يعرض 1 - 14 نتائج من 14 نتيجة بحث عن '"FGM family"', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3299874; zbl:Zbl 06391463; reference:[1] Amblard, C., Girard, S.: Symmetry and dependence properties within a semiparametric family of bivariate copulas.J. Nonparametric Stat. 14 (2002), 715-727. Zbl 1019.62046, MR 1941711, 10.1080/10485250215322; reference:[2] Amblard, C., Girard, S.: A new extension of bivariate FGM copulas.Metrika 70 (2009), 1-17. MR 2506497, 10.1007/s00184-008-0174-7; reference:[3] Bairamov, I., Kotz, S.: Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions.Metrika 56 (2002), 55-72. MR 1922211, 10.1007/s001840100158; reference:[4] Bairamov, I., Kotz, S., Bekçi, M.: New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics.J. Appl. Stat. 28 (2001), 521-536. Zbl 0991.62032, MR 1836732, 10.1080/02664760120047861; reference:[5] Bairamov, I., Kotz, S., Gebizlioglu, O. L.: The Sarmanov family and its generalization.S. Afr. Stat. J. 35 (2001), 205-224. Zbl 1009.62011, MR 1910896; reference:[6] Baker, R.: An order-statistics-based method for constructing multivariate distributions with fixed marginals.J. Multivariate Anal. 99 (2008), 2312-2327. Zbl 1151.62045, MR 2463391, 10.1016/j.jmva.2008.02.019; reference:[7] Church, J. D., Harris, B.: The estimation of reliability from stress-strength relationships.Technometrics 12 (1970), 49-54. Zbl 0195.20001, 10.1080/00401706.1970.10488633; reference:[8] David, H. A., Nagaraja, H. N.: Order Statistics.Wiley Series in Probability and Statistics John Wiley & Sons, Chichester (2003). Zbl 1053.62060, MR 1994955; reference:[9] Drouet-Mari, D., Kotz, S.: Correlation and Dependence.Imperial College Press London (2001). Zbl 0977.62004, MR 1835042; reference:[10] Farlie, D. J. G.: The performance of some correlation coefficients for a general bivariate distribution.Biometrika 47 (1960), 307-323. Zbl 0102.14903, MR 0119312, 10.1093/biomet/47.3-4.307; reference:[11] Fisher, M., Klein, I.: Constructing generalized FGM copulas by means of certain univariate distributions.Metrika 65 (2007), 243-260. MR 2288062, 10.1007/s00184-006-0075-6; reference:[12] Gumbel, E. J.: Bivariate exponential distributions.J. Am. Stat. Assoc. 55 (1960), 698-707. Zbl 0099.14501, MR 0116403, 10.1080/01621459.1960.10483368; reference:[13] Han, K. H.: A new family of negative quadrant dependent bivariate distributions with continuous marginals.Journal of the Chungcheong Mathematical Society 24 (2011), 795-805.; reference:[14] Hlubinka, D., Kotz, S.: The generalized FGM distribution and its application to stereology of extremes.Appl. Math., Praha 55 (2010), 495-512. Zbl 1223.62080, MR 2737716, 10.1007/s10492-010-0020-x; reference:[15] Huang, J. S., Kotz, S.: Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb.Metrika 49 (1999), 135-145. Zbl 1093.62514, MR 1729905, 10.1007/s001840050030; reference:[16] Lai, C. D., Xie, M.: A new family of positive quadrant dependent bivariate distributions.Stat. Probab. Lett. 46 (2000), 359-364. Zbl 0943.62043, MR 1743993, 10.1016/S0167-7152(99)00122-4; reference:[17] Mirhoseini, S. M., Dolati, A., Amini, M.: On a class of distributions generated by stochastic mixture of the extreme order statistics of a sample of size two.J. Stat. Theory Appl. 10 (2011), 455-468. MR 2868281; reference:[18] Morgenstern, D.: Einfache Beispiele zweidimensionaler Verteilungen.German Mitt.-Bl. Math. Statistik 8 (1956), 234-235. Zbl 0070.36202, MR 0081575; reference:[19] Nelsen, R. B.: An Introduction to Copulas.Springer Series in Statistics Springer, New York (2006). Zbl 1152.62030, MR 2197664; reference:[20] Rodríguez-Lallena, J. A., Úbeda-Flores, M.: A new class of bivariate copulas.Stat. Probab. Lett. 66 (2004), 315-325. Zbl 1102.62054, MR 2045476, 10.1016/j.spl.2003.09.010; reference:[21] Sklar, M.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Stat. Univ. Paris French 8 (1960), 229-231. MR 0125600

  9. 9
    Academic Journal

    المؤلفون: Dolati, Ali, Úbeda-Flores, Manuel

    وصف الملف: application/pdf

    Relation: mr:MR2650078; zbl:Zbl 1200.62055; reference:[1] M. M. Ali, N. N. Mikhail, and M. S. Haq: A class of bivariate distributions including the bivariate logistic.J. Multivariate Anal. 8 (1978), 405–412. MR 0512610; reference:[2] E. Alvoni, P. L. Papini, and F. Spizzichino: On a class of transformations of copulas and quasi-copulas.Fuzzy Sets and Systems 50 (2009), 334–343. MR 2473107; reference:[3] R. Baker: An-order-statistics-based method for constructing distributions with fixed marginals.J. Multivariate Anal. 99 (2008), 2312–2327. MR 2463391; reference:[4] J. Behboodian, A. Dolati, and M. Úbeda-Flores: Measures of association based on average quadrant dependence.J. Probab. Statist. Sci. 3 (2005), 161–173.; reference:[5] G. Beliakov, A. Pradera, and T. Calvo: Aggregation Functions: A Guide for Practitioners.Springer, New York 2007.; reference:[6] T. Calvo, G. Mayor, and R. Mesiar (eds.): Aggregation Operators: New Trends and Applications.Physica-Verlag, Heidelberg 2002. MR 1936383; reference:[7] C. M. Cuadras: Constructing copula functions with weighted geometric means.J. Statist. Plann. Inference 139 (2009), 3766–3772. MR 2553761; reference:[8] B. De Baets, H. De Meyer, and S. Díaz: On an idempotent transformation of aggregation functions and its application on absolutely continuous Archimedean copulas.Fuzzy Sets and Systems 160 (2009), 733–751. MR 2493272; reference:[9] D. Drouet Mari and S. Kotz: Correlation and Dependence.Imperial College Press, London 2001. MR 1835042; reference:[10] F. Durante: Construction of non-exchangeable bivariate distribution functions.Statist. Papers 50 (2009), 383–391. MR 2476195; reference:[11] F. Durante and C. Sempi: Copula and semicopula transforms.Internat. J. Math. Math. Sci. 4 (2005), 645–655. MR 2172400; reference:[12] F. Durante, R. Mesiar, P. L. Papini, and C. Sempi: 2-increasing binary aggregation operators.Inform. Sci. 177 (2007), 111-129. MR 2272737; reference:[13] V. Durrleman, A. Nikeghbali, and T. Roncalli: A Simple Transformation of Copulas.Technical Report. Groupe de Research Operationnelle Credit–Lyonnais 2000.; reference:[14] P. Hájek and R. Mesiar: On copulas, quasi-copulas and fuzzy logic.Soft Computing 12 (2008), 1239–1243.; reference:[15] H. Joe: Multivariate Models and Dependence Concepts.Chapman and Hall, London 1997. Zbl 0990.62517, MR 1462613; reference:[16] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms.Kluwer, Dordrecht 2000. MR 1790096; reference:[17] E. P. Klement, R. Mesiar, and E. Pap: Archimax copulas and invariance under transformations.C.R. Acad. Sci. Paris, Ser. I 340 (2005), 755–758. MR 2141065; reference:[18] E. P. Klement, R. Mesiar, and E. Pap: Transformations of copulas.Kybernetika 41 (2005), 425–434. MR 2180355; reference:[19] R. Mesiar and C. Sempi: Ordinal sums and idempotents of copulas.Aequationes Math. (to appear) MR 2640277; reference:[20] P. M. Morillas: A method to obtain new copulas from a given one.Metrika 61 (2005), 169–184. Zbl 1079.62056, MR 2159414; reference:[21] R. B. Nelsen: Some concepts of bivariate symmetry.J. Nonparametric Statist. 3 (1993), 95–101. MR 1272164; reference:[22] R. B. Nelsen: An Introduction to Copulas.Second Edition. Springer, New York 2006. Zbl 1152.62030, MR 2197664; reference:[23] J. A. Rodríguez-Lallena and M. Úbeda-Flores: A new class of bivariate copulas.Statist. Probab. Lett. 66 (2004), 315–325. MR 2045476; reference:[24] M. Scarsini: On measures of concordance.Stochastica 8 (1984), 201–218. Zbl 0582.62047, MR 0796650; reference:[25] : .A. Sklar: Fonctions de répartition $\grave{\mathrm { a}}$ n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231. MR 0125600; reference:[26] A. Sklar: Random variables, joint distributions, and copulas.Kybernetika 9 (1973), 449–460. MR 0345164

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
  14. 14