يعرض 1 - 20 نتائج من 145 نتيجة بحث عن '"FRUTAS DESHIDRATADAS"', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 1
    Book
  2. 2
    Academic Journal
  3. 3
    Dissertation/ Thesis
  4. 4
    Book

    Relation: http://hdl.handle.net/10045/109964; Bravo Avalos, María; Arboleda Álvarez, Luis. "Estrategias educativas inclusivas en proyectos de investigación para la obtención de frutas deshidratadas y su viabilidad económica". En: Roig-Vila, Rosabel (coord.). Redes de Investigación e Innovación en Docencia Universitaria. Volumen 2020. Alicante: Universidad de Alicante, Instituto de Ciencias de la Educación (ICE), 2020. ISBN 978-84-09-20703-9, pp. 643-655; http://hdl.handle.net/10045/110099

  5. 5
    Academic Journal
  6. 6
    Dissertation/ Thesis

    المؤلفون: Velez Villada, Angie Dahiana

    المساهمون: Rojano, Benjamin Alberto, Alzate Arbeláez, Andrés Felipe, Química de Los Productos Naturales y Los Alimentos

    وصف الملف: 87 páginas; application/pdf

    Relation: LaReferencia; AGRONET. (2021a). Productores asociados les sacan más provecho a los cultivos de agraz. https://agronet.gov.co/Noticias/Paginas/Productores-asociados-les-sacan-más-provecho-a-los cultivos-de-agraz.aspx; AGRONET. (2021b). Reporte: área, producción y rendimiento nacional por cultivo. https://agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002; Alean, J., Chejne, F., Ramírez, S., Rincón, E., Alzate-Arbelaez, A. F., & Rojano, B. (2022). Proposal of a method to evaluate the in-situ oxidation of polyphenolic during the cocoa drying. Drying Technology, 40(3), 559–570. https://doi.org/10.1080/07373937.2020.1817933; Altay, K., Hayaloglu, A. A., & Dirim, S. N. (2019). Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat and Mass Transfer, 55(8), 2173–2184. https://doi.org/10.1007/s00231-019-02570-9; Alzate-Arbeláez, A. F., Dorta, E., López-Alarcón, C., Cortés, F. B., & Rojano, B. A. (2019). Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 294, 503–517. https://doi.org/10.1016/j.foodchem.2019.05.085; Amarowicz, R., & Pegg, R. B. (2019). Natural antioxidants of plant origin. In Advances in Food and Nutrition Research (Vol. 90, pp. 1–81). Academic Press Inc. https://doi.org/10.1016/bs.afnr.2019.02.011; Arango-Varela, S. S., Luzardo-Ocampo, I., & Maldonado-Celis, M. E. (2022). Andean berry (Vaccinium meridionale Swartz) juice, in combination with Aspirin, displayed antiproliferative and pro-apoptotic mechanisms in vitro while exhibiting protective effects against AOM induced colorectal cancer in vivo. Food Research International, 157(March 2021), 111244. https://doi.org/10.1016/j.foodres.2022.111244; Augustyniak, A., Bartosz, G., Čipak, A., Duburs, G., Horáková, L., Łuczaj, W., Majekova, M., Odysseos, A. D., Rackova, L., Skrzydlewska, E., Stefek, M., Štrosová, M., Tirzitis, G., Venskutonis, P. R., Viskupicova, J., Vraka, P. S., & Žarković, N. (2010). Natural and synthetic antioxidants: An updated overview. Free Radical Research, 44(10), 1216–1262. https://doi.org/10.3109/10715762.2010.508495; Aybastıer, Ö., Işık, E., Şahin, S., & Demir, C. (2013). Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Industrial Crops and Products, 44, 558–565. https://doi.org/10.1016/j.indcrop.2012.09.022; Ballard, C. R., & Maróstica, M. R. (2019). Health Benefits of Flavonoids. In Bioactive Compounds (pp. 185–201). Elsevier. https://doi.org/10.1016/B978-0-12-814774-0.00010-4; Bastos, A. V. S., Amaral, A. M., Gomes, F. H. F., Xavier, W., & Resende, O. (2019). Drying Kinetics of Cecropia pachystachya Leaves. Floresta e Ambiente, 26(3). https://doi.org/10.1590/2179- 8087.042218; Benzie, I. F. F. (1996). An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clinical Biochemistry, 29(2), 111–116. https://doi.org/https://doi.org/10.1016/0009-9120(95)02013-6; Bertelli, A., Biagi, M., Corsini, M., Baini, G., Cappellucci, G., & Miraldi, E. (2021). Polyphenols: From Theory to Practice. Foods, 10(11), 2595. https://doi.org/10.3390/foods10112595; Bhuyan, D. J., Vuong, Q. V., Chalmers, A. C., van Altena, I. A., Bowyer, M. C., & Scarlett, C. J. (2017). Development of the ultrasonic conditions as an advanced technique for extraction of phenolic compounds from Eucalyptus robusta. Separation Science and Technology, 52(1), 100–112. https://doi.org/10.1080/01496395.2016.1250777; Binici, H. İ., Şat, İ. G., & Aoudeh, E. (2021). The effect of different drying methods on nutritional composition and antioxidant activity of purslane (Portulaca oleracea). TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 45(5), 680–689. https://doi.org/10.3906/tar-2012-60; Bizuayehu, D., Atlabachew, M., & Ali, M. T. (2016). Determination of some selected secondary metabolites and their invitro antioxidant activity in commercially available Ethiopian tea (Camellia sinensis). SpringerPlus, 5(1), 412. https://doi.org/10.1186/s40064-016-2056-1; Borda-Yepes, V. H., Chejne, F., Daza-Olivella, L. V., Alzate-Arbelaez, A. F., Rojano, B. A., & Raghavan, V. G. S. (2019). Effect of microwave and infrared drying over polyphenol content in Vaccinium meridionale (Swartz) dry leaves. Journal of Food Process Engineering, 42(1), e12939. https://doi.org/10.1111/jfpe.12939; Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5; Calderón Oliver, M., & Ponce Alquicira, E. (2021). Environmentally Friendly Techniques and Their Comparison in the Extraction of Natural Antioxidants from Green Tea, Rosemary, Clove, and Oregano. Molecules, 26(7), 1869. https://doi.org/10.3390/molecules26071869; Buelga-Santo, C., & González-Paramás, A. M. (2016). Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants (E. J. Vandamme & J. L. Revuelta, Eds.; 1st ed., pp. 469–471). Wiley-VHC.; Carrín, M. E., & Crapiste, G. H. (2008). Convective drying of foods. In Advances in Food Dehydration. https://doi.org/10.1201/9781420052534.ch5; Castro, A. M., Mayorga, E. Y., & Moreno, F. L. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering, 223, 152–167. https://doi.org/10.1016/j.jfoodeng.2017.12.012; Celis, M. E. M., Tobón, Y. N. F., Agudeio, C., Arango, S. S., & Rojano, B. (2017). Andean berry (vaccinium meridionale swartz). Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition, 2(July 2018), 869–881. https://doi.org/10.1002/9781119158042.ch40; Chahbani, A., Zouari, N., Elhatmi, H., Jridi, M., & Fakhfakh, N. (2023). Microwave drying of garlic (Allium sativum L.) leaves: kinetics modelling and changes in phenolic compounds profile. Heat and Mass Transfer. https://doi.org/10.1007/s00231-023-03359-7; Chaves, J. O., de Souza, M. C., da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. da F., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A. V., Barbero, G. F., & Rostagno, M. A. (2020). Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in Chemistry, 8(September). https://doi.org/10.3389/fchem.2020.507887; Chen, X., Ding, J., Ji, D., He, S., & Ma, H. (2020). Optimization of ultrasonic‐assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. Journal of Food Science, 85(6), 1742–1751. https://doi.org/10.1111/1750-3841.15111; Corantioquia. (2003). Conozcamos y usemos el mortiño (Vol. 3).; Corrêa, P. C., Botelho, F. M., Oliveira, G. H. H., Goneli, A. L. D., Resende, O., & Campos, S. D. C. (2011). Mathematical modeling of the drying process of corn ears. Acta Scientiarum. Agronomy, 33(4). https://doi.org/10.4025/actasciagron.v33i4.7079; Craft, B. D., Kerrihard, A. L., Amarowicz, R., & Pegg, R. B. (2012). Phenol-Based Antioxidants and the In Vitro Methods Used for Their Assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148–173. https://doi.org/10.1111/j.1541-4337.2011.00173.x; Cutrim, C. S., & Cortez, M. A. S. (2018a). A review on polyphenols: Classification, beneficial effects and their application in dairy products. International Journal of Dairy Technology, 71(3), 564– 578. https://doi.org/10.1111/1471-0307.12515; Da Porto, C., & Natolino, A. (2018). Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chemistry, 258, 137–143. https://doi.org/10.1016/j.foodchem.2018.03.059; Dadalı, G., Kılıç Apar, D., & Özbek, B. (2007). Microwave Drying Kinetics of Okra. Drying Technology, 25(5), 917–924. https://doi.org/10.1080/07373930701372254; Dang, T. T., Van Vuong, Q., Schreider, M. J., Bowyer, M. C., Van Altena, I. A., & Scarlett, C. J. (2017). Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. Journal of Applied Phycology, 29(6), 3161–3173. https://doi.org/10.1007/s10811-017-1162-y; David, D., Alzate, A. F., Rojano, B., Copete-Pertuz, L. S., Echeverry, R., Gutierrez, J., & Zapata Vahos, I. C. (2022). Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activity from avocado seed (Persea americana mill). Bionatura, 7(4). https://doi.org/10.21931/RB/2022.07.04.51; Demiray, E., Seker, A., & Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer, 53(5), 1817–1827. https://doi.org/10.1007/s00231-016-1943-x; Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.; Dini, I. (2019). An overview of functional beverages. Functional and Medicinal Beverages, 1–40.; Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(1), 25– 35. https://doi.org/10.1007/s00231-016-1791-8; Doymaz, İ., & Karasu, S. (2018). Effect of air temperature on drying kinetics, colour changes and total phenolic content of sage leaves ( Salvia officinalis). Quality Assurance and Safety of Crops & Foods, 10(3), 269–276. https://doi.org/10.3920/QAS2017.1257; Edenharder, R., von Petersdorff, I., & Rauscher, R. (1993). Antimutagenic effects of flavonoids, chalcones and structurally related compounds on the activity of 2-amino-3-methylimidazo[4,5- f] quinoline (IQ) and other heterocyclic amine mutagens from cooked food. Mutation Research, 287(2), 261–274. https://doi.org/10.1016/0027-5107(93)90019-C; Erbay, Z., & Icier, F. (2010). A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. https://doi.org/10.1080/10408390802437063; Fan, F. Y., Sang, L. X., Jiang, M., & McPhee, D. J. (2017). Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules, 22(3). https://doi.org/10.3390/molecules22030484; Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols - A review. Trends in Food Science and Technology, 21(10), 510–523. https://doi.org/10.1016/j.tifs.2010.08.003; Fernandes, R. P. P., Trindade, M. A., Tonin, F. G., Lima, C. G., Pugine, S. M. P., Munekata, P. E. S., Lorenzo, J. M., & de Melo, M. P. (2016). Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. Journal of Food Science and Technology, 53(1), 451–460. https://doi.org/10.1007/s13197-015-1994-x; Flieger, J., Flieger, W., & Baj, J. (2021). Antioxidants : Classification , Natural Sources , Activity / Capacity. Materials, 14(4135), 1–54.; García, C. Leonardo., & Ligarreto, G. Adolfo. (2014). Effect of fruit size on the growth and development of Andean blueberry (Vaccinium meridionale Swartz) seedlings from four locations in the Colombian Andes. Agronomia Colombiana, 32(1), 14–21. https://doi.org/10.15446/agron.colomb.v32n1.38714; Garzón, G. A., Medina, J. L., Montana, T. L., Sánchez, M., Novoa, C. F., & Gutiérrez, L. (2021). Utilization of Vaccinium meridionale S. pomace as an eco‐friendly and functional colorant in Greek‐style yogurt. Journal of Food Science, 86(9), 3896–3908. https://doi.org/10.1111/1750- 3841.15872; Garzón, G. A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017; Gaukel, V., Siebert, T., & Erle, U. (2017). Microwave-assisted drying. In The Microwave Processing of Foods: Second Edition (Second Edi). Elsevier Ltd. https://doi.org/10.1016/B978-0-08- 100528-6.00008-5; Ginwala, R., Bhavsar, R., Chigbu, D. G. I., Jain, P., & Khan, Z. K. (2019). Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti Inflammatory Activity of Apigenin. Antioxidants, 8(2). https://doi.org/10.3390/ANTIOX8020035; González, L. K., Rugeles, L. N., & Magnitskiy, S. (2018). Effect of different sources of nitrogen on the vegetative growth of andean blueberry (Vaccinium meridionale swartz). Agronomia Colombiana, 36(1), 58–67. https://doi.org/10.15446/agron.colomb.v36n1.69304; Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3; Hamrouni-Sellami, I., Rahali, F. Z., Rebey, I. B., Bourgou, S., Limam, F., & Marzouk, B. (2013). Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods. Food and Bioprocess Technology, 6(3), 806–817. https://doi.org/10.1007/s11947-012-0877-7; Hihat, S., Remini, H., & Madani, K. (2017). Effect of oven and microwave drying on phenolic compounds and antioxidant capacity of coriander leaves. International Food Research Journal, 24(2), 503–509.; Huang, X., Dou, J., Li, D., & Wang, L. (2018). Effects of superfine grinding on properties of sugar beet pulp powders. LWT, 87, 203–209. https://doi.org/10.1016/j.lwt.2017.08.067; Inyang, U. E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic Models for Drying Techniques—Food Materials. Advances in Chemical Engineering and Science, 08(02), 27–48. https://doi.org/10.4236/aces.2018.82003; Jiang, L., Xu, Q.-X., Qiao, M., Ma, F.-F., Thakur, K., & Wei, Z.-J. (2017). Effect of superfine grinding on properties of Vaccinium bracteatum Thunb leaves powder. Food Science and Biotechnology, 26(6), 1571–1578. https://doi.org/10.1007/s10068-017-0126-y; Jovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Separation and Purification Technology, 179, 369–380. https://doi.org/10.1016/j.seppur.2017.01.055; Khaing Hnin, K., Zhang, M., Mujumdar, A. S., & Zhu, Y. (2019). Emerging food drying technologies with energy-saving characteristics: A review. Drying Technology, 37(12), 1465– 1480. https://doi.org/10.1080/07373937.2018.1510417; Khodja, Y. K., Dahmoune, F., Bachir bey, M., Madani, K., & Khettal, B. (2020). Conventional method and microwave drying kinetics of Laurus nobilis leaves: effects on phenolic compounds and antioxidant activity. Brazilian Journal of Food Technology, 23, 1–10. https://doi.org/10.1590/1981-6723.21419; Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as Anticancer Agents. Nutrients, 12(2). https://doi.org/10.3390/NU12020457; Kumar, S., & Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, 2013, 1–16. https://doi.org/10.1155/2013/162750; Lai, S., Cui, Q., Sun, Y., Liu, R., & Niu, Y. (2024). Effects of Particle Size Distribution on the Physicochemical, Functional, and Structural Properties of Alfalfa Leaf Powder. Agriculture, 14(4), 634. https://doi.org/10.3390/agriculture14040634; Lee, L.-S., Lee, N., Kim, Y., Lee, C.-H., Hong, S., Jeon, Y.-W., & Kim, Y.-E. (2013). Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology. Molecules, 18(11), 13530–13545. https://doi.org/10.3390/molecules181113530; Liu, J., Li, X., Yang, Y., Wei, H., Xue, L., Zhao, M., & Cai, J. (2021). Optimization of combined microwave and hot air drying technology for purple cabbage by Response Surface Methodology (RSM). Food Science and Nutrition, 9(8), 4568–4577. https://doi.org/10.1002/fsn3.2444; Lopera, Y. E., Gaviria, C., & Rojano, B. (2009). Fermentación alcohólica del zumo de mortiño (Vaccinium Meridionale Sw). Simposio internacional de producción de alcoholes y levaduras.; López, G. G., Brousse, M. M., & Linares, A. R. (2023). Kinetic modelling of total phenolic compounds from Ilex paraguariensis (St. Hil.) leaves: Conventional and ultrasound assisted extraction. Food and Bioproducts Processing, 139, 75–88. https://doi.org/10.1016/j.fbp.2023.03.003; Maleš, I., Pedisić, S., Zorić, Z., Elez-Garofulić, I., Repajić, M., You, L., Vladimir-Knežević, S., Butorac, D., & Dragović-Uzelac, V. (2022). The medicinal and aromatic plants as ingredients in functional beverage production. Journal of Functional Foods, 96, 105210. https://doi.org/10.1016/j.jff.2022.105210; Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727; Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. 255–260.; Mbegbu, N. N., Nwajinka, C. O., & Amaefule, D. O. (2021). Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon, 7(1), e05945. https://doi.org/10.1016/j.heliyon.2021.e05945; Medina-Cano, C. I., Lobo Arias, M., Castaño Colorado, Á. A., & Cardona, L. E. (2015). Análisis del desarrollo de plantas de mortiño (Vaccinium meridionale Swart.) bajo dos sistemas de propagación: clonal y sexual. Ciencia & Tecnología Agropecuaria, 16(1), 65–77. https://doi.org/10.21930/rcta.vol16_num1_art:390; Medina-Jaramillo, C., Quintero-Pimiento, C., Gómez-Hoyos, C., Zuluaga-Gallego, R., & López Córdoba, A. (2020). Alginate-edible coatings for application on wild andean blueberries (Vaccinium meridionale swartz): Effect of the addition of nanofibrils isolated from cocoa by products. Polymers, 12(4). https://doi.org/10.3390/POLYM12040824; Mello, P. A., Barin, J. S., & Guarnieri, R. A. (2014). Microwave Heating. In Microwave-Assisted Sample Preparation for Trace Element Determination. Elsevier. https://doi.org/10.1016/B978- 0-444-59420-4.00002-7; Mishra, R. R., & Sharma, A. K. (2016). Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035; Morante- Carriel, J., Agnieszka Obrebska, A., Bru-Martínez, R., Carranza Patiño, M., Pico-Saltos, R., & Nieto Rodriguez, E. (2014). Distribución, localización e inhibidores de las polifenol oxidasas en frutos y vegetales usados como alimento distribution, location and inhibitors of polyphenol oxidases in fruits and vegetables used as food. Ciencia y Tecnología, 7(1).; Mordor Intelligence. (2024a). Tamaño del mercado de agua embotellada y análisis de participación tendencias de crecimiento y pronósticos (2024-2029). https://www.mordorintelligence.com/es/industry-reports/bottled-water-market; Mordor Intelligence. (2024b). Tamaño del mercado de bebidas funcionales y análisis de participación tendencias de crecimiento y pronósticos (2024-2029) . Tamaño del mercado de bebidas funcionales y análisis de participación tendencias de crecimiento y pronósticos (2024- 2029) Source: https://www.mordorintelligence.com/es/industry-reports/functional-beverage market; Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1–2), 95–111. https://doi.org/10.1016/j.chroma.2004.08.059; Natarajan, S. B., Chandran, S. P., Khan, S. H., Natarajan, P., & Rengarajan, K. (2019). Versatile Health Benefits of Catechin from Green Tea (Camellia sinensis). Current Nutrition & Food Science, 15(1), 3–10. https://doi.org/10.2174/1573401313666171003150503; Nguyen, Q.-V., Doan, M.-D., Bui Thi, B.-H., Nguyen, M.-T., Tran Minh, D., Nguyen, A.-D., Le, T.-M., Nguyen, T.-H., Nguyen, T.-D., Tran, V.-C., & Hoang, V.-C. (2023). The effect of drying methods on chlorophyll, polyphenol, flavonoids, phenolic compounds contents, color and sensory properties, and in vitro antioxidant and anti-diabetic activities of dried wild guava leaves. Drying Technology, 41(8), 1291–1302. https://doi.org/10.1080/07373937.2022.2145305; Okwunodulu, I. N., Obioma, V. N., Okwunodulu, F. U., Ndife, J., & Wabali, V. (2023). Functional combo juice drink from ginger, garlic turmeric and pine apple juice blends: Bioactive compounds, anti-oxidant activity, physicochemical elucidation and their sensorial expectations. Food Chemistry Advances, 3(July), 100391. https://doi.org/10.1016/j.focha.2023.100391; ONU. (2015). Objetivos y metas de desarrollo sostenible - Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/; Onyebuchi, C., & Kavaz, D. (2020). Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Scientific Reports, 10(1), 21760. https://doi.org/10.1038/s41598-020-78847-5; Orphanides, A., Goulas, V., & Gekas, V. (2016). Drying Technologies: Vehicle to High-Quality Herbs. Food Engineering Reviews, 8(2), 164–180. https://doi.org/10.1007/s12393-015-9128-9; Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. Journal of Agricultural and Food Chemistry, 49(10), 4619–4626. https://doi.org/10.1021/jf010586o; Palma, A., Díaz, M. J., Ruiz-Montoya, M., Morales, E., & Giráldez, I. (2021). Ultrasound extraction optimization for bioactive molecules from Eucalyptus globulus leaves through antioxidant activity. Ultrasonics Sonochemistry, 76, 105654. https://doi.org/10.1016/j.ultsonch.2021.105654; Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41; Pereira, L. M. S., Milan, T. M., & Tapia-Blácido, D. R. (2021). Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy, 151, 106166. https://doi.org/10.1016/j.biombioe.2021.106166; Pinho, E., Grootveld, M., Soares, G., & Henriques, M. (2014). Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydrate Polymers, 101(1), 121–135. https://doi.org/10.1016/j.carbpol.2013.08.078; Polaris Market Research. (2022). Natural Antioxidants Market Size Global Report, 2022 - 2030. https://www.polarismarketresearch.com/industry-analysis/global-natural-antioxidants-market; Potisate, Y., Science, S. P.-A.-P. J. of, & 2015, U. (2015). Microwave drying of Moringa oleifera (Lam.) leaves: drying characteristics and quality aspects. Asia-Pacific Journal of Science and Technology, 20(1), 12–25.; Puttalingappa, Y. J., Natarajan, V., Varghese, T., & Naik, M. (2022). Effect of microwave‐assisted vacuum drying on the drying kinetics and quality parameters of Moringa oleifera leaves. Journal of Food Process Engineering, 45(8). https://doi.org/10.1111/jfpe.14054; Rababah, T. M., Alhamad, M., Al-Mahasneh, M., Ereifej, K., Andrade, J., Altarifi, B., Almajwal, A., & Yang, W. (2015). Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common mediterranean herbs. International Journal of Agricultural and Biological Engineering, 8(2), 145–150.; Rajha, H. N., Darra, N. El, Hobaika, Z., Boussetta, N., Vorobiev, E., Maroun, R. G., & Louka, N. (2014). Extraction of Total Phenolic Compounds, Flavonoids, Anthocyanins and Tannins from Grape Byproducts by Response Surface Methodology. Influence of Solid-Liquid Ratio, Particle Size, Time, Temperature and Solvent Mixtures on the Optimization Process. Food and Nutrition Sciences, 05(04), 397–409. https://doi.org/10.4236/fns.2014.54048; Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3; Roca, M., Chen, K., & Pérez-Gálvez, A. (2016). Chlorophylls. In Handbook on Natural Pigments in Food and Beverages (pp. 125–158). Elsevier. https://doi.org/10.1016/B978-0-08-100371- 8.00006-3; Rocha, R. P., Melo, E. C., & Radünz, L. L. (2011). Influence of drying process on the quality of medicinal plants: A review. Journal of Medicinal Plant Research, 5(33), 7076–7084. https://doi.org/10.5897/JMPRx11.001; Routray, W., Orsat, V., & Gariepy, Y. (2014). Effect of Different Drying Methods on the Microwave Extraction of Phenolic Components and Antioxidant Activity of Highbush Blueberry Leaves. Drying Technology, 32(16), 1888–1904. https://doi.org/10.1080/07373937.2014.919002; Santos, C. H. K., Baqueta, M. R., Coqueiro, A., Dias, M. I., Barros, L., Barreiro, M. F., Ferreira, I. C. F. R., Gonçalves, O. H., Bona, E., da Silva, M. V., & Leimann, F. V. (2018). Systematic study on the extraction of antioxidants from pinhão (Araucaria angustifolia (bertol.) Kuntze) coat. Food Chemistry, 261, 216–223. https://doi.org/10.1016/j.foodchem.2018.04.057; Santos-Sánchez, N. F., Salas-Coronado, R., Villanueva-Cañongo, C., & Hernández-Carlos, B. (2019). Antioxidant Compounds and Their Antioxidant Mechanism. Antioxidants, March. https://doi.org/10.5772/intechopen.85270; Sarimeseli, A. (2011). Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Conversion and Management, 52(2), 1449–1453. https://doi.org/10.1016/j.enconman.2010.10.007; Selahvarzi, A., Ramezan, Y., Sanjabi, M. R., Namdar, B., Akbarmivehie, M., Mirsaeedghazi, H., & Azarikia, F. (2022). Optimization of ultrasonic-assisted extraction of phenolic compounds from pomegranate and orange peels and their antioxidant activity in a functional drink: Antioxidant effect of optimized pomegranate and orange peel extracts in the functional drink. Food Bioscience, 49(June), 101918. https://doi.org/10.1016/j.fbio.2022.101918; Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383(August 2021), 132531. https://doi.org/10.1016/j.foodchem.2022.132531; Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144 LP – 158.; Sirichan, T., Kijpatanasilp, I., Asadatorn, N., & Assatarakul, K. (2022). Optimization of ultrasound extraction of functional compound from makiang seed by response surface methodology and antimicrobial activity of optimized extract with its application in orange juice. Ultrasonics Sonochemistry, 83. https://doi.org/10.1016/j.ultsonch.2022.105916; Sokhansanj, S., & Jayas, D. S. (2014). Drying of foodstuffs. Handbook of Industrial Drying, Fourth Edition, 521–544. https://doi.org/10.1201/b17208; Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D.-V. N., & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: a review. Environmental Chemistry Letters, 19(4), 3409–3443. https://doi.org/10.1007/s10311-021-01217-8; Statista Research Department. (2024). Functional water - statistics & facts. https://www.statista.com/topics/3306/functional-water/#statisticChapter; Ștefănescu, R., Laczkó-Zöld, E., Ősz, B. E., & Vari, C. E. (2023). An Updated Systematic Review of Vaccinium myrtillus Leaves: Phytochemistry and Pharmacology. Pharmaceutics, 15(1), 1– 23. https://doi.org/10.3390/pharmaceutics15010016; Thamkaew, G., Sjöholm, I., & Galindo, F. G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61(11), 1763–1786. https://doi.org/10.1080/10408398.2020.1765309; Thirumurugan, D., Cholarajan, A., Raja, S. S. S., & Vijayakumar, R. (2018). An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites - Sources and Applications. InTech. https://doi.org/10.5772/intechopen.79766; Valadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., Ortiz-Moreno, A., & Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science & Emerging Technologies, 41, 378–386. https://doi.org/10.1016/j.ifset.2017.04.012; Valenzuela V., C., & Pérez M., P. (2016). Actualización en el uso de antioxidantes naturales derivados de frutas y verduras para prolongar la vida útil de la carne y productos cárneos. Revista Chilena de Nutricion, 43(2), 188–195. https://doi.org/10.4067/S0717- 75182016000200012; Vrancheva, R., Ivanov, I., Badjakov, I., Dincheva, I., Georgiev, V., & Pavlov, A. (2020). Optimization of polyphenols extraction process with antioxidant properties from wild Vaccinium myrtillus L. (bilberry) and Vaccinium vitis-idaea L. (lingonberry) leaves. Food Science and Applied Biotechnology, 3(2), 149–156. https://doi.org/10.30721/fsab2020.v3.i2.98; Wu, H., Chai, Z., Hutabarat, R. P., Zeng, Q., Niu, L., Li, D., Yu, H., & Huang, W. (2019). Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Research International, 122, 548–560. https://doi.org/10.1016/j.foodres.2019.05.015; Xiao, W., Zhang, Y., Fan, C., & Han, L. (2017). A method for producing superfine black tea powder with enhanced infusion and dispersion property. Food Chemistry, 214, 242–247. https://doi.org/10.1016/j.foodchem.2016.07.096; Yap, J. Y., Hii, C. L., Ong, S. P., Lim, K. H., Abas, F., & Pin, K. Y. (2020). Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves. Journal of the Science of Food and Agriculture, 100(7), 2932–2937. https://doi.org/10.1002/jsfa.10320; Yilmaz, P., Demirhan, E., & Özbek, B. (2021). Microwave drying effect on drying characteristic and energy consumption of Ficus carica Linn leaves. Journal of Food Process Engineering, 44(10), 1–21. https://doi.org/10.1111/jfpe.13831; Youssef, K. M., & Mokhtar, S. M. (2014). Effect of Drying Methods on the Antioxidant Capacity, Color and Phytochemicals of Portulaca oleracea L. Leaves. Journal of Nutrition & Food Sciences, 04(06). https://doi.org/10.4172/2155-9600.1000322; Zapata, I. C., Sepúlveda-Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con mortiño (Vaccinium meridionale Sw). Informacion Tecnologica, 26(2), 17–28. https://doi.org/10.4067/S0718-07642015000200004; Zapata-Vahos, I. C., Villacorta, V., Maldonado, M. E., Castro Restrepo, D., & Rojano, B. (2015a). Antioxidant and cytotoxic activity of black and green tea from Vaccinium meridionale Swartz leaves. Journal of Medicinal Plants Research, 9(13), 445–453. https://doi.org/10.5897/JMPR2014.5744; Zeb, A. (2021). Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. In Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. https://doi.org/10.1007/978-3- 030-74768-8; Zhang, Y., Li, R., Shang, G., Zhu, H., Mahmood, N., & Liu, Y. (2021). Mechanical grinding alters physicochemical, structural, and functional properties of tobacco (Nicotiana tabacum L.) leaf powders. Industrial Crops and Products, 173, 114149. https://doi.org/10.1016/j.indcrop.2021.114149; Zhao, G., Zhang, R., Dong, L., Huang, F., Tang, X., Wei, Z., & Zhang, M. (2018). Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT, 87, 450–456. https://doi.org/10.1016/j.lwt.2017.09.016; Zulkifli, S. A., Abd Gani, S. S., Zaidan, U. H., & Halmi, M. I. E. (2020). Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties. Molecules, 25(4), 787. https://doi.org/10.3390/molecules25040787; https://repositorio.unal.edu.co/handle/unal/86993; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  7. 7
    Dissertation/ Thesis
  8. 8
    Report
  9. 9
    Dissertation/ Thesis

    المساهمون: Marcelo Aldana, Mario Daniel, Pérez Huiman, Óscar Jesús, Universidad de Piura. Facultad de Ingeniería. Departamento de Ciencias de la Ingeniería.

    المصدر: Universidad de Piura ; Repositorio Institucional Pirhua - UDEP

    جغرافية الموضوع: Perú

    وصف الملف: 2,80 MB; application/pdf

    Relation: Adobe Reader; Girón, A. y Saucedo, E. (2022). Análisis de factibilidad de la aplicación de tecnología DIC (Descompresión Instantánea Controlada) para productos deshidratados (Tesis para optar el título de Ingeniero Industrial y de Sistemas). Universidad de Piura. Facultad de Ingeniería. Programa Académico de Ingeniería Industrial y de Sistemas. Piura, Perú.; https://hdl.handle.net/11042/5607

  10. 10

    المؤلفون: Eraso Grisales, Soany

    المساهمون: Cortés Rodríguez, Misael, Hurtado Benavides, Andrés Mauricio, Alimentos y Nutraceuticos, Gaf (Grupo de Alimentos Funcionales), Tecnologías Emergentes en Agroindustria (TEA) - UDENAR

    المصدر: Repositorio UN
    Universidad Nacional de Colombia
    instacron:Universidad Nacional de Colombia

    وصف الملف: xviii, 113 páginas; application/pdf

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    المصدر: Agroindustria, Sociedad y Ambiente; Vol. 2 No. 7 (2016): Julio - Diciembre 2016 ; 103-124 ; Agroindustria, Sociedad y Ambiente; Vol. 2 Núm. 7 (2016): Julio - Diciembre 2016 ; Agroindustria, Sociedad y Ambiente; v. 2 n. 7 (2016): Julio - Diciembre 2016 ; 2343-6115

    وصف الملف: application/pdf

  15. 15
  16. 16
    Dissertation/ Thesis
  17. 17
    Dissertation/ Thesis

    المساهمون: Santiana Espin, Cristian German, Oleas López, Julio Mauricio

    وصف الملف: application/pdf

    Relation: UDCTFCP;27T00561; Guamán Chacaguasay, Luis Efrain. (2022). Estado del arte para el diseño de una planta piloto para la obtención de frutas deshidratadas. Escuela Superior Politécnica de Chimborazo. Riobamba.; http://dspace.espoch.edu.ec/handle/123456789/18107

  18. 18
  19. 19
  20. 20

    المساهمون: Gil Barragan, Juan Manuel

    المصدر: Biblioteca Digital Minerva-Repositorio EAN
    Universidad EAN
    instacron:Universidad EAN

    وصف الملف: pdf; 155 páginas; Recurso electrónico; application/pdf