance to leaf miner. Plant Cell Rep., 19 (1), 382-389.; Marzabal, P, Busk, P, Ludevid, M, & Torrent, M. (1998). The bifactorial endosperm box of gamma-zein gene: characterization and function of the Pb3 and GZM cis-acting elements. Plant J., 16 (1), 41-52.; Michniewicz, M, Frick, E, & Strader, L. (2015). Gateway-compatible tissue-specific vectors for plant transformation. BMC Research Notes, 8, 63-71. doi 10.1186/s13104-015-1010-6.; Moore, I, Galweilwr, L, Schell, J, & Palme, K. (1998). A transcription activation system for regulated gene expression in transgenic plants. Proc Nat Acad Sci., 95 (1), 376-381.; Moore, I, Samalova, M, & Kurup, S. (2006). Transactivated and chemically inducible gene expression in plants. Plant J., 45 (1), 651-683.; NEPAD. (2010). Commonly used promoters. Disponible en: http://www.nepadbiosafety.net/subjects/biotechnology/commonly-used-promoters. Consultado en : enero de 2013.; Nyaboga, E, Tripathi, J, Manoharan, R, & Tripathi, L. (2014). Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement. Frontiers in Plant Science, 5 (463). Doi:10.3389/fpls.2014.00463.; Park, S, Yi, N, Kim, Y, Jeong, M, Bang, S, Do, Y, & Kim, J. (2010). Analysis of five novel putative constitutive gene promoters in transgenic rice plants. J Exp Bot., 61 (9), 2459-2467.; Park, S, Woon, S, Seo, J, Jung, H, Reveche, M, Il, H, Hyun, K, Shic, Y, & Kim, J. (2012). Analysis of the APX, PGD1 and R1G1B constitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. Planta, 235 (1), 1397-1408.; Plesse, B, Criqui, M, Durr, A, Parmentier, Y, Fleck, J, & Genschik, P. (2001). Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol., 45 (1), 655–667.; Potenza, C, Aleman, L, & Sengupta-Gopalan, C. (2004).Targeting transgene expression in research, agricultural and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol., 40 (1), 1–22.; Peremarti, A, Twyman, R, Gomez-Galera, S, Naqvi, S, Farré, G, Sabalza, M, Miralpeix, B,Dashevskaya, S, Yuan, D, Ramessar, K, Christon, P, Zhu, C, Bassie, L, & Capell, T. (2010). Promotor diversity in multigene transformation. Plant Mol Biol., 73 (1), 363-378.; Petolino, J, & Davies, J. (2013). Designed transcriptionsl regulators for trait development. Plant Sci., 201-202, 128-136.; Porto, M, Pinheiro, M, Lyra, V, dos Santos, R, Melo, P, & de Lima, L. (2014). Plant Promoters: An Approach of Structure and Function. Mol. Biotecn., 56 (1), 38-49; Rodríguez, R., & Chamberlin, M. (1982). Promoters. New York, USA. Praeger Publishers. 524 p.; Ron, M, Kajala, K, Pauluzzi, G, Wang, D, Reynoso, M, Zumstein, K, Garcha, J, Winte, S, Masson, H, Inagaki, S, Federici, F, Sinha, N, Deal, R, Bailey-Serres, J, & Brady, S. (2014). Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring celltype-specific gene expression and function using tomato as a model. Plant Physiology, 166, Doi:10.1104/pp.114.239392.; Roslan, H, Salter, M, Wood, C, White, M, Croft, K, Robson, F, Coupland, G, Doonan, J, Laufs, P, Tomsett, A, & Caddick, M. (2001). Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant Journal, 28 (1), 225-235.; Rushton, P, Reinstadler, A, Lipka, V, Lippok, B, & Somssich, I. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell, 14 (1), 749–762.; Saidi, Y, Finka, A, Chakhporanian, M, Zryd, J, Schaefer, D, & Goloubinoff, P. (2005). Controlled expression of recombinant protein in Physcomitrella patens by a conditionalheat-shock promoter: a tool for plant research and biotechnology. Plant Mol Biol, 59 (1), 697-711.; Sági, L, Panis, B, Schoofs, H, Swennen, R, & Cammue, B. (1995). Genetic transformation of banana and plantain via particle bombardment. Biothe, 13 (1), 481-485.; Samalova, M, Brzobohaty, B, & Moore, I. (2005). pOp6/LhGR: a stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant J., 41 (1), 919-935.; Sanger, M, Daubert, S, & Goodman, R. (1990). Characteristics of a strong promoter from figwort mosaic virus:comparison with the analogous 35S promoter from cauliflower mosaicvirus and the regulated mannopine synthase promoter. Plant Mol Biol., 14, 433-443.; Sardana, R, Dukiandjiev, S, Cheng, X, Cowan, K, & Altosaar, I. (1996). Construction and rapid testing of synthetic and modified toxin gene sequences cry1A b and c by expression in maize endosperm culture. Plant Cell Rep., 15 (1), 677-681.; Sasaki, K, Yuichi, O, Hiraga, S, Gotoh, Y, Seo, S, Mitsuhara, I, Ito, H, Matsui, H, & Ohashi, Y. (2007). Characterization of two rice peroxidase promoters that respond to blast fungus infection. Mol. Genet Genomic., 278 (1), 709-722.; Schenk, P, Remans, T, Sagi, L, Elliott, A, Dietzgen, R, Swennen, R, Ebert, P, Grof, C, & Manners, J. (2001). Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol., 47 (1), 399–412.; Shenk, P, Sagi, L, Remans, T, Dietzgen, R, Graham, M, & Manners, J. (1999). A promoter from sugarcane bacilliform badnavirus drives transgen expression in banana and other monocot and dicot plants. Plant Mol Biol., 39 (1), 1221-1230.; Steinitz, B, Gafni, Y, Cohen, Y, Tabib, Y, & Navon, A. (2002). Insecticidal activity of a cry1Ac transgene in callus derived from regeneration-recalcitrant cotton. In Vitro Cell Plant., 38 (1), 217-251.; Sunilkumar, G, Connell, J, Smith, C, Reddy, A, & Rathore, K. (2002). Cotton a-globulin promoter: isolation and functional characterization in transgenic cotton, Arabidopsis and tobacco. Transgenic Res., 11 (1), 347–359.; Tzafrir, I, Torbert, N, Lockhart, B, Sommer, D, & Olszewski, N. (1998). The sugarcane bacilliform badnavirus promoter is active in boths monocots and dicots. Plant Mol Biol., 38 (1), 347-356.; Uno, Y, Furrihata, T, Abe, H, Yoshida, R, Shinozaki, K, & Yamaguchi-Shinozaki, K. (2000). Novel Arabidopsis bZIP transcription factor envolved in an abscisic-acid-dependent signal transduction pathway under drought and high salinity condition. Proc. Natl Acad. Sci., 97, 11632-11637.; van Boxtel, J, Berthouly, M, Carasco, C, & Eskes, A. (1995). Transient expression of B-Glucuronidase following biolistic delivery of foreign DNA into coffee tissues. Plant Cell Rep., 14 (1), 748-752.; Vogl, T, Ruth, C, Pitzer, J, Kickenweiz, T, & Glieder, A. (2014). Synthetic core promoters for Pichia pastoris. ACS Synth Biol., 3, 188-191.; Xiao, K, Zhang, C, Harrison, M, & Wang, Z. (2005). Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Mol Breeding., 15 (1), 221-231.; Xu, D, McElroy, D, Thornburg, R, & Wu, R. (1993). Systemic induction of a potato pin2 promoter by wounding methyl jasmonate and abscisic acid in transgenic rice plant. Plant Mol Biol., 22 (1), 573-5.; https://revistas.unal.edu.co/index.php/biotecnologia/article/view/61529

  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/61529; Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Biotecnología; Revista Colombiana de Biotecnología; De Guglielmo C, Zoraya M. and Fernandez Da Silva, Rafael (2016) Principales promotores utilizados en la transformación genética de plantas. Revista Colombiana de Biotecnología, 18 (2). pp. 119-128. ISSN 1909-8758; https://repositorio.unal.edu.co/handle/unal/66703; http://bdigital.unal.edu.co/67731/

  10. 10
    Academic Journal

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/actabiol/article/view/52626; Universidad Nacional de Colombia Revistas electrónicas UN Acta Biológica Colombiana; Acta Biológica Colombiana; Fernández Da Silva, Rafael and Villarroel, Adrian and Cuamo, Liaska and Storaci, Vincenzo (2016) Evaluación de un sistema de regeneración por embriogénesis somática de Neem (Azadirachta indica). Acta Biológica Colombiana, 21 (3). pp. 581-592. ISSN 1900-1649; https://repositorio.unal.edu.co/handle/unal/61171; http://bdigital.unal.edu.co/59979/

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    Alternate Title: Aquatic hyphomycetes in "Mexico, Central America and the Caribbean" and their bioindicators of environmental quality. (English)

    المصدر: Gestión y Ambiente; ene-jun2023, Vol. 26 Issue 1, p1-25, 25p

    مصطلحات موضوعية: WATER quality, FUNGI

  14. 14
    Electronic Resource

    Additional Titles: Hifomicetos acuáticos en los ríos Borburata y Patanemo (Puerto Cabello, Carabobo-Venezuela) como bioindicadores de calidad ambiental

    المصدر: Gestión y Ambiente; Vol. 24 Núm. 2 (2021); 98607; Gestión y Ambiente; Vol. 24 No. 2 (2021); 98607; 2357-5905; 0124-177X

    URL: https://revistas.unal.edu.co/index.php/gestion/article/view/98607/82500
    https://revistas.unal.edu.co/index.php/gestion/article/view/98607/82500
    *ref*/Almeida Júnior, E., Martinez, J., Gonçalves, A., Canhoto, C., 2020. Combined effects of freshwater salinization and leaf traits on litter decomposition. Hydrobiologia 847, 3427-3435. DOI: 10.1007/s10750-020-04348-1
    *ref*/Artigas, J., Romaní, A., Sabater, S., 2008. Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. Aquat. Bot. 88(1), 32-38. DOI: 10.1016/j.aquabot.2007.08.005
    *ref*/Asif, N., Malik, M., Chaudhry, F., 2018. A review of on environmental pollution bioindicators. Pollution 4(1), 111-118. DOI: 10.22059/poll.2017.237440.296
    *ref*/Bai, Y., Wang, Q., Liao, K., Jian, Z., Zhao, C., Qu, J., 2018. Fungal community as a bioindicator to reflect anthropogenic activities in a river ecosystem. Front. Microbiol. 9, 3152. DOI: 10.3389/fmicb.2018.03152
    *ref*/Bärlocher, F., 1992. Community organization. En: Bärlocher, F. (Eds.), The ecology of aquatic hyphomycetes. Vol. 94. Springer-Verlag, Berlin. pp. 38-76. DOI: 10.1007/978-3-642-76855-2_3
    *ref*/Bärlocher, F., 2016. Aquatic hyphomycetes in a changing environment. Fungal Ecol. 19,14-27. DOI: 10.1016/j.funeco.2015.05.005
    *ref*/Bärlocher, F., Helson, J., Dudley, W., 2010. Aquatic hyphomycete communities across a land-use gradient of Panamanian streams. Fundam. Appl. Limnol., Arch. Hydrobiol. 177(3), 209-221. DOI: 10.1127/1863-9135/2010/0177-0209
    *ref*/Bergmann, M., Graça, M., 2020. Uranium affects growth, sporulation, biomass and leaf-litter decomposition by aquatic hyphomycetes. Limnetica 39(1), 141-154. DOI: 10.23818/limn.39.10
    *ref*/Betancourt, C., Cruz, J., Garcia, J., 1987. Los hifomicetos acuáticos de la Quebrada Doña Juana en el Bosque Estatal de Toro Negro, Villalba, Puerto Rico. Caribb. J. Sci. 23(2), 278-284.
    *ref*/Castela, J., Ferreira, V., Graça, M., 2008. Evaluation of stream ecological integrity using litter decomposition and benthic invertebrates. Environ. Pollut. 153(2), 440-449. DOI: 10.1016/j.envpol.2007.08.005
    *ref*/Chauvet, E., 1991. Aquatic hyphomycete distribution in South-Western France. J. Biogeogr. 18(6), 699-706. DOI: 10.2307/2845551
    *ref*/Chauvet, E., Cornut, J., Sridhar, K., Selosse, M.-A., Bärlocher, F., 2016. Beyond the water column: aquatic hyphomycetes outside their preferred habitat. Fungal Ecol. 19, 112-127. DOI: 10.1016/j.funeco.2015.05.014
    *ref*/Cressa, C., Smits, G., 2007. Aquatic hyphomycetes in two blackwater streams of Venezuela. Ecotropicos 20(2), 82-85.
    *ref*/Cudowski, A., Pietryczukm A., Hauschild, T., 2015. Aquatic fungi in relation to the physical and chemical parameters of water quality in the Augustów Canal. Fungal Ecol. 13, 193-204. DOI: 10.1016/j.funeco.2014.10.002
    *ref*/Da Silva, G., Castañeda-Ruiz, R., Malosso, E., 2019. Comparison of aquatic hyphomycetes communities between lotic and lentic enviroments in the Atlantic rain forest of Pernambuco. Fungal Biol. 123(9), 660-668. DOI: 10.1016/j.funbio.2019.05.013
    *ref*/Dang, C., Gessner, M., Chauvet, E., 2007. Influence of conidial traits and leaf structure on attachment success of aquatic hyphomycetes on leaf litter. Mycology 99(1), 24-32. DOI: 10.1080/15572536.2007.11832597
    *ref*/Descals, E., 2005. Diagnostic characters of propagules of Ingoldian fungi. Mycol. Res. 109, 545-555. DOI: 10.1017/S0953756205002728
    *ref*/Descals, E., Moralejo, E., 2001. El agua y la reproducción asexual en los hongos ingoldianos. Bot. Comp. 25, 13-71.
    *ref*/Duarte, S., Bärlocher, F., Pascoal, C., Cassio, F., 2016. Biogeography of aquatic hyphomycetes: Current knowledge and future perspectives. Fungal Ecol. 19, 169-181. DOI: 10.1016/j.funeco.2015.06.002
    *ref*/Duarte, S., Cássio, F., Pascoal, C., 2017. Environmental drivers are more important for structuring fungal decomposer communities than the geographic distance between streams. Limnetica 36(2), 491-506. DOI: 10.23818/limn.36.17
    *ref*/Fernández, R., Smits, G., 2005. Estudio preliminar de los hongos acuáticos en el Río Cabriales (Parque San Esteban, Edo. Carabobo). Saber 17, 147-149.
    *ref*/Fernández, R., Smits, G., 2009. Registro de la presencia de hifomicetos en ríos de la cordillera de la costa, Venezuela. Interciencia 34(8), 589-592.
    *ref*/Fernández, R., Smits, G., 2011. Hifomicetos acuáticos en la cabecera del río Guárico en el Estado Carabobo, Venezuela. Interciencia 36(11), 831-834.
    *ref*/Fernández, R., Smits, G., 2013. Diversidad de Hifomicetos acuáticos en la quebrada “La Estación” de la Hacienda Ecológica “La Guáquira”, Yaracuy, Venezuela. Interciencia 38(7), 496-501.
    *ref*/Fernández, R., Smits, G., 2015. Actualización de inventario de especies de hifomicetos acuáticos en Venezuela. Gest. Ambient. 18(2), 153-180.
    *ref*/Fernández, R., Smits, G., 2016. Hifomicetos acuáticos en la cabecera del río Chirgua, Carabobo, Venezuela. Interciencia 41(2),110-113.
    *ref*/Fernández, R., Smits, G., 2018. Registro de hifomicetos acuáticos en el río Guáquira de la Reserva Ecológica Guáquira (San Felipe, Venezuela). Gest. Ambient. 21(1), 121-128. DOI: 10.15446/ga.v21n1.71778
    *ref*/Fernández, R., Smits, G., 2020. Hifomicetos acuáticos como bioindicadores de calidad ambiental en el río Vigirima (Guacara, Carabobo-Venezuela). Gest. Ambient. 23(2), 165-181. DOI: 10.15446/ga.v23n2.95686
    *ref*/Fernández, R., Smits, G., Pinto, M., 2010. Características e importancia de los hifomicetos acuáticos y registro de especies en Venezuela. Faraute Cienc. Tec. 5(2), 56-73.
    *ref*/Fernández, R., Storaci, V., Smits, G., 2017. Evaluación de los hifomicetos acuáticos como bioindicadores de calidad ambiental en el río Chirgua (Bejuma, Venezuela). Gest. Ambient. 20(1), 82-94.DOI: 10.15446/ga.v20n1.62241
    *ref*/Ferreira, M., Raposeiro, P., Pereira, A., Cruz, A., Costa, A., Graça, M. Gonçalves, V., 2016. Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshw. Biol. 61(5), 783-799. DOI: 10.1111/fwb.12749
    *ref*/Fiuza, P., Cantillo-Pérez, T., Monteiro, J., Gulis, V., Pascholati Gusmão, L., 2017. Rare hyphomycetes from freshwater environments from Chapada Diamantina, Bahia, Brazil. Nova Hedwigia 104(4), 451-466. DOI: 10.1127/nova_hedwigia/2016/0375
    *ref*/Gönczol, J., Révay, A., 1999. Studies on the aquatic hyphomycetes of the Morgò stream, Hungary. II. Seasonal periodicity of conidial populations. Arch. Hydrobiol. 144(4), 495-508. DOI: 10.1127/archiv-hydrobiol/144/1999/495
    *ref*/Hammer, Ø., Harper, D., Ryan, P., 2001. PAST: paquete de programas de estadística paleontológica para enseñanza y análisis de datos. Palaeontol. Electrón, 4, art. 4.
    *ref*/Harrington, T., 1997. Aquatic hyphomycetes of 21 rivers in southern Ireland. Biol. Environ. 97B, 139-148.
    *ref*/Huber, O., Alarcón, C., 1988. Mapa de vegetación de Venezuela. 1:2.000.000. MARNR, The Nature Conservancy; Oscar Todtmann Editores, Caracas.
    *ref*/Ingold, C., 1975. An illustrated guide to aquatic and water-borne hyphomycetes (fungi imperfecti) with notes on their biology. Scientific Publication N° 30. Freshwater Biological Association, Ambleside, UK.
    *ref*/Iqbal, S., 1997. Species diversity of freshwater hyphomycetes in some streams of Pakistan. II. Seasonal differences of fungal communities on leaves. Ann. Bot. Fennici. 34,165-178.
    *ref*/Jabiol, J., Bruder, A., Geesner, M., Makkonen, M., Mckie, B., Peeters, E., Vos, V., Chauvet, E., 2013. Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient. Fungal Ecol. 6(5), 439-448. DOI: 10.1016/j.funeco.2013.04.002
    *ref*/Justiniano, J., Betancourt, C., 1989. Hongos ingoldianos presentes en el río Maricao, Puerto Rico. Caribb. J. Sci. 25,111-114.
    *ref*/Juvigny-Khenafou, N., Zhang, Y., Piggott, J., Atkinson, D., Matthaei, C., Van Bael, S., Wu, N., 2020. Anthropogenic stressors affect fungal more than bacterial communities in decaying leaf litter: a stream mesocosm experiment. Sci. Total Environ. 716, 135053. DOI: 10.1016/j.scitotenv.2019.135053
    *ref*/Koske, R., Duncan, I., 1974. Temperature effects on growth, sporulation and germination of some aquatic hyphomycetes. Can. J. Bot. 52, 1387-1391. DOI: 10.1139/b74-180
    *ref*/Kirk, P., 1969. Aquatic hyphomycetes on wood in an estuary. Mycologia 61(1), 177-181. DOI: 10.1080/00275514.1969.12018713
    *ref*/Krauss, G., Bärlocher, F., Schreck, P., Wennrich, R., Glässer, W., Krauss, G., 2001. Aquatic hyphomycetes occur in hyperpolluted waters in central Germany. Nova Hedwigia 72(3-4), 419-428. DOI: 10.1127/nova.hedwigia/72/2001/419
    *ref*/Lecerf, A., Chauvet, E., 2008. Diversity and functions of leaf-associated fungi in human-altered streams. Freshw. Biol. 53(8), 1658-1672. DOI: 10.1111/j.1365-2427.2008.01986.x
    *ref*/Markert, B., Breure, A. and Zechmeister, H., 2003. Definitions, strategies and principles for bioindication/biomonitoring of the environment. En: Markert, B., Breure, A., Zechmeister, H (Eds.), Bioindicators and biomonitors: Principles concepts and applications. Vol. 6. Elsevier Science, The Netherlands. pp: 3-39. DOI: 10.1016/S0927-5215(03)80131-5
    *ref*/Michaelides, J., Kendrick, B., 1982. The bubble-trap propagules of beverwykella, helicoon and other aero-aquatic fungi. Mycotaxon 14, 247-260.
    *ref*/Mille-Lindblom, C., Tranvik, L., 2003. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb. Ecol. 45, 173-182. DOI: 10.1007/s00248-002-2030-z
    *ref*/Nieves-Rivera, A., Santos-Flores, C., 2005. Aquatic fungi from estuaries in Puerto Rico: Mouth of the Manatí River. J. Agric. Univ. P.R. 89(1-2), 97-105.
    *ref*/Nilsson, S., 1962. Some aquatic hyphomycetes from South America. Svensk Bot. Tidskr. 56, 351-361.
    *ref*/Paliwal, P., Sati, S., 2009. Distribution of aquatic fungi in relation to physicochemical factors of Kosi River in Kumaun Himalaya. Nat. Sci. 7(3), 70-74.
    *ref*/Parmar, T., Rawtani, D., Agrawal, Y., 2016. Bioindicators: the natural indicator of environmental pollution. Front. Life Sci. 9(2), 110-118. DOI: 10.1080/21553769.2016.1162753
    *ref*/Pascoal, C., Cássio, F., 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl. Environ. Microbiol. 70, 5266-5273. DOI: 10.1128/aem.70.9.5266-5273.2004
    *ref*/Pascoal, C., Cássio, F., Marvanová, L., 2005. Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low-order stream. Arch. Hydrobiol. 162, 481-496. DOI: 10.1127/0003-9136/2005/0162-0481
    *ref*/Pascoal, C., Pinho, M., Cássio, F., Gomes, P. 2003. Assessing structural and functional ecosystem condition using leaf breakdown: studies on a polluted river. Freshw. Biol. 48, 2033-2044. DOI: 10.1046/j.1365-2427.2003.01130.x
    *ref*/Pinto, M., Fernández, R., Smits, G., 2009. Comparación de métodos en la caracterización de la biodiversidad de hifomicetos acuáticos en el río Cúpira, Estado Carabobo, Venezuela. Interciencia 34(7), 497-501.
    *ref*/Pinto, M., Smits, G., 2012. Evaluación preliminar de la riqueza de especies de hifomicetos acuáticos en ríos de la vertiente norte de la cordillera de la costa, Estado Aragua-Venezuela. Intropica 7, 31-36.
    *ref*/Presidencia de Venezuela, 1995. Decreto 883, normas para la clasificación control de la calidad de los cuerpos de agua y vertidos o efluentes líquidos. GOE 5.021. Caracas.
    *ref*/Raghu, P., Sridhar, K., Kaveriappa, K., 2001. Diversity and conidial output of aquatic hyphomycetes in a heavy metal polluted river, Southern India. Sydowia 53(2), 236-246.
    *ref*/Rajashekhar, M., Kaveriappa, K., 2003. Diversity of aquatic hyphomycetes in the aquatic ecosystems of the Western Ghats of India. Hydrobiologia 501(1-3), 167-177. DOI: 10.1023/A:1026239917232
    *ref*/Rossi, F., Mallet, C., Portelli, C., Donnadieu, F., Bonnemoy, F., Artigas, J., 2019. Stimulation or inhibition: Leal microbial decomposition in streams subjected to complex chemical contamination. Sci. Total Environ. 648, 1371-1383. DOI: 10.1016/j.scitotenv.2018.08.197
    *ref*/Sajina, A., Sudheesan, D., Kumar, L., Sandhya K. 2021. Fish as ecological health indicators of freshwater ecosystems. Biotica Res. Today 3(1),77-80.
    *ref*/Samson, R., Rajput, V., Shah, M., Yadav, R., Sarode P., Dastager, S., Dharne, M., Khairnar, K., 2019. Fungal communities (Mycobiome) as potential ecological indicators within confluence stretch of Ganges and Yamuna Rivers, India. BioRxiv 848259. DOI: 10.1101/848259
    *ref*/Santos-Flores, C., Betancourt-López, C., 1997. Aquatic and water-borne hyphomycetes (Deuteromycotina) in streams of Puerto Rico (Including records from other Neotropical locations). Caribb. J. Sci. Spec. Publ. 2. 116 pp.
    *ref*/Schoenlein-Crusius, I., Grandi, R., 2003. The diversity of aquatic hyphomycetes in South America. Braz. J. Microbiol. 34(3), 183-193. DOI: 10.1590/S1517-83822003000300001
    *ref*/Schoenlein-Crusius, I., Moreira, C., Gomes, E., 2015. Riqueza dos fungos ingoldianos e dos fungos aquáticos facultativos do Parque Municipal da Aclimação, São Paulo, SP, Brasil. Hoehnea 42, 239-251. DOI: 10.1590/2236-8906-52/2014
    *ref*/Seena, S., Graça, D., Bartels, A., Cornut, J., 2019. Does nanosized plastic affect aquatic fungal litter decomposition?. Fungal Ecol. 39, 388-392. DOI: 10.1016/j.funeco.2019.02.011
    *ref*/Solé, M., Fetzer, I., Wennrich, R., Sridhar, K. R., Harms, H., Krauss, G., 2008. Aquatic hyphomycete communities as potential bioindicators for assessing anthropogenic stress. Sci. Total Environ. 389(2-3), 557-565. DOI: 10.1016/j.scitotenv.2007.09.010
    *ref*/Smits, G., Fernández, R., Cressa, C., 2007. Preliminary study of aquatic hyphomycetes from Venezuelan streams. Acta Bot. Venez. 30(2), 345-355.
    *ref*/Sridhar, K., Bärlocher, F., 1997. Water chemistry and sporulation by aquatic hyphomycetes. Mycol. Res. 101, 591-596. DOI: 10.1017/S0953756296003024
    *ref*/Sridhar, K., Bärlocher, F., 1998. Breakdown of Ficus and Eucalyptus leaves in an organically polluted river in India: fungi diversity and ecological functions. Freshw. Biol. 39, 537-545. DOI: 10.1046/j.1365-2427.1998.00303.x
    *ref*/Sridhar, K., Kaveriappa, K., 1988. Occurrence and survival of aquatic hyphomycetes in brackish and sea water. Arch. Hydrolobiol. 113(1),153-160.
    *ref*/Sridhar, K., Sudheep, N., 2010. Diurnal fluctuation of spores of freshwater hyphomycetes in two tropical streams. Mycosphere 1(2), 89-101.
    *ref*/Steinke, T., Lubke, R., 2003. Arenicolous marine fungi from southern Africa. South African J. Botany 69(4), 540-545. DOI: 10.1016/S0254-6299(15)30292-1
    *ref*/Storaci, V., Fernández, R., Smits, G., 2013. Evaluación de la calidad de agua del río Cúpira (La cumaca, Estado Carabobo, Venezuela) mediante bioindicadores microbiologicos y parámetros fisicoquímicos. Interciencia 38(7), 480-487.
    *ref*/Storaci, V., Fernández, R., Smits, G., 2014. Hifomicetos acuáticos en el río Cúpira (La Cumaca, Estado Carabobo, Venezuela). Ciencia 22(1), 21-27.
    *ref*/Sumudumali, R., Jayawardana, J., 2021. A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environ. Manage. 67, 263-276. DOI: 10.1007/s00267-020-01423-0
    *ref*/Tolkkinen, M., Mykrä, H., Annala, M., Markkola, A., Vuori, K., Muotka, T., 2015. Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. Ecology 96, 672-683. DOI: 10.1890/14-0743.1
    *ref*/Tsui, C., Baschien, C., Goh, T., 2016. Biology and ecology of freshwater fungi. En: Li, D.-W. (ed.), Biology of microfungi. Fungal biology. Springer, Cham, Alemania. pp. 285-313. DOI: 10.1007/978-3-319-29137-6_13
    *ref*/Valencia-G., S., Lizarazo-M., P., 2009. Caracterización de la composición microbiana de cuatro quebradas del Parque Nacional Natural Gorgona. Actual. Biol. 91, 213-226.
    *ref*/Vélez-Azañero, A., Lozano, S., Cáceres-Torres, K., 2016. Diversidad de fitoplancton como indicador de calidad de agua en la cuenca baja del río Lurín, Lima, Perú. Ecol. Apl. 15(2), 69-79. DOI: 10.21704/rea.v15i2.745
    *ref*/Zaghloul, A., Saber, M., Gadow, S., Awad, F., 2020. Biological indicators for pollution detection in terrestrial and aquatic ecosystems. Bull. Natl Res. Cent. 44, 127-137. DOI: 10.1186/s42269-020-00385-x
    *ref*/Zhang, T., Wang, N.-F., Zhang, Y.-Q., Liu, H., Yu, L.-Y., 2016. Diversity and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic). Microb. Ecol. 71, 543-554. DOI: 10.1007/s00248-015-0689-1

  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    Alternate Title: Aquatic hyphomycetes in the Borburata and Patanemo rivers (Puerto Cabello, Carabobo-Venezuela) as environmental quality bioindicators. (English)

    المصدر: Gestión y Ambiente; 2021, Vol. 24 Issue 2, p1-22, 22p

    مصطلحات جغرافية: VENEZUELA

  18. 18
    Academic Journal
  19. 19
  20. 20
    Academic Journal