يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Exponente de absorción de Ångström"', وقت الاستعلام: 0.72s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Reales López, Gabriel Jose

    المساهمون: Blanco Donado, Erica, Oliveira Silva, Luis

    جغرافية الموضوع: Barranquilla, Atlántico

    وصف الملف: 125 páginas; application/pdf

    Relation: Ambade, B., Sankar, T. K., Panicker, A. S., Gautam, A. S., & Gautam, S. (2021). Characterization, seasonal variation, source apportionment and health risk assessment of black carbon over an urban region of East India. Urban Climate, 38(November 2020), 100896. https://doi.org/10.1016/j.uclim.2021.100896; Anaya, J. A., Chuvieco, E., & Palacios-Orueta, A. (2009). Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 257(4), 1237–1246. https://doi.org/10.1016/j.foreco.2008.11.016; Babativa, C. L. (2018). Exploración de perfiles verticales de humedad relativa, temperatura y concentraciones de PM2. 5 y black carbon, en la localidad de puente aranda. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/733/%0Ahttps://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1732&context=ing_ambiental_sanitari; Badarinath, K. V. S., Latha, K. M., Chand, T. R. K., Reddy, R. R., Gopal, K. R., Reddy, L. S. S., Narasimhulu, K., & Kumar, K. R. (2007). Black carbon aerosols and gaseous pollutants in an urban area in North India during a fog period. Atmospheric Research, 85(2), 209–216. https://doi.org/10.1016/j.atmosres.2006.12.007; Balakrishnaiah, G., Raghavendra kumar, K., Suresh Kumar Reddy, B., Rama Gopal, K., Reddy, R. R., Reddy, L. S. S., Nazeer Ahammed, Y., Narasimhulu, K., Krishna Moorthy, K., & Suresh Babu, S. (2011). Analysis of optical properties of atmospheric aerosols inferred from spectral AODs and Ångström wavelength exponent. Atmospheric Environment, 45(6), 1275–1285. https://doi.org/10.1016/j.atmosenv.2010.12.002; Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755; Bibi, S., Alam, K., Chishtie, F., Bibi, H., & Rahman, S. (2017). Temporal variation of Black Carbon concentration using Aethalometer observations and its relationships with meteorological variables in Karachi, Pakistan. Journal of Atmospheric and Solar-Terrestrial Physics, 157–158(April), 67–77. https://doi.org/10.1016/j.jastp.2017.03.017; Blanco-Alegre, C., Calvo, A. I., Alves, C., Fialho, P., Nunes, T., Gomes, J., Castro, A., Oduber, F., Coz, E., & Fraile, R. (2020). Aethalometer measurements in a road tunnel: A step forward in the characterization of black carbon emissions from traffic. Science of the Total Environment, 703, 135483. https://doi.org/10.1016/j.scitotenv.2019.135483; Blanco-Donado, E. P., Schneider, I. L., Artaxo, P., Lozano-Osorio, J., Portz, L., & Oliveira, M. L. S. (2021). Source identification and global implications of black carbon. Geoscience Frontiers, xxxx, 101149. https://doi.org/10.1016/j.gsf.2021.101149; Bolaño-Truyol, J., Schneider, I. L., Cuadro, H. C., Bolaño-Truyol, J. D., & Oliveira, M. L. S. (2021). Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean. Geoscience Frontiers, xxxx, 101152. https://doi.org/10.1016/j.gsf.2021.101152; Bolaño-Truyol, J., Schneider, I. L., Cuadro, H. C., Bolaño-Truyol, J. D., & Oliveira, M. L. S. (2022). Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean. Geoscience Frontiers, 13(1), 0–6. https://doi.org/10.1016/j.gsf.2021.101152; Bounakhla, Y., Benchrif, A., Tahri, M., Costabile, F., Zahry, F., Bounakhla, M., & El Hassan, E. K. (2022). Black carbon aerosols at an urban site in North Africa (Kenitra, Morocco). Atmospheric Pollution Research, 13(8), 101489. https://doi.org/10.1016/j.apr.2022.101489; Brasseur, O., Declerck, P., Heene, B., & Vanderstraeten, P. (2015). Modelling black carbon concentrations in two busy street canyons in brussels using CANSBC. Atmospheric Environment, 101, 72–81. https://doi.org/10.1016/j.atmosenv.2014.10.049; Byčenkienė, S., Pashneva, D., Uogintė, I., Pauraitė, J., Minderytė, A., Davulienė, L., Plauškaitė, K., Skapas, M., Dudoitis, V., Touqeer, G., Andriejauskiene, J., Araminienė, V., Dzenajavičienė, E. F., Sicard, P., Gudynaitė-Franckevičienė, V., Varnagirytė-Kabašinskienė, I., Pedišius, N., Lemanas, E., & Vonžodas, T. (2022). Evaluation of the anthropogenic black carbon emissions and deposition on Norway spruce and silver birch foliage in the Baltic region. Environmental Research, 207(October 2021). https://doi.org/10.1016/j.envres.2021.112218; Casallas, A., Castillo-Camacho, M. P., Guevara-Luna, M. A., González, Y., Sanchez, E., & Belalcazar, L. C. (2022). Spatio-temporal analysis of PM2.5 and policies in Northwestern South America. Science of the Total Environment, 852(May). https://doi.org/10.1016/j.scitotenv.2022.158504; Casquero-Vera, J. A., Lyamani, H., Titos, G., Minguillón, M. C., Dada, L., Alastuey, A., Querol, X., Petäjä, T., Olmo, F. J., & Alados-Arboledas, L. (2021). Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. Science of the Total Environment, 768. https://doi.org/10.1016/j.scitotenv.2021.145282; Chen, P., Kang, S., Gan, Q., Yu, Y., Yuan, X., Liu, Y., Tripathee, L., Wang, X., & Li, C. (2022). Concentrations and light absorption properties of PM2.5 organic and black carbon based on online measurements in Lanzhou, China. Journal of Environmental Sciences, 131, 84–95. https://doi.org/10.1016/j.jes.2022.08.007; Cheng, Y. H., Huang, Y. C., Pipal, A. S., Jian, M. Y., & Liu, Z. S. (2022). Source apportionment of black carbon using light absorption measurement and impact of biomass burning smoke on air quality over rural central Taiwan: A yearlong study. Atmospheric Pollution Research, 13(1). https://doi.org/10.1016/j.apr.2021.101264; Chuvieco, E., Pettinari, M. L., Koutsias, N., Forkel, M., Hantson, S., & Turco, M. (2021). Human and climate drivers of global biomass burning variability. Science of the Total Environment, 779, 146361. https://doi.org/10.1016/j.scitotenv.2021.146361; Duarte, A. L., Schneider, I. L., Artaxo, P., & Oliveira, M. L. S. (2022). Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city. Geoscience Frontiers, 13(1), 101168. https://doi.org/10.1016/j.gsf.2021.101168; Dumka, U. C., Kaskaoutis, D. G., Tiwari, S., Safai, P. D., Attri, S. D., Soni, V. K., Singh, N., & Mihalopoulos, N. (2018). Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter. Atmospheric Environment, 194(August), 93–109. https://doi.org/10.1016/j.atmosenv.2018.09.033; Dutta, M., & Chatterjee, A. (2021). Assessment of the relative influences of long-range transport, fossil fuel and biomass burning from aerosol pollution under restricted anthropogenic emissions: A national scenario in India. Atmospheric Environment, 255(April), 118423. https://doi.org/10.1016/j.atmosenv.2021.118423; Galdos, M., Cavalett, O., Seabra, J. E. A., Nogueira, L. A. H., & Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 104, 576–582. https://doi.org/10.1016/j.apenergy.2012.11.002; Garavito, G., Martinez, B., Builes, J. J., Aguirre, D., Mendoza, L., Afanador, C. H., Egea, E., & Marrugo, J. (2015). Indels markers set and ancestry estimates in a population sample from Atlantic Department of Colombia. Forensic Science International: Genetics Supplement Series, 5, e177–e178. https://doi.org/10.1016/j.fsigss.2015.09.071; Goel, V., Hazarika, N., Kumar, M., & Singh, V. (2021). Source apportionment of black carbon over Delhi: A case study of extreme biomass burning events and Diwali festival. Urban Climate, 39(March), 100926. https://doi.org/10.1016/j.uclim.2021.100926; Goel, V., Hazarika, N., Kumar, M., Singh, V., Thamban, N. M., & Tripathi, S. N. (2021). Variations in Black Carbon concentration and sources during COVID-19 lockdown in Delhi. Chemosphere, 270, 129435. https://doi.org/10.1016/j.chemosphere.2020.129435; González-álvarez, Á., Viloria-Marimón, O. M., Coronado-Hernández, Ó. E., Vélez-Pereira, A. M., Tesfagiorgis, K., & Coronado-Hernández, J. R. (2019). Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020358; Hamilton, G. A., & Hartnett, H. E. (2013). Soot black carbon concentration and isotopic composition in soils from an arid urban ecosystem. Organic Geochemistry, 59, 87–94. https://doi.org/10.1016/j.orggeochem.2013.04.003; Harrison, R. M., Beddows, D. C. S., Jones, A. M., Calvo, A., Alves, C., & Pio, C. (2013). An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations. Atmospheric Environment, 80, 540–548. https://doi.org/10.1016/j.atmosenv.2013.08.026; He, C., Takano, Y., Liou, K. N., Yang, P., Li, Q., & Mackowski, D. W. (2016). Intercomparison of the GOS approach, superposition T-matrix method, and laboratory measurements for black carbon optical properties during aging. Journal of Quantitative Spectroscopy and Radiative Transfer, 184, 287–296. https://doi.org/10.1016/j.jqsrt.2016.08.004; He, Q., Guo, Q., Umeki, K., Ding, L., Wang, F., & Yu, G. (2021). Soot formation during biomass gasification: A critical review. Renewable and Sustainable Energy Reviews, 139(March 2020), 110710. https://doi.org/10.1016/j.rser.2021.110710; Healy, R. M., Sofowote, U., Su, Y., Debosz, J., Noble, M., Jeong, C. H., Wang, J. M., Hilker, N., Evans, G. J., Doerksen, G., Jones, K., & Munoz, A. (2017). Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmospheric Environment, 161, 34–47. https://doi.org/10.1016/j.atmosenv.2017.04.034; Hernandez, A. J., Morales-Rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051; Highwood, E. J., & Kinnersley, R. P. (2006). When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International, 32(4), 560–566. https://doi.org/10.1016/j.envint.2005.12.003 http://queimadas.dgi.inpe.br/queimadas/bdqueimadas; Ichoku, C., & Kaufman, Y. J. (2005). A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2636–2649. https://doi.org/10.1109/TGRS.2005.857328; Iraji, F., Memarian, M. H., Joghataei, M., & Ghafarian Malamiri, H. R. (2021). Determining the source of dust storms with use of coupling WRF and HYSPLIT models: A case study of Yazd province in central desert of Iran. Dynamics of Atmospheres and Oceans, 93(December 2020), 101197. https://doi.org/10.1016/j.dynatmoce.2020.101197; Jeong, H., & Park, D. (2017). Characteristics of elementary school children’s daily exposure to black carbon (BC) in Korea. Atmospheric Environment, 154, 179–188. https://doi.org/10.1016/j.atmosenv.2017.01.045; Jiang, H., Li, J., Wang, J., Jiang, H., Mo, Y., Tang, J., Zhang, R., Pansak, W., Zhong, G., Zhao, S., Ning, J., Tian, C., & Zhang, G. (2022). Regional monitoring of biomass burning using passive air sampling technique reveals the importance of MODIS unresolved fires. Environment International, 170(July), 107582. https://doi.org/10.1016/j.envint.2022.107582; Jiang, K., Xing, R., Luo, Z., Huang, W., Yi, F., Men, Y., Zhao, N., Chang, Z., Zhao, J., Pan, B., & Shen, G. (2024). Particuology Pollutant emissions from biomass burning : A review on emission characteristics , environmental impacts , and research perspectives. Particuology, 85, 296–309. https://doi.org/10.1016/j.partic.2023.07.012; Kalisa, E., & Adams, M. (2022). Population-scale COVID-19 curfew effects on urban black carbon concentrations and sources in Kigali, Rwanda. Urban Climate, 46(October), 101312. https://doi.org/10.1016/j.uclim.2022.101312; Kalita, G., Kunchala, R. K., Fadnavis, S., & Kaskaoutis, D. G. (2020). Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmospheric Research, 245(December 2019), 105064. https://doi.org/10.1016/j.atmosres.2020.105064; Kang, Z., Ma, P., Quan, J., Jia, X., Liao, Z., & Pan, Y. (2023). Observational evidence of the regional transported black carbon in high layer over Beijing. Atmospheric Environment, 311(August), 120000. https://doi.org/10.1016/j.atmosenv.2023.120000; Kapoor, T. S., Venkataraman, C., Sarkar, C., Phuleria, H. C., Chatterjee, A., Habib, G., & Apte, J. S. (2022). Estimation of real-time brown carbon absorption: An observationally constrained Mie theory-based optimization method. Journal of Aerosol Science, 166(June), 106047. https://doi.org/10.1016/j.jaerosci.2022.106047; Kompalli, S. K., Babu, S. S., Ajith, T. C., Moorthy, K. K., Satheesh, S. K., Boopathy, R., Das, T., Liu, D., Allan, J., & Coe, H. (2023). Aging of biomass burning emissions in the Indo-Gangetic Plain outflow: Implications for black carbon light-absorption enhancement. Atmospheric Research, 294(July), 106949. https://doi.org/10.1016/j.atmosres.2023.106949; Lee, Y. C., Lam, Y. F., Kuhlmann, G., Wenig, M. O., Chan, K. L., Hartl, A., & Ning, Z. (2013). An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong. Atmospheric Environment, 80, 478–487. https://doi.org/10.1016/j.atmosenv.2013.08.030; Li, Fangjun, Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., & Schmidt, C. C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sen; Li, Fangjun, Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., & Schmidt, C. C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sensing of Environment, 281(April), 113237. https://doi.org/10.1016/j.rse.2022.113237; Li, Fangzhou, Luo, Q., Lin, W., Li, J., & Jiang, B. (2022). Simulating the impact of biomass burning aerosols on an intensive precipitation event in urban areas of the Pearl River Delta. Atmospheric Research, 266(December 2021), 105966. https://doi.org/10.1016/j.atmosres.2021.105966; Li, W., Liu, X., Duan, F., Qu, Y., & An, J. (2022). A one-year study on black carbon in urban Beijing: Concentrations, sources and implications on visibility. Atmospheric Pollution Research, 13(2). https://doi.org/10.1016/j.apr.2021.101307; Li, X., Sun, N., Jin, Q., Zhao, Z., Wang, L., Wang, Q., Gu, X., Li, Y., & Liu, X. (2022). Light absorption properties of black and brown carbon in winter over the North China Plain: Impacts of regional biomass burning. Atmospheric Environment, 278(February), 119100. https://doi.org/10.1016/j.atmosenv.2022.119100; Liang, G., Li, S., Yu, X., Bu, Q., Qu, H., Zhu, H., Yao, X., Lu, A., & Gong, W. (2022). Black carbon-mediated degradation of organic pollutants: A critical review. Process Safety and Environmental Protection, 160, 610–619. https://doi.org/10.1016/j.psep.2022.02.049; Liñán-Abanto, R. N., Salcedo, D., Arnott, P., Paredes-Miranda, G., Grutter, M., Peralta, O., Carabali, G., Serrano-Silva, N., Ruiz-Suárez, L. G., & Castro, T. (2021). Temporal variations of black carbon, carbon monoxide, and carbon dioxide in Mexico City: Mutual correlations and evaluation of emissions inventories. Urban Climate, 37(April). https://doi.org/10.1016/j.uclim.2021.100855; Liu, S., Luo, T., Zhou, L., Song, T., Wang, N., Luo, Q., Huang, G., Jiang, X., Zhou, S., Qiu, Y., & Yang, F. (2022). Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China. Environmental Pollution, 312(June), 119966. https://doi.org/10.1016/j.envpol.2022.119966; Liu, T., Mickley, L. J., Singh, S., Jain, M., DeFries, R. S., & Marlier, M. E. (2020). Crop residue burning practices across north India inferred from household survey data: Bridging gaps in satellite observations. Atmospheric Environment: X, 8(September), 100091. https://doi.org/10.1016/j.aeaoa.2020.100091; Liu, Xinhui, Zhu, R., Jin, B., Zu, L., Wang, Y., Wei, Y., & Zhang, R. (2023). Emission characteristics and light absorption apportionment of carbonaceous aerosols: A tunnel test conducted in an urban with fully enclosed use of E10 petrol. Environmental Research, 216(P3), 114701. https://doi.org/10.1016/j.envres.2022.114701; Liu, Xuyan, Wang, S., Zhang, Q., Jiang, C., Liang, L., Tang, S., Zhang, X., Han, X., & Zhu, L. (2023). Origins of black carbon from anthropogenic emissions and open biomass burning transported to Xishuangbanna, Southwest China. Journal of Environmental Sciences (China), 125, 277–289. https://doi.org/10.1016/j.jes.2021.12.020; Liu, Y., Liu, J., Yan, C., Xiao, J., Ye, J., Guo, L., & Zheng, M. (2023). Metrological traceability of black carbon measurement based on optical methods and its challenges in China : A review. Atmospheric Research, 292(February), 106854. https://doi.org/10.1016/j.atmosres.2023.106854; Lizundia-Loiola, J., Franquesa, M., Khairoun, A., & Chuvieco, E. (2022). Global burned area mapping from Sentinel-3 Synergy and VIIRS active fires. Remote Sensing of Environment, 282(March), 113298. https://doi.org/10.1016/j.rse.2022.113298; López-Caravaca, A., Crespo, J., Galindo, N., Yubero, E., Castañer, R., & Nicolás Aguilera, J. F. (2022). Characterization of aerosol absorption properties and PM1 at a mountain site located in the southeast of the Iberian Peninsula. Atmospheric Pollution Research, 13(10). https://doi.org/10.1016/j.apr.2022.101559; Lu, X., Zhang, X., Li, F., & Cochrane, M. A. (2022). Improved estimation of fire particulate emissions using a combination of VIIRS and AHI data for Indonesia during 2015–2020. Remote Sensing of Environment, 281(September), 113238. https://doi.org/10.1016/j.rse.2022.113238; Mani, S. A., Peltier, R. E., Le Mestre, M., Gunkel-Grillon, P., Shah, S., & Mani, F. S. (2022). Black carbon and elemental characterization of PM2.5 in dense traffic areas in two cities in Fiji, a Small Island Developing State. Science of the Total Environment, 845(June), 157136. https://doi.org/10.1016/j.scitotenv.2022.157136; Marinho, A. A. R., Gois, G. de, Oliveira-Júnior, J. F. de, Correia Filho, W. L. F., Santiago, D. de B., Silva Junior, C. A. da, Teodoro, P. E., de Souza, A., Capristo-Silva, G. F., Freitas, W. K. de, & Rogério, J. P. (2021). Temporal record and spatial distribution of fire foci in State of Minas Gerais, Brazil. Journal of Environmental Management, 280(April 2020). https://doi.org/10.1016/j.jenvman.2020.111707; Meena, G. S., Mukherjee, S., Buchunde, P., Safai, P. D., Singla, V., Aslam, M. Y., Sonbawne, S. M., Made, R., Anand, V., Dani, K. K., & Pandithurai, G. (2021). Seasonal variability and source apportionment of black carbon over a rural high-altitude and an urban site in western India. Atmospheric Pollution Research, 12(2), 32–45. https://doi.org/10.1016/j.apr.2020.10.006; Milinković, A., Gregorič, A., Grgičin, V. D., Vidič, S., Penezić, A., Kušan, A. C., Alempijević, S. B., Kasper-Giebl, A., & Frka, S. (2021). Variability of black carbon aerosol concentrations and sources at a Mediterranean coastal region. Atmospheric Pollution Research, 12(11). https://doi.org/10.1016/j.apr.2021.101221; Minderytė, A., Pauraite, J., Dudoitis, V., Plauškaitė, K., Kilikevičius, A., Matijošius, J., Rimkus, A., Kilikevičienė, K., Vainorius, D., & Byčenkienė, S. (2022). Carbonaceous aerosol source apportionment and assessment of transport-related pollution. Atmospheric Environment, 279(March), 119043. https://doi.org/10.1016/j.atmosenv.2022.119043; Morales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J. P., Sarmiento, O. L., Gallo-Murcia, S. M., & Contreras, Y. (2017). Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157(1), 135–145. https://doi.org/10.1016/j.atmosenv.2017.03.006; Mousavi, A., Sowlat, M. H., Hasheminassab, S., Polidori, A., & Sioutas, C. (2018). Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles Basin. Science of the Total Environment, 640–641, 1231–1240. https://doi.org/10.1016/j.scitotenv.2018.06.022; Mousavi, A., Sowlat, M. H., Lovett, C., Rauber, M., Szidat, S., Boffi, R., Borgini, A., De Marco, C., Ruprecht, A. A., & Sioutas, C. (2019). Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmospheric Environment, 203(September 2018), 252–261. https://doi.org/10.1016/j.atmosenv.2019.02.009; Mukherjee, S., Verma, A., Meena, G. S., Kodoli, S., Buchunde, P., Aslam, M. Y., Patil, R. D., Panicker, A., Safai, P. D., & Pandithurai, G. (2022). Compensatory effect of biomass burning on black carbon concentrations during COVID-19 lockdown at a high-altitude station in SW India. Atmospheric Pollution Research, 13(10), 101566. https://doi.org/10.1016/j.apr.2022.101566; Nam, J. J., Gustafsson, O., Kurt-Karakus, P., Breivik, K., Steinnes, E., & Jones, K. C. (2008). Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environmental Pollution, 156(3), 809–817. https://doi.org/10.1016/j.envpol.2008.05.027; Ngan, F., Loughner, C. P., & Stein, A. (2019). The evaluation of mixing methods in HYSPLIT using measurements from controlled tracer experiments. Atmospheric Environment, 219(April), 117043. https://doi.org/10.1016/j.atmosenv.2019.117043; Nie, D., Qiu, Z., Wang, X., & Liu, Z. (2022). Characterizing the source apportionment of black carbon and ultrafine particles near urban roads in Xi’an, China. Environmental Research, 215(P1), 114209. https://doi.org/10.1016/j.envres.2022.114209; Ningombam, S. S., Khatri, P., Larson, E. J. L., Dumka, U. C., Sarangi, C., & Vineeth, R. (2023). Classification of MODIS fire emission data based on aerosol absorption Angstrom exponent retrieved from AERONET data. Science of the Total Environment, 858(August 2022), 159898. https://doi.org/10.1016/j.scitotenv.2022.159898; Olson, M. R., Yuqin, W., de Foy, B., Li, Z., Bergin, M. H., Zhang, Y., & Schauer, J. J. (2022). Source attribution of black and Brown carbon near-UV light absorption in Beijing, China and the impact of regional air-mass transport. Science of the Total Environment, 807, 150871. https://doi.org/10.1016/j.scitotenv.2021.150871; Pani, S. K., Wang, S. H., Lin, N. H., Chantara, S., Lee, C. Te, & Thepnuan, D. (2020). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental Pollution, 259, 113871. https://doi.org/10.1016/j.envpol.2019.113871; Pei, C., Wu, Y., Tao, J., Zhang, L., Zhang, T., Zhang, R., & Li, S. (2022). Seasonal variations of mass absorption efficiency of elemental carbon in PM2.5 in urban Guangzhou of South China. Journal of Environmental Sciences, 133, 83–92. https://doi.org/10.1016/j.jes.2022.04.019; Pérez-Pastor, R., Salvador, P., García-Gómez, H., García-Alonso, S., Toro, M., Artíñano, B., & Alonso, R. (2023). Characterization of organic aerosols at the Natura 2000 remote environment of Sanabria Lake (Spain): Evaluating the influence of African dust and regional biomass burning smoke. Atmospheric Environment, 298(October 2022). https://doi.org/10.1016/j.atmosenv.2023.119634; Pirouzmand, A., Kowsar, Z., & Dehghani, P. (2018). Atmospheric dispersion assessment of radioactive materials during severe accident conditions for Bushehr nuclear power plant using HYSPLIT code. Progress in Nuclear Energy, 108(April), 169–178. https://doi.org/10.1016/j.pnucene.2018.05.015; Prabhu, V., Soni, A., Madhwal, S., Gupta, A., Sundriyal, S., Shridhar, V., Sreekanth, V., & Mahapatra, P. S. (2020). Black carbon and biomass burning associated high pollution episodes observed at Doon valley in the foothills of the Himalayas. Atmospheric Research, 243(December 2019), 105001. https://doi.org/10.1016/j.atmosres.2020.105001; Qiu, Y., Wu, X., Zhang, Y., Xu, L., Hong, Y., Chen, J., Chen, X., & Deng, J. (2019). Aerosol light absorption in a coastal city in Southeast China: Temporal variations and implications for brown carbon. Journal of Environmental Sciences (China), 80, 257–266. https://doi.org/10.1016/j.jes.2019.01.002; Qiu, Z., Wang, X., Liu, Z., & Luo, J. (2022). Quantitative assessment of cyclists’ exposure to PM and BC on different bike lanes. Atmospheric Pollution Research, 13(11), 101588. https://doi.org/10.1016/j.apr.2022.101588; Qu, Y., Liu, H., Zhou, Y., Dai, W., Shi, J., & Wang, N. (2023). Spectral dependence of light absorption and direct radiative forcing of the TSP , PM 10 , PM 2 . 5 and PM 0 . 1 in a rural region of northwestern China. Atmospheric Environment, 292(97), 119417. https://doi.org/10.1016/j.atmosenv.2022.119417; Rajesh, T. A., Ramachandran, S., & Dhaker, V. K. (2021). Black carbon aerosols: Relative source strengths of vehicular emissions and residential/open wood burning over an urban and a semi-urban environment. Atmospheric Pollution Research, 12(6), 101060. https://doi.org/10.1016/j.apr.2021.101060; Rangel-Buitrago, N., Gracia C., A., Vélez-Mendoza, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2018). Abundance and distribution of beach litter along the Atlantico Department, Caribbean coast of Colombia. Marine Pollution Bulletin, 136(August), 435–447. https://doi.org/10.1016/j.marpolbul.2018.09.040; Rangel-Buitrago, N., Mendoza, A. V., Gracia C, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2019). Litter impacts on cleanliness and environmental status of Atlantico department beaches, Colombian Caribbean coast. Ocean and Coastal Management, 179(March), 104835. https://doi.org/10.1016/j.ocecoaman.2019.104835; Rathod, T. D., Sahu, S. K., Tiwari, M., Bhangare, R. C., & Ajmal, P. Y. (2021). Light absorption enhancement due to mixing in black carbon and organic carbon generated during biomass burning. Atmospheric Pollution Research, 12(12), 101236. https://doi.org/10.1016/j.apr.2021.101236; Resquin, M. D., Santágata, D., Gallardo, L., Gómez, D., Rössler, C., & Dawidowski, L. (2018). Local and remote black carbon sources in the Metropolitan Area of Buenos Aires. Atmospheric Environment, 182(March), 105–114. https://doi.org/10.1016/j.atmosenv.2018.03.018; Reyna-Bensusan, N., Wilson, D. C., Davy, P. M., Fuller, G. W., Fowler, G. D., & Smith, S. R. (2019). Experimental measurements of black carbon emission factors to estimate the global impact of uncontrolled burning of waste. Atmospheric Environment, 213(January), 629–639. https://doi.org/10.1016/j.atmosenv.2019.06.047; Rodríguez, S., Cuevas, E., González, Y., Ramos, R., Romero, P. M., Pérez, N., Querol, X., & Alastuey, A. (2008). Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5-10 concentrations in a coastal city. Atmospheric Environment, 42(26), 6523–6534. https://doi.org/10.1016/j.atmosenv.2008.04.022; Roldan-Vargas, J. C., Toro-Gómez, M. V., & Marín-Sánchez, A. (2021). Estimación y modelización de la dispersión de black carbon en el Valle de Aburrá, Colombia. TecnoLógicas, 24(50), e1580. https://doi.org/10.22430/22565337.1580; Saha, A., & Despiau, S. (2009). Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmospheric Research, 92(1), 27–41. https://doi.org/10.1016/j.atmosres.2008.07.007; Şahin, Ü. A., Onat, B., Akın, Ö., Ayvaz, C., Uzun, B., Mangır, N., Doğan, M., & Harrison, R. M. (2020). Temporal variations of atmospheric black carbon and its relation to other pollutants and meteorological factors at an urban traffic site in Istanbul. Atmospheric Pollution Research, 11(7), 1051–1062. https://doi.org/10.1016/j.apr.2020.03.009; Sandradewi, J., Prévôt, A. S. H., Weingartner, E., Schmidhauser, R., Gysel, M., & Baltensperger, U. (2008). A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmospheric Environment, 42(1), 101–112. https://doi.org/10.1016/j.atmosenv.2007.09.034; Schkolnik, G., Chand, D., Hoffer, A., Andreae, M. O., Erlick, C., Swietlicki, E., & Rudich, Y. (2007). Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmospheric Environment, 41(5), 1107–1118. https://doi.org/10.1016/j.atmosenv.2006.09.035; Shi, Y., Gong, S., Zang, S., Zhao, Y., Wang, W., Lv, Z., Matsunaga, T., Yamaguchi, Y., & Bai, Y. (2021). High-resolution and multi-year estimation of emissions from open biomass burning in Northeast China during 2001–2017. Journal of Cleaner Production, 310(January), 127496. https://doi.org/10.1016/j.jclepro.2021.127496; Silva, L. F. O., Schneider, I. L., Artaxo, P., Núñez-Blanco, Y., Pinto, D., Flores, É. M. M., Gómez-Plata, L., Ramírez, O., & Dotto, G. L. (2022). Particulate matter geochemistry of a highly industrialized region in the Caribbean: Basis for future toxicological studies. Geoscience Frontiers, 13(1). https://doi.org/10.1016/j.gsf.2020.11.012; Skrynyk, O., Voloshchuk, V., Budak, I., & Bubin, S. (2019). Regional HYSPLIT simulation of atmospheric transport and deposition of the Chernobyl 137Cs releases. Atmospheric Pollution Research, 10(6), 1953–1963. https://doi.org/10.1016/j.apr.2019.09.001; Srivastava, R., Asutosh, A., Sabu, P., & Anilkumar, N. (2021). Investigation of Black Carbon characteristics over southern ocean: Contribution of fossil fuel and biomass burning. Environmental Pollution, 276, 116645. https://doi.org/10.1016/j.envpol.2021.116645; Swarnkar, A., & Gurjar, B. R. (2023). GIS-based emission inventory of heavy metals from road transport and NMVOCs associated with biomass burning for megacity Delhi. Urban Climate, 51(December 2022), 101600. https://doi.org/10.1016/j.uclim.2023.101600; Targino, A. C., Krecl, P., Oukawa, G. Y., & Mollinedo, E. M. (2022). A short climatology of black and brown carbon and their sources at a suburban site impacted by smoke in Brazil. xxxx, 1–14. https://doi.org/10.1016/j.jes.2022.12.025 ul Haq, E., Alam, K., Bibi, S., & Roy, A. (2023). High concentration of black carbon in northern Pakistan: Characteristics, source apportionment and emission source regions. Atmospheric Environment, 293(October 2022), 119475. https://doi.org/10.1016/j.atmosenv.2022.119475; Jiang, H., Li, J., Wang, J., Jiang, H., Mo, Y., Tang, J., Zhang, R., Pansak, W., Zhong, G., Zhao, S., Ning, J., Tian, C., & Zhang, G. (2022). Regional monitoring of biomass burning using passive air sampling technique reveals the importance of MODIS unresolved fires.; Lack, D. A., Moosmüller, H., McMeeking, G. R., Chakrabarty, R. K., & Baumgardner, D. (2014). Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties. Analytical and Bioanalytical Chemistry, 406(1), 99–122. https://doi.org/10.1007/s00216-013-7402-3; Ngoc Trieu, T. T., Morino, I., Uchino, O., Tsutsumi, Y., Izumi, T., Sakai, T., Shibata, T., Ohyama, H., & Nagahama, T. (2023). Long-range transport of CO and aerosols from Siberian biomass burning over northern Japan during 18–20 May 2016. Environmental Pollution, 322(December 2022). https://doi.org/10.1016/j.envpol.2023.121129; Nielsen, I. E., Eriksson, A. C., Lindgren, R., Martinsson, J., Nyström, R., Nordin, E. Z., Sadiktsis, I., Boman, C., Nøjgaard, J. K., & Pagels, J. (2017). Time-resolved analysis of particle emissions from residential biomass combustion – Emissions of refractory black carbon, PAHs and organic tracers. Atmospheric Environment, 165, 179–190. https://doi.org/10.1016/j.atmosenv.2017.06.033; Pani, S. K., Lin, N. H., Chantara, S., Wang, S. H., Khamkaew, C., Prapamontol, T., & Janjai, S. (2018). Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Science of the Total Environment, 633, 892–911. https://doi.org/10.1016/j.scitotenv.2018.03.204; Targino, A. C., Krecl, P., Oukawa, G. Y., & Mollinedo, E. M. (2022). A short climatology of black and brown carbon and their sources at a suburban site impacted by smoke in Brazil. xxxx, 1–14. https://doi.org/10.1016/j.jes.2022.12.025; Ul Haq, E., Alam, K., Bibi, S., & Roy, A. (2023). High concentration of black carbon in northern Pakistan: Characteristics, source apportionment and emission source regions. Atmospheric Environment, 293(October 2022), 119475. https://doi.org/10.1016/j.atmosenv.2022.119475; Valenzuela, A., Olmo, F. J., Lyamani, H., Antón, M., Titos, G., Cazorla, A., & Alados-Arboledas, L. (2015). Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain). Atmospheric Research, 154, 1–13. https://doi.org/10.1016/j.atmosres.2014.10.015; Voinea, S., & Stefan, S. (2019). Study of the Ångström turbidity over Romanian Black Sea coast. Journal of Atmospheric and Solar-Terrestrial Physics, 182(November 2018), 67–78. https://doi.org/10.1016/j.jastp.2018.11.001; Wang, Q., Wang, L., Tao, M., Chen, N., Lei, Y., Sun, Y., Xin, J., Li, T., Zhou, J., Liu, J., Ji, D., & Wang, Y. (2021). Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity Wuhan and its surrounding cities, China. Science of the Total Environment, 791, 148226. https://doi.org/10.1016/j.scitotenv.2021.148226; Wang, T., Zhao, G., Tan, T., Yu, Y., Tang, R., Dong, H., Chen, S., Li, X., Lu, K., Zeng, L., Gao, Y., Wang, H., Lou, S., Liu, D., Hu, M., Zhao, C., & Guo, S. (2021). Effects of biomass burning and photochemical oxidation on the black carbon mixing state and light absorption in summer season. Atmospheric Environment, 248, 118230. https://doi.org/10.1016/j.atmosenv.2021.118230; Wang, W., Khanna, N., Lin, J., & Liu, X. (2023). Black carbon emissions and reduction potential in China: 2015–2050. Journal of Environmental Management, 329(June 2022), 117087. https://doi.org/10.1016/j.jenvman.2022.117087; Wang, X., Li, J., Zhang, X., Cheng, Z., Jiang, H., Jiang, H., Lin, B., Zhu, S., Zhao, S., Liu, J., Tian, C., Zhang, R., & Zhang, G. (2023). An innovative passive sampler to reveal the high contribution of biomass burning to black carbon over Indo-China Peninsula: Radiocarbon constraints. Atmospheric Environment, 294(August 2022), 119522. https://doi.org/10.1016/j.atmosenv.2022.119522; Wyche, K. P., Cordell, R. L., Smith M, L., Smallbone, K. L., Lyons, P., Hama, S. M. L., Monks, P. S., Staelens, J., Hofman, J., Stroobants, C., Roekens, E., Kos, G. P. A., Weijers, E. P., Panteliadis, P., & Dijkema, M. B. A. (2020). The spatio-temporal evolution of black carbon in the North-West European ‘air pollution hotspot.’ Atmospheric Environment, 243(July), 117874. https://doi.org/10.1016/j.atmosenv.2020.117874; Xiao, H. W., Mao, D. Y., Huang, L. L., Xiao, H. Y., & Wu, J. F. (2021). Evaluation of black carbon source apportionment based on one year’s daily observations in Beijing. Science of the Total Environment, 773, 145668. https://doi.org/10.1016/j.scitotenv.2021.145668; Xiao, H., Xu, Y., & Xiao, H. (2023). Source apportionment of black carbon aerosols in winter across China. 298(January). https://doi.org/10.1016/j.atmosenv.2023.119622; Xu, R., Tie, X., Li, G., Zhao, S., Cao, J., Feng, T., & Long, X. (2018). Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling. Science of the Total Environment, 645, 901–912. https://doi.org/10.1016/j.scitotenv.2018.07.165; Yang, J., Ji, Z., Kang, S., & Tripathee, L. (2021). Contribution of South Asian biomass burning to black carbon over the Tibetan Plateau and its climatic impact. Environmental Pollution, 270, 116195. https://doi.org/10.1016/j.envpol.2020.116195; Yang, Xiaoyang, Ji, D., Li, J., He, J., Gong, C., Xu, X., Wang, Z., Liu, Y., Bi, F., Zhang, Z., & Chen, Y. (2023). Impacts of springtime biomass burning in Southeast Asia on atmospheric carbonaceous components over the Beibu Gulf in China: Insights from aircraft observations. Science of the Total Environment, 857(August 2022), 159232. https://doi.org/10.1016/j.scitotenv.2022.159232; Yang, Xiuleng, Orjuela, J. P., McCoy, E., Vich, G., Anaya-Boig, E., Avila-Palencia, I., Brand, C., Carrasco-Turigas, G., Dons, E., Gerike, R., Götschi, T., Nieuwenhuijsen, M., Panis, L. I., Standaert, A., & de Nazelle, A. (2022). The impact of black carbon (BC) on mode-specific galvanic skin response (GSR) as a measure of stress in urban environments. Environmental Research, 214(June), 16–18. https://doi.org/10.1016/j.envres.2022.114083; Yu, R., Liu, X. C., Larson, T., & Wang, Y. (2015). Coherent approach for modeling and nowcasting hourly near-road Black Carbon concentrations in Seattle, Washington. Transportation Research Part D: Transport and Environment, 34, 104–115. https://doi.org/10.1016/j.trd.2014.10.009; Yuan, M., Wang, Q., Zhao, Z., Zhang, Y., Lin, Y., Wang, X., Chow, J. C., Watson, J. G., Tian, R., Liu, H., Tian, J., & Cao, J. (2022). Seasonal variation of optical properties and source apportionment of black and brown carbon in Xi’an, China. Atmospheric Pollution Research, 13(6), 101448. https://doi.org/10.1016/j.apr.2022.101448; Zeng, X., Li, S., Xing, J., Yang, J., Wang, Q., Song, G., Teng, M., Zhou, D., & Lu, J. (2023). CALIPSO-observed Southeast Asia biomass-burning influences on aerosol vertical structure in Guangdong-Hong Kong-Macao Greater Bay Area. Atmospheric Research, 289(April), 106755. https://doi.org/10.1016/j.atmosres.2023.106755; Zhang, Junmei, Qi, A., Wang, Q., Huang, Q., Yao, S., Li, J., Yu, H., & Yang, L. (2022). Characteristics of water-soluble organic carbon (WSOC) in PM2.5 in inland and coastal cities, China. Atmospheric Pollution Research, 13(6), 101447. https://doi.org/10.1016/j.apr.2022.101447; Zhang, L., Luo, Z., Du, W., Li, G., Shen, G., Cheng, H., & Tao, S. (2020). Light absorption properties and absorption emission factors for indoor biomass burning. Environmental Pollution, 267, 115652. https://doi.org/10.1016/j.envpol.2020.115652; Zhang, Y., Zhang, X., Fan, X., Ni, C., Sun, Z., Wang, S., Fan, J., & Zheng, C. (2020). Modifying effects of temperature on human mortality related to black carbon particulates in Beijing, China. Atmospheric Environment, 243(24), 117845. https://doi.org/10.1016/j.atmosenv.2020.117845; Zhu, C., Miyakawa, T., Irie, H., Choi, Y., Taketani, F., & Kanaya, Y. (2021). Light-absorption properties of brown carbon aerosols in the Asian outflow: Implications of a combination of filter and ground remote-sensing observations at Fukue Island, Japan. Science of the Total Environment, 797, 149155. https://doi.org/10.1016/j.scitotenv.2021.149155; https://hdl.handle.net/11323/10487; Corporacion Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  2. 2
    Dissertation/ Thesis

    المساهمون: Schneider, Ismael, Blanco Donado, Erika

    وصف الملف: application/pdf

    Relation: Aguilera, M. (2010). Estudio de la dependencia del Coeficiente de Absorción de Luz con la longitud de onda. Obtenido de Universidad de Santiago de Chile : https://www.fisica.usach.cl/sites/fisica/files/aguilera_tapia_mauricio_ricardo.pdf; AIDA & IEMA. (2016). Contaminantes Climáticos de Vida Corta. Asociación Interamericana para la Defensa del Ambiente (AIDA); Instituto de Energia e Medio Ambiente (IEMA), https://www.aida-americas.org/sites/default/files/featured_pubs/reporte_ccvc.pdf.; AIDA. (2009). El Carbono Negro: Concepto, Efectos Climáticos y Oportunidades en su Control. Mexico: https://aidaamericas.org/sites/default/files/publication/AIDA_Carbono%20Negro%20FINAL.pdf.; Ajtai, T., Kiss-Albert, G., iUtry, N., Tóth, Á., Hoffer, A., Szabó, G., & Bozóki, Z. (2019). Diurnal variation of aethalometer correction factors and optical absorption assessment of nucleation events using multi-wavelength photoacoustic spectroscopy. Journal of Environmental Sciences, 96-109 https://doi.org/10.1016/j.jes.2019.01.022.; Alcaldía de Barranquilla. (5 de Diciembre de 2016). Barranquilla dispone de 3 estaciones de monitoreo de calidad de aire. Alcaldía de Barranquilla.; Alcaldía de Barranquilla. (10 de mayo de 2018). Calidad del aire en Barranquilla, en permanente vigilancia por organismos ambientales.; Alcaldía De Barranquilla. (2019). Información General de Barranquilla.; Alexander, D. T., Crozier, P. A., & Anderson, J. R. (2008). Brown Carbon Spheres in East Asian Outflow and Their Optical Properties. Scienc; Alvarez, E. (1 de Septiembre de 2019). En video %7C Comunidad se queja de las quemas en isla Salamanca. EL HERALDO, pág. 1.; Ballester, F., Iñiguez, C., Pérez-Hoyos, S., & Tenías, J. (2002). Contaminación atmosférica por partículas y salud en Valencia, 1994-1996. Gac Sanit 2002;16(6), 16.; Banco Mundial. (20 de septiembre de 2018). Los desechos: un análisis actualizado del futuro de la gestión de los desechos sólidos. Banco Mundial .; Barrios, N. (2 de Agosto de 2019). Impactos de los incendios forestales. Alianza El Heraldo - Universidad de la Costa.; Bergman, J. (13 de mayo de 2011). Carbón Negro. Obtenido de Ventanas Al Universo: https://www.windows2universe.org/earth/climate/black_carbon.html&edu=elem&lang=s p; Bessa, M. J., Brandão, F., Viana, M., Gomes, J., Monfort, E., Cassee, F., . . . PauloTeixeira, J. (2010). Nanoparticle exposure and hazard in the ceramic industry: An overview of potential sources, toxicity and health effects. Environmental Research, https://doi.org/10.1016/j.envres.2020.109297.; Blanco, C., Calvo, A., Alves, C., Fialho, P., Nunes, T., Gomez, J., . . . Fraile, R. (2020). Aethalometer measurements in a road tunnel: A step forward in the characterization of black carbon emissions from traffic. Science of The Total Environment, https://doi.org/10.1016/j.scitotenv.2019.135483.; Blanco, E. (2020). Evaluación de la Variabilidad Espacial de Black Carbon en un Área Urbana del Caribe Colombiano. Barranquilla: Universidad de la Costa.; Bogotá Cómo Vamos. (23 de Mayo de 2019). Preocupa crecimiento de parque automotor en Bogotá. Obtenido de http://www.bogotacomovamos.org/blog/preocupa-crecimiento-deparque-automotor/; Boldo, E., & Querol, X. (2014). Nuevas políticas europeas de control de la calidad del aire: ¿un paso adelante para la mejora de la salud pública? Elsevier, 263-266 https://doi.org/10.1016/j.gaceta.2014.04.003.; Bond. (18 de octubre de 2007). Testimony for the Hearing on Black Carbon and Climate Change. Obtenido de University of Illinois at Urbana-Champaign: http://dust.ess.uci.edu/ppr/ppr_Bon07_wrt.pdf; Bond, T. C., & Bergstrom, R. W. (2006). Light Absorption by Carbonaceous Particles: An Investigative Review . Aerosol Science and Technology, 27-67.; Bonilla, L. (2010). El Sector Industrial De Barranquilla En El Siglo XXI ¿Cambian finalmente las tendencias? Documentos De Trabajo Sobre Economía Regional.; Brand, V. S., Kumar, P., Santos, A., Pritchart, J. P., Geurs, K., & Andrade, M. d. (2019). Impact of route choice and period of the day on cyclists exposure to black carbon in London, Rotterdam and São Paulo. Journal of Transport Geography, 153-165 https://doi.org/10.1016/j.jtrangeo.2019.03.007.; Briggs, N., & Long, C. (2016). Critical review of black carbon and elemental carbon source apportionment in Europe and the United States. Atmospheric Environment, 409-427 https://doi.org/10.1016/j.atmosenv.2016.09.002.; Broitman, D., & Portnov, B. (2020). Forecasting health effects potentially associated with the relocation of a major air pollution source. Environmental Research, https://doi.org/10.1016/j.envres.2019.109088.; CEMDA. (23 de junio de 2014). Alertan organizaciones impactos del black carbon en la salud, la calidad del aire y el cambio climático. Centro Mexicano de Derecho Ambiental.; Chen, X., Kang, S., & Yang, J. (2019). Investigation of distribution, transportation, and impact factors of atmospheric black carbon in the Arctic region based on a regional climatechemistry model. Environmental Pollution.; Chen, X., Wang, Z., Yu, F., Pan, X., & Yang, W. (2017). Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model. Atmospheric Environment, 44-56.; Clean Air Institute. (Mayo de 2013). La Calidad del Aire en América Latina: Una Visión Panorámica. Obtenido de Minambiente: https://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/cont aminacion_atmosferica/La_Calidad_del_Aire_en_Am%C3%A9rica_Latina.pdf; Corde, G., Thibault, L., & Dégeilh, P. (21 de Agosto de 2018). Diésel, gasolina o eléctricos: todos los coches contaminan. The Conversation.; Cortés, J. (2013). Evaluación De La Contaminación Atmosférica En El Aire Ambiente De Manizales Por COPs Y PM10. Obtenido de Universidad Nacional de Colombia : http://bdigital.unal.edu.co/12171/1/4101005.2013.pdf; Delfino, R., Tjoa, T., Gillen, D., Staimer, N., Polidori, A., Arhami, M., . . . Longhurst, J. (2010). Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology, 396–404 https://doi.org/10.1097/EDE.0b013e3181d5e19b.; Díaz, C. (octubre de 2016). Estudio Del Carbono Negro (Black Carbon) Contenido En Partículas Suspendidas En Ambientes Urbanos. Obtenido de Centro de Investigación en Materiales Avanzados, S.C. CIMAV: https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/2244/1/CARLOS%20DIA Z_TESIS%20MCTA.pdf; Domíngez, M. (2015). La contaminación ambiental, un tema con compromiso social. Producción Más Limpia, http://www.scielo.org.co/pdf/pml/v10n1/v10n1a01.pdf.; Donahue, N. M. (2018). Chapter 3.2 Air Pollution and Air Quality. Estados Unidos.; Dons, E., Panis, L. I., Poppel, M. V., Theunis, J., & Wets, G. (2012). Personal exposure to Black Carbon in transport microenvironments. Atmospheric Environment.; Drinovec, L., G. M., Zotter, P., Prévôt, A. S., Ruckstuhl, C., Coz, E., . . . Hansen, A. D. (2015). The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric Teasurement Techniques, https://doi.org/10.5194/amt-8-1965-2015.; Dubowsky, S., Suh, H., Schwartz, J., Coull, B., & Gold, D. (2006). Diabetes, obesity, and hypertension may enhance associations between air pollution and markers of systemic inflammation. Environmental Health Perspectives, 992-998 https://doi.org/10.1289/ehp.8469.; Estinov, S., Mokhov, I., & Likhosherstova, A. (2019). Exploring large-scale black-carbon air pollution over Northern Eurasia in summer 2016 using MERRA-2 reanalysis data. Atmospheric Research, https://doi.org/10.1016/j.atmosres.2019.104763.; Fernández, G. (2012). Ley de Lambert-Beer. Artículos Ciencia Y tecnología.; Franco, J., & Segura, J. (2016). Exposición de peatones a la contaminación del aire en vías con alto tráfico vehicular. Revista de Salud Pública, 179–187 http://dx.doi.org/10.15446/rsap.v18n2.49237.; Fresnel Cachon, B., Stéphane, F., Verdin, A., Ayi-Fanou, L., Sylvain, B., Fabrice, C., . . . Cachon, B. F. (2014). Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin. Environmental Pollution, 340-351 https://doi.org/10.1016/j.envpol.2013.10.026.; G, C. F., M, J. C., & González, G. J. (2012). Contaminación del aire y vulnerabilidad de individuos expuestos: un caso de estudio para el centro de Medellín. Facultad Nacional de Salud Publica, 13.; Galdos, M., Cavalett, O., Seabra, J., Nogueira, L. A., & Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 576-582 https://doi.org/10.1016/j.apenergy.2012.11.002.; Gan, W., Koehoorn, M., Davies, H., Demers, P., Tamburic, L., & Brauer, M. (2011). Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. Environmental Health Perspectives, 501–507 https://doi.org/10.1289/ehp.1002511.; geographic, n. (5 de septiembre de 2010). national geographic. Obtenido de ¿Qué gases son los causantes del efecto invernadero?: http://www.nationalgeographic.es/medio-ambiente/lacontaminacion-del-aire; Gobbo, A., Costa, L., Cota, K., & Pompeo, L. (2016). Las partículas finas estimado por el modelo matemático y las hospitalizaciones por neumonía y el asma en niños. Revista paulista de Pediatria, 23.; González, M. (2010). Transmitancia y absorbancia. La Guia; Goosse, H., Barriat, P., Lefebvre, W., Loutre, M., & Zunz, V. (2015). Introduction to climate dynamics and climate modeling. Online textbook - http://www.climate.be/textbook/.; GreenFacts. (2006). Resume de informe de la OMS.; Hemming, B. L. (2012). Report to Congress on Black Carbon. Environmental Protection Agency, Washington, DC.; Hoffmann, D. (16 de mayo de 2016). ¿Qué son los Contaminantes Climáticos de Vida Corta (CCVC)? Obtenido de Cambio Climático Bolivia : https://www.cambioclimaticobolivia.org/pdf/cc-20160516-_qu__son_l___.pdf; Hu, Z., Kang, S., Li, X., Li, C., & Sillanpää, M. (2020). Relative contribution of mineral dust versus black carbon to Third Pole glacier melting. Atmospheric Environment.; ICBA. (2016). Guía del usuario de Carbón Negro. Guía del usuario de Negro de Carbón.; IDEAM & Minambiente. (2017). Calidad del aire. Obtenido de http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/calidad-del-aire; IDEAM. (noviembre de 2016). Segundo Boletín De Contaminación Atmosférica . Obtenido de Minambiente - Colombia : http://documentacion.ideam.gov.co/openbiblio/bvirtual/023669/Segundo_boletin_contam inacion_atmosferica.pdf; IDEAM. (2017). Informe del Estado de la Calidad del Aire en Colombia 2016. Bogotá, D.C. .; IDEAM, & Minambiente. (2017). Calidad del aire. Obtenido de http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/calidad-del-aire; IGSD. (Agosto de 2008). Reducing Black Carbon May Be Fastest Strategy for Slowing Climate Change . Obtenido de Climate Briefing Note: 29 : http://www.igsd.org/docs/BC%20Summary%206July08.pdf; Isaza, J., & Campo, D. (2007). Cambio Climático: Glaciaciones y calentamiento global. Bogotá: Universidad de Bogotá - Jorge Tadeo Lozano.; ISGLOBAL. (4 de diciembre de 2014). El carbono negro es más tóxico que las PM2.5 para la salud. Instituto de Salud Global Barcelona.; Ito, K., Mathes, R., Ross, Z., Nádas, A., Thurston, G., & Matte, T. (2011). Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York City. Environ Health Perspect, 467-473 https://doi.org/10.1289/ehp.1002667.; Jacobson, M. (2014). Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. Geophysical Research, 8980-9002.; Jeong, H., & Park, D. (2018). Characteristics of peak concentrations of black carbon encountered by elementary school children. Science of The Total Environment, 418-430 https://doi.org/10.1016/j.scitotenv.2018.04.399.; Jiménez, A. (12 de Noviembre de 2015). Black Carbon el enemigo silencioso y letal de la salud, medio ambiente y competitividad. Corresponsables, págs. https://www.corresponsables.com/actualidad/black-carbon-el-enemigo-silencioso-y-letalde-la-salud-medio-ambiente-y-competitividad.; Johnson, R. (2010). Black Carbon: Impact on Climate Change and Human Health. PressRepublican - Climate Science.; Krecl, P., Créso, A., Wiese, L., Ketzel, M., & Corrêa, M. (2016). Screening of short-lived climate pollutants in a street canyon in a mid-sized city in Brazil. Atmospheric Pollution Research, 1022-1036 https://doi.org/10.1016/j.apr.2016.06.004.; Kucbel, M., Corsaro, A., Švédová, B., Raclavská, H., Raclavsk, K., & Juchelková, D. (2017). Temporal and seasonal variations of black carbon in a highly polluted European city: Apportionment of potential sources and the effect of meteorological conditions. Journal of Environmental Management, 1178-1189 https://doi.org/10.1016/j.jenvman.2017.05.038.; Kumar Pani, S., Wang, S.-H., Lin, N.-H., Chantara, S., Lee, C.-T., & Thepnuan, D. (2020). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental Pollution, https://doi.org/10.1016/j.envpol.2019.113871.; Lack, D. A., Moosmüller, H., McMeeking, G. R., Chakrabarty, R. K., & Baumgardner, D. (2014). Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties. Anal Bioanal Chem, 99–122 https://dx.doi.org/10.1007%2Fs00216-013-7402-3.; Vargas, C. (Julio de 2011). Efectos de la fracción gruesa (PM10-2.5) del material particulado sobre la salud humana. Obtenido de Ministerio del Medio Ambiente de Chile: http://planesynormas.mma.gob.cl/archivos/2016/proyectos/Efectos_en_la_salud_particul ado_Claudio_Vargas_2011_MINSAL.pdf; Velásquez, C. (12 de julio de 2018). Quemas sin control y calidad del aire en Barranquilla. Universidad del Norte.; Villadiego, K., & Velay, M. (12 de Diciembre de 2014). Outdoor thermal comfort in a hot and humid climate of Colombia: A field study in Barranquilla. Building and enviroment, 142- 152 https://doi.org/10.1016/j.buildenv.2014.01.017. Obtenido de CIOH Oceanografia Operacional: https://www.cioh.org.co/meteorologia/Climatologia/ResumenBarranquilla4.php; Villalba, D., Fajardo, E., & Romero, H. (2018). Relación entre el material particulado PM10 y variables meteorológicas en la ciudad de Bucaramanga – Colombia: Una aplicación del análisis de datos longitudinal. XXVIII Simposio Internacional de Estadística.; Wang, Q., J.P.Schwarz, Cao, J., Gao, R., Fahey, D., Hu, T., . . . Shen, Z. (2014, Mayo). Black carbon aerosol characterization in a remote area of Qinghai–Tibetan Plateau, western China. Retrieved from Science of The Total Environment, Pages 151-158: https://doi.org/10.1016/j.scitotenv.2014.01.098; World Health Organization. (2016). Ambient air pollution: A global assessment of exposure and burden of disease. World Health Organization.; Cantillo, A. y Lozano, J. (2020). Evaluación de las concentraciones de Black Carbon en la ciudad de Barranquilla Atlántico. Trabajo de Pregrado. Recuperado de https://hdl.handle.net/11323/6296; https://hdl.handle.net/11323/6296; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  3. 3
    Dissertation/ Thesis

    المؤلفون: Blanco Donado, Erika

    المساهمون: Schneider, Ismael Luis, Silva Oliveira, Marcos Leandro

    وصف الملف: application/pdf

    Relation: Allen, M. R. (2015). Short-Lived Promise ? The science and policy of cumulative and short-lived climate pollutants. University of Oxford.; Apte, J. S., Kirchstetter, T. W., Reich, A. H., Deshpande, S. J., Kaushik, G., Chel, A., … Nazaroff, W. W. (2011). Concentrations of fi ne , ultra fi ne , and black carbon particles in auto-rickshaws in New Delhi , India, 45, 4470–4480. https://doi.org/10.1016/j.atmosenv.2011.05.028; Arnott, W. P., Moosmu, H., Rogers, C. F., Jin, T., & Bruch, R. (1999). Photoacoustic spectrometer for measuring light absorption by aerosol : instrument description, 33, 2845–2852.; Aruna, K., Kumar, T. V. L., Rao, D. N., Murthy, B. V. K., Babu, S. S., & Moorthy, K. K. (2013). Journal of Atmospheric and Solar-Terrestrial Physics Black carbon aerosols in a tropical semiurban coastal environment : Effects of boundary layer dynamics and long range transport. Journal of Atmospheric and Solar-Terrestrial Physics, 104(March 2011), 116–125. https://doi.org/10.1016/j.jastp.2013.08.020; Aurell, J., Gullett, B. K., & Tabor, D. (2015). Emissions from southeastern U.S. Grasslands and pine savannas: Comparison of aerial and ground field measurements with laboratory burns. Atmospheric Environment, 111, 170–178. https://doi.org/10.1016/j.atmosenv.2015.03.001; Barman, N., & Gokhale, S. (2019). Science of the Total Environment Urban black carbon - source apportionment , emissions and long-range transport over the Brahmaputra River Valley. Science of the Total Environment, 693, 133577. https://doi.org/10.1016/j.scitotenv.2019.07.383; Becerril-Valle, M., Coz, E., Prévôt, A. S. H., Močnik, G., Pandis, S. N., Sánchez de la Campa, A. M., … Artíñano, B. (2017). Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmospheric Environment, 169, 36–53. https://doi.org/10.1016/j.atmosenv.2017.09.014; Beegum, S. N., Moorthy, K. K., Babu, S. S., Satheesh, S. K., Vinoj, V., Badarinath, K. V. S., … Pant, P. (2009). Spatial distribution of aerosol black carbon over India during pre-monsoon season. Atmospheric Environment, 43(5), 1071–1078. https://doi.org/10.1016/j.atmosenv.2008.11.042; Betancourt, R. M., Galvis, B., Rincón-riveros, J. M., Rincón-caro, M. A., Rodriguez-valencia, A., & Sarmiento, O. L. (2019). Personal exposure to air pollutants in a Bus Rapid Transit System : Impact of fl eet age and emission standard, 202(January), 117–127. https://doi.org/10.1016/j.atmosenv.2019.01.026; Bhaskar, B. V., Rajeshkumar, R. M., Muthuchelian, K., & Ramachandran, S. (2018b). Journal of Atmospheric and Solar-Terrestrial Physics Spatial , temporal and source study of black carbon in the atmospheric aerosols over di ff erent altitude regions in Southern India. Journal of Atmospheric and Solar-Terrestrial Physics, 179(September), 416–424. https://doi.org/10.1016/j.jastp.2018.09.009; Bigazzi, A. Y., & Figliozzi, M. A. (2014). Transport Reviews : A Transnational Review of Urban Bicyclists ’ Intake and Uptake of Traffic-Related Air Pollution, (October), 37–41. https://doi.org/10.1080/01441647.2014.897772; Blackstock, J. J., & Allen, M. R. (2012). the science and policy of short-lived climate pollutants.; Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171; Boniardi, L., Dons, E., Campo, L., Poppel, M. Van, Panis, L. I., & Fustinoni, S. (2019a). Annual , seasonal , and morning rush hour Land Use Regression models for black carbon in a school catchment area of Milan , Italy. Environmental Research, 176(June), 108520. https://doi.org/10.1016/j.envres.2019.06.001; Boniardi, L., Dons, E., Campo, L., Poppel, M. Van, Panis, L. I., & Fustinoni, S. (2019b). Annual , seasonal , and morning rush hour Land Use Regression models for black carbon in a school catchment area of Milan , Italy. Environmental Research, 176(February), 108520. https://doi.org/10.1016/j.envres.2019.06.001; Booth, B. E. N., & Bellouin, N. (2015). Black carbon and atmospheric feedbacks, 7–8.; Brantley, H. L., Hagler, G. S. W., Kimbrough, E. S., Williams, R. W., Mukerjee, S., & Neas, L. M. (2014). Mobile air monitoring data-processing strategies and effects on spatial air pollution trends, (1), 2169–2183. https://doi.org/10.5194/amt-7-2169-2014; Brewer, T. L. (2019). Black carbon emissions and regulatory policies in transportation. Energy Policy, 129(February), 1047–1055. https://doi.org/10.1016/j.enpol.2019.02.073; Buonanno, G., Stabile, L., Morawska, L., & Russi, A. (2013). Children exposure assessment to ultra fi ne particles and black carbon : The role of transport and cooking activities. Atmospheric Environment, 79, 53–58. https://doi.org/10.1016/j.atmosenv.2013.06.041; Caponi, L., Bernardoni, V., Bove, M. C., Brotto, P., Calzolai, G., Massab, D., … Nava, S. (2015). Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols, 108, 1–12. https://doi.org/10.1016/j.atmosenv.2015.02.058; Carvalho, A. M., & Krecl, P. (2018). Variations in individuals ’ exposure to black carbon particles during their daily activities : a screening study in Brazil, (2011).; Cereceda-balic, F., Gorena, T., Soto, C., Vidal, V., Lapuerta, M., & Moosmüller, H. (2019). Science of the Total Environment Optical determination of black carbon mass concentrations in snow samples : A new analytical method. Science of the Total Environment, 697, 133934. https://doi.org/10.1016/j.scitotenv.2019.133934; Chand, M., Kumar, V., Kumar, R., Umer, S., Chakrawarthy, E., & Acharya, P. (2018). Urban Climate Seasonal characteristics of black carbon aerosol mass concentrations and in fl uence of meteorology , New Delhi ( India ). Urban Climate, 24(December 2017), 968–981. https://doi.org/10.1016/j.uclim.2017.12.002; Chen, Y., & Xie, S. (2014). Science of the Total Environment Characteristics and formation mechanism of a heavy air pollution episode caused by biomass burning in Chengdu , Southwest China. Science of the Total Environment, The, 473–474, 507–517. https://doi.org/10.1016/j.scitotenv.2013.12.069; Coen, M. C., Weingartner, E., Apituley, A., Ceburnis, D., Flentje, H., & Henzing, J. S. (2010). Minimizing light absorption measurement artifacts of the Aethalometer : evaluation of five correction algorithms, 457–474.; Dai, Q., Bi, X., Liu, B., Li, L., Ding, J., Song, W., … Hopke, P. K. (2018). Chemical nature of PM 2 . 5 and PM 10 in Xi ’ an , China : Insights into primary emissions and secondary particle formation *. Environmental Pollution, 240, 155–166. https://doi.org/10.1016/j.envpol.2018.04.111; Dons, E., Int, L., Poppel, M. Van, Theunis, J., & Wets, G. (2012). Personal exposure to Black Carbon in transport microenvironments, 55, 392–398. https://doi.org/10.1016/j.atmosenv.2012.03.020; Dons, E., Temmerman, P., Poppel, M. Van, Bellemans, T., Wets, G., & Int, L. (2013). Science of the Total Environment Street characteristics and traf fi c factors determining road users ’ exposure to black carbon, 447, 72–79.; Dons, E., Temmerman, P., Van Poppel, M., Bellemans, T., Wets, G., & Int Panis, L. (2013). Street characteristics and traffic factors determining road users’ exposure to black carbon. Science of the Total Environment, 447, 72–79. https://doi.org/10.1016/j.scitotenv.2012.12.076; Drinovec, L. Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., & Müller, T. (2015). The “ dual-spot ” Aethalometer : an improved measurement of aerosol black carbon with real-time loading compensation, 1965–1979. https://doi.org/10.5194/amt- 8-1965-2015; EPA. (2012). Report to Congress on Black Carbon, (March).; Evans, M., Kholod, N., Kuklinski, T., Denysenko, A., Smith, S. J., Staniszewski, A., … Bond, T. C. (2017). Black carbon emissions in Russia : A critical review, 163.; Fátima, B., Oliveira, A. De, Ignotti, E., Artaxo, P., Hilário, P., Junger, W. L., & Hacon, S. (2012). Risk assessment of PM 2 . 5 to child residents in Brazilian Amazon region with biofuel production, 1–11.; Franco, J. F., & Segura Contreras, J. F. (2016). Exposición de peatones a la contaminación del aire en vías con alto tráfico vehicular. Revista de Salud Pública, 18(2), 179–187. https://doi.org/10.15446/rsap.v18n2.49237; Franco, J. F., Segura, J. F., & Mura, I. (2016). Air Pollution alongside Bike-Paths in, 4(November), 1–10. https://doi.org/10.3389/fenvs.2016.00077; Fuller, G. W., Tremper, A. H., Baker, T. D., Espen, K., & Butter, D. (2014). Contribution of wood burning to PM 10 in London, 87, 87–94. https://doi.org/10.1016/j.atmosenv.2013.12.037; Galdos, M., Cavalett, O., Seabra, J. E. A., Augusto, L., Nogueira, H., & Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 104, 576–582. https://doi.org/10.1016/j.apenergy.2012.11.002; Gately, C. K., Hutyra, L. R., Peterson, S., & Sue Wing, I. (2017). Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data. Environmental Pollution, 229, 496–504. https://doi.org/10.1016/j.envpol.2017.05.091; Goals, S. D. (2019). DISEASES AND AIR POLLUTION WHO EUROPEAN HIGH-LEVEL CONFERENCE ON NONCOMMUNICABLE DISEASES Time to Deliver : meeting NCD targets to achieve, (April).; Goel, A., & Kumar, P. (2014). A review of fundamental drivers governing the emissions , dispersion and exposure to vehicle-emitted nanoparticles at signalised traf fi c intersections. Atmospheric Environment, 97, 316–331. https://doi.org/10.1016/j.atmosenv.2014.08.037 Ham, W., Vijayan, A., Schulte, N., & Herner, J. D. (2017). Commuter exposure to PM 2 . 5 , BC , and UFP in six common transport microenvironments in Sacramento , California. Atmospheric Environment, 167, 335–345. https://doi.org/10.1016/j.atmosenv.2017.08.024; Hankey, S., & Marshall, J. D. (2015). On-bicycle exposure to particulate air pollution : Particle number , black carbon , PM 2 . 5 , and particle size. Atmospheric Environment, 122, 65–73. https://doi.org/10.1016/j.atmosenv.2015.09.025; Hansen, A. D. A., Rosen, H., & Novakov, T. (1982). Real-time measurement of the absorption coefficient of aerosol particles Energy & Environment Division , Berkeley , California Received 16 June 1982 . Sponsored by R . W . Terhune , Ford Motor Company © 1982 Optical Society of America .; Harrison, R. M., Beddows, D. C. S., Jones, A. M., Calvo, A., & Alves, C. (2013). An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations. Atmospheric Environment, 80, 540–548. https://doi.org/10.1016/j.atmosenv.2013.08.026; Healy, R. M., Wang, J. M., Sofowote, U., Su, Y., Debosz, J., Noble, M., … Doerksen, G. (2019). Black carbon in the Lower Fraser Valley , British Columbia : Impact of 2017 wildfires on local air quality and aerosol optical properties. Atmospheric Environment, 217(March), 116976. https://doi.org/10.1016/j.atmosenv.2019.116976; Heintzenberg, J., Cereceda-balic, F., Vidal, V., & Leck, C. (2016). Science of the Total Environment Scavenging of black carbon in Chilean coastal fogs. Science of the Total Environment, 541, 341–347. https://doi.org/10.1016/j.scitotenv.2015.09.057; Hofman, J., Samson, R., Joosen, S., Blust, R., & Lenaerts, S. (2018). Cyclist exposure to black carbon , ultra fi ne particles and heavy metals : An experimental study along two commuting routes near Antwerp , Belgium, 164(March 2018), 530–538.; Janssen, N. A. H., Hoek, G., Simic-lawson, M., Fischer, P., Bree, L. Van, Brink, H., … Cassee, F. R. (2011). Review Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM 10 and PM 2 . 5, 119(12), 1691–1699.; Jarjour, S., Jerrett, M., Westerdahl, D., Nazelle, A. De, Hanning, C., Daly, L., … Balmes, J. (2013). Cyclist route choice , traffic-related air pollution , and lung function : a scripted exposure study, 1–12.; Ježek, I., Katrašnik, T., Westerdahl, D., & Moˇ, G. (2015). Black carbon , particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method, (2013), 11011–11026. https://doi.org/10.5194/acp-15-11011- 2015; Jing, A., Zhu, B., Wang, H., & Yu, X. (2019). Source apportionment of black carbon in different seasons in the northern suburb of Nanjing , China. Atmospheric Environment, 201(January), 190–200. https://doi.org/10.1016/j.atmosenv.2018.12.060; Johnson, B. T., Haywood, J. M., Langridge, J. M., Darbyshire, E., Morgan, W. T., Szpek, K., … Bellouin, N. (2016). Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign, 14657–14685. https://doi.org/10.5194/acp-16-14657-2016; Kecorius, S., Jakob, L., Wiedensohler, A., Pfeifer, S., Haudek, A., & Mardo, V. (2019). A new method to measure real-world respiratory tract deposition of inhaled ambient black carbon *, 248, 295–303. https://doi.org/10.1016/j.envpol.2019.02.021; Kirchstetter, T. W., Novakov, T., & Hobbs, P. V. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, 109, 1–12. https://doi.org/10.1029/2004JD004999; Krecl, P., Alonso, Y., Créso, A., Oliveira, M. De, Segersson, D., Parra, Á., … Gidhagen, L. (2019). Science of the Total Environment Modelling urban cyclists ’ exposure to black carbon particles using high spatiotemporal data : A statistical approach, 679, 115–125.; Krecl, P., Créso, A., Pereira, T., & Ketzel, M. (2018). Determination of black carbon , PM 2 . 5 , particle number and NOx emission factors from roadside measurements and their implications for emission inventory development. Atmospheric Environment, 186(May), 229–240. https://doi.org/10.1016/j.atmosenv.2018.05.042; Krecl, P., & David, M. (2018). Spatial variability of on-bicycle black carbon concentrations in the ~ o Paulo : A pilot study * megacity of S a Admir Cr e, 242.; Krecl, P., & Gallet, J. (2014). PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM A feasibility study of mapping light-absorbing carbon using a taxi fleet as a mobile platform, (February 2017). https://doi.org/10.3402/tellusb.v66.23533; Lack, D. A., Moosmüller, H., Mcmeeking, G. R., Chakrabarty, R. K., & Baumgardner, D. (2014). Characterizing elemental , equivalent black , and refractory black carbon aerosol particles : a review of techniques , their limitations and uncertainties, 99–122. https://doi.org/10.1007/s00216-013-7402-3; Lei, X., Bian, J., Xiu, G., Hu, X., & Gu, X. (2017). The mobile monitoring of black carbon and its association with roadside data in the Chinese megacity of Shanghai. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-8454-2; Li, B., Lei, X., Xiu, G., Gao, C., Gao, S., & Qian, N. (2015). Science of the Total Environment Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai, 525, 237–245. https://doi.org/10.1016/j.scitotenv.2015.03.088; Lin, W., Dai, J., Liu, R., Zhai, Y., Yue, D., & Hu, Q. (2019). Integrated assessment of health risk and climate e ff ects of black carbon in the Pearl River Delta region , China. Environmental Research, 176(October 2018), 108522. https://doi.org/10.1016/j.envres.2019.06.003; Liñan Abaranto Rafael. (2019). TESIS BC MEXICO.pdf. Universidad Nacional Autonoma de Mexico. Retrieved from http://132.248.9.195/ptd2019/noviembre/0797808/Index.html; Liu, B., Minle, M., Wu, C., Li, J., Li, Y., Ting, N., … Jie, Y. (2019). Potential exposure to fine particulate matter ( PM 2 . 5 ) and black carbon on jogging trails in Macau, 198(December 2017), 23–33.; Liu, C., Chung, C. E., & Yin, Y. (2017). The Absorption Ångström Exponent of black carbon : from numerical aspects, (October), 1–30.; Liu, M., Peng, X., Meng, Z., Zhou, T., Long, L., & She, Q. (2019). Science of the Total Environment Spatial characteristics and determinants of in-traf fi c black carbon in Shanghai , China : Combination of mobile monitoring and land use regression model. Science of the Total Environment, 658, 51–61. https://doi.org/10.1016/j.scitotenv.2018.12.135; Liu, Y., Yan, C., & Zheng, M. (2018). Science of the Total Environment Source apportionment of black carbon during winter in Beijing. Science of the Total Environment, 618, 531–541. https://doi.org/10.1016/j.scitotenv.2017.11.053; Long, C. M., Nascarella, M. A., & Valberg, P. A. (2013). Carbon black vs . black carbon and other airborne materials containing elemental carbon : Physical and chemical distinctions. Environmental Pollution, 181, 271–286. https://doi.org/10.1016/j.envpol.2013.06.009; Martinsson, J., Azeem, H. A., Sporre, M. K., Bergström, R., Ahlberg, E., & Öström, E. (2017). Carbonaceous aerosol source apportionment using the Aethalometer model – evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden, 4265–4281. https://doi.org/10.5194/acp-17-4265-2017; Martinsson, J., Eriksson, A. C., Malmborg, V. B., Ahlberg, E., Andersen, C., Lindgren, R., … Pagels, J. H. (2015). the Light Absorption of Biomass Combustion Aerosol. https://doi.org/10.1021/acs.est.5b03205; Maura, R., Miranda, D., Perez-martinez, P. J., Fatima, M. De, Noronha, F., Ribeiro, D., & Paulo, S. (2019). Relationship between black carbon ( BC ) and heavy tra ffi c in São. Transportation Research Part D, 68(February 2017), 84–98. https://doi.org/10.1016/j.trd.2017.09.002; Mcfarland, A. R. (1982). WIND TUNNEL EVALUATION OF THE BRITISH SMOKE, 16(2), 325– 328.; Bhaskar, B. V., Rajeshkumar, R. M., Muthuchelian, K., & Ramachandran, S. (2018a). Journal of Atmospheric and Solar-Terrestrial Physics Spatial , temporal and source study of black carbon in the atmospheric aerosols over di ff erent altitude regions in Southern India. Journal of Atmospheric and Solar-Terrestrial Physics, 179(August), 416–424. https://doi.org/10.1016/j.jastp.2018.09.009; Merico, E., Gambaro, A., Argiriou, A., Alebic-juretic, A., Barbaro, E., Cesari, D., … Contini, D. (2017). Atmospheric impact of ship traffic in four Adriatic-Ionian port-cities : Comparison and harmonization of different approaches, 50, 431–445. https://doi.org/10.1016/j.trd.2016.11.016 Merritt, A., Georgellis, A., Andersson, N., & Bero, G. (2019). Science of the Total Environment Personal exposure to black carbon in Stockholm , using different intra- urban transport modes, 674, 279–287.; Miller, A. J., Raduma, D. M., George, L. A., & Fry, J. L. (2019). Source apportionment of trace elements and black carbon in an urban industrial area ( Portland , Oregon ). Atmospheric Pollution Research, 10(3), 784–794. https://doi.org/10.1016/j.apr.2018.12.006; MINAMBIENTE. (2018). No Title.; Moosmuller, H. Chakrabarty, R. K., & Arnott, W. P. (2009). Journal of Quantitative Spectroscopy & Radiative Transfer Aerosol light absorption and its measurement : A review, 110, 844–878. https://doi.org/10.1016/j.jqsrt.2009.02.035; Morales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J. P., Sarmiento, O. L., GalloMurcia, S. M., & Contreras, Y. (2017). Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157(1), 135–145. https://doi.org/10.1016/j.atmosenv.2017.03.006; Moteki, N., Kondo, Y., & Nakamura, S. (2010). Method to measure refractive indices of small nonspherical particles : Application to black carbon particles. Journal of Aerosol Science, 41(5), 513–521. https://doi.org/10.1016/j.jaerosci.2010.02.013; Mousavi, A., Sowlat, M. H., Lovett, C., Rauber, M., Szidat, S., Bo, R., … Sioutas, C. (2019). Source apportionment of black carbon ( BC ) from fossil fuel and biomass burning in metropolitan Milan , Italy, 203(January), 252–261. https://doi.org/10.1016/j.atmosenv.2019.02.009; Nasir, J., Zeb, B., Sorooshian, A., Mansha, M., Alam, K., Ahmad, I., … Shafiq, M. (2019). Journal of Atmospheric and Solar-Terrestrial Physics Spatio-temporal variations of absorbing aerosols and their relationship with meteorology over four high altitude sites in glaciated region of Pakistan. Journal of Atmospheric and Solar-Terrestrial Physics, 190(May), 84–95. https://doi.org/10.1016/j.jastp.2019.05.010; Nations, U., & Programme, E. (2014). ANNUAL REPORT 2014.; Nazelle, A. De, Fruin, S., Westerdahl, D., Martinez, D., Ripoll, A., Kubesch, N., &; Nieuwenhuijsen, M. (2012). A travel mode comparison of commuters ’ exposures to air pollutants in Barcelona. Atmospheric Environment, 59, 151–159. https://doi.org/10.1016/j.atmosenv.2012.05.013; Okokon, E. O., Yli-tuomi, T., Turunen, A. W., Taimisto, P., Pennanen, A., Vouitsis, I., … Lanki, T. (2017). Particulates and noise exposure during bicycle , bus and car commuting : A study in three European cities. Environmental Research, 154(December 2016), 181–189. https://doi.org/10.1016/j.envres.2016.12.012; Ozdemir, H., Pozzoli, L., Kindap, T., Demir, G., Mertoglu, B., Mihalopoulos, N., … Unal, A. (2014). Science of the Total Environment Spatial and temporal analysis of black carbon aerosols in Istanbul megacity. Science of the Total Environment, The, 473–474, 451–458. https://doi.org/10.1016/j.scitotenv.2013.11.102; Park, R. J., Jacob, D. J., & Logan, J. A. (2007). Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States, 41, 7389–7400. https://doi.org/10.1016/j.atmosenv.2007.05.061; Park, S. S., & Son, S. (2017). Relationship between carbonaceous components and aerosol light absorption during winter at an urban site of Gwangju , Korea. Atmospheric Research, 185, 73–83. https://doi.org/10.1016/j.atmosres.2016.11.005; Pattinson, W., Longley, I., & Kingham, S. (2014). Using mobile monitoring to visualise diurnal variation of traffic pollutants across two near-highway neighbourhoods. Atmospheric Environment, 94, 782–792. https://doi.org/10.1016/j.atmosenv.2014.06.007; Peña Alvarado Isai. (n.d.). TESIS DE METODOS DE BC.pdf.; Peralta, O., Ortínez-alvarez, A., Basaldud, R., Santiago, N., Alvarez-ospina, H., De, K., … Gavilán, A. (2019). Atmospheric black carbon concentrations in Mexico. Atmospheric Research, 230(February), 104626. https://doi.org/10.1016/j.atmosres.2019.104626; Peters, J., Van den Bossche, J., Reggente, M., Van Poppel, M., De Baets, B., & Theunis, J. (2014). Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium. Atmospheric Environment, 92, 31–43. https://doi.org/10.1016/j.atmosenv.2014.03.039; Petzold. (2013). Recommendations for reporting “ black carbon ” measurements, 8365–8379. https://doi.org/10.5194/acp-13-8365-2013; Petzold, A., Schloesser, H., Sheridan, P. J., Patrick, W., Ogren, J. A., Virkkula, A., … Virkkula, A. (2010). Evaluation of Multiangle Absorption Photometry for Measuring Aerosol Light Absorption Evaluation of Multiangle Absorption Photometry for Measuring Aerosol Light Absorption, 6826(June). https://doi.org/10.1080/027868290901945; Poppel, M. Van, Peters, J., & Bleux, N. (2013). Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environmental Pollution, 183, 224–233. https://doi.org/10.1016/j.envpol.2013.02.020; PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM A feasibility study of mapping light-absorbing carbon using a taxi fleet as a mobile platform. (2020), 1, 1–18.; Qiu, Y., Wu, X., Zhang, Y., Xu, L., Hong, Y., Chen, J., … Deng, J. (2019). ScienceDirect Aerosol light absorption in a coastal city in Southeast China : Temporal variations and implications for brown carbon. Journal of Environmental Sciences, 80, 257–266. https://doi.org/10.1016/j.jes.2019.01.002; Rajeevan, K., Sumesh, R. K., Resmi, E. A., & Unnikrishnan, C. K. (2019). An observational study on the variation of black carbon aerosol and source identi fi cation over a tropical station in south India. Atmospheric Pollution Research, 10(1), 30–44. https://doi.org/10.1016/j.apr.2018.06.009; RAMANATHAN, V. y CARMICHAEL, C.-. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, Vol 1, 221–227.; Rattigan, O. V, Civerolo, K., Doraiswamy, P., Felton, H. D., & Hopke, P. K. (2013). Long Term Black Carbon Measurements at Two Urban Locations in New York, 1181–1196. https://doi.org/10.4209/aaqr.2013.02.0060; Reddington, C. L., Spracklen, D. V, Artaxo, P., Ridley, D. A., Rizzo, L. V, & Arana, A. (2016). Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations, 11083–11106. https://doi.org/10.5194/acp-16- 11083-2016; Reid, S., Hobbs, V., Vanderlei, J., Weiss, E., & Eck, F. (1998). absorption and black carbon content of aerosols from biomass burning in Brazil independent of wavelength and has a mean value of _ os extinction - Os + o •, 103(98), 31–32.; Rizzo, L. V, Correia, A. L., Artaxo, P., & Proc, A. S. (2011). and Physics Spectral dependence of aerosol light absorption over the Amazon Basin, 8899–8912. https://doi.org/10.5194/acp- 11-8899-2011; Robinson, C. A. L. (2013). Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions, 7683–7693. https://doi.org/10.5194/acp-13-7683-2013; Rojas, N. Y., Acevedo, H., & Aristiz, B. H. (2017). Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city, 152. https://doi.org/10.1016/j.atmosenv.2016.12.048; Romero-lankao, P., Qin, H., & Borbor-cordova, M. (2013). Social Science & Medicine Exploration of health risks related to air pollution and temperature in three Latin American cities, 83, 110–118.; Sandradewi, J. (2008). Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter, 42(9), 3316–3323.; Saturno, J., Holanda, B. A., Pöhlker, C., Ditas, F., Wang, Q., Brito, J., … Andreae, M. O. (2017). Black and brown carbon over central Amazonia : Long-term aerosol measurements at the ATTO site.; Saturno, J., Pöhlker, C., Massabò, D., Brito, J., Carbone, S., Cheng, Y., … Pöhlker, M. L. (2017). Comparison of different Aethalometer correction schemes and a reference multiwavelength absorption technique for ambient aerosol data, 2837–2850.; Schnaiter, M., Linke, C., & Ajtai, T. (2011). Inter-comparison of optical absorption coefficients of atmospheric aerosols determined by a multi-wavelength photoacoustic spectrometer and an Aethalometer under sub-urban wintry conditions, 42, 859–866. https://doi.org/10.1016/j.jaerosci.2011.07.008; Sciare, J., Sarda-este, R., Martinon, L., & Favez, O. (2009). Evidence for a significant contribution of wood burning aerosols to PM 2 . 5 during the winter season in Paris , France, 43(February 2005), 3640–3644. https://doi.org/10.1016/j.atmosenv.2009.04.035; Singh, V., Ravindra, K., Sahu, L., & Sokhi, R. (2018). Trends of atmospheric black carbon concentration over the United Kingdom. Atmospheric Environment, 178(April 2017), 148– 157. https://doi.org/10.1016/j.atmosenv.2018.01.030; Slowik, J. G., Cross, E. S., Han, J., Davidovits, P., Onasch, T. B., Jayne, J. T., … Petzold, A. (2007). An Inter-Comparison of Instruments Measuring Black Carbon Content of Soot Particles, 295–314. https://doi.org/10.1080/02786820701197078; Sol, D. (2017). Chemical characterization of fi lterable PM 2 . 5 emissions generated from regulated stationary sources in the Metropolitan Area of Costa rzano Arias , Víctor Hugo Beita Guerrero, 8, 709–717.; Taheri, A., Aliasghari, P., & Hosseini, V. (2019). Black carbon and PM 2 . 5 monitoring campaign on the roadside and residential. Atmospheric Environment, 116928. https://doi.org/10.1016/j.atmosenv.2019.116928; Tai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fi ne particulate matter ( PM 2 . 5 ) and meteorological variables in the United States : Implications for the sensitivity of PM 2 . 5 to climate change. Atmospheric Environment, 44(32), 3976–3984. https://doi.org/10.1016/j.atmosenv.2010.06.060; Targino, A. C., Gibson, M. D., Krecl, P., Rodrigues, M. V. C., dos Santos, M. M., & de Paula Corrêa, M. (2016). Hotspots of black carbon and PM 2.5 in an urban area and relationships to traffic characteristics. Environmental Pollution, 218, 475–486. https://doi.org/10.1016/j.envpol.2016.07.027; Titos, G., Águila, A., Cazorla, A., Lyamani, H., Casquero-vera, J. A., Colombi, C., … Aladosarboledas, L. (2017). Science of the Total Environment Spatial and temporal variability of carbonaceous aerosols : Assessing the impact of biomass burning in the urban environment, 578, 613–625. https://doi.org/10.1016/j.scitotenv.2016.11.007; UNEP. (2017). The Emissions Gap Report 2017.; UNEP & WMO 1b. (2011). Integrated Assessment of Black Carbon and Tropospheric Ozone. United Nations Environment Programme (UNEP) 7 World Meteorolocial Organization. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Integrated+Assessment+of+Bl ack+Carbon+and+Tropospheric+Ozone#4; Valenzuela, A., Arola, A., Antón, M., Quirantes, A., & Alados-arboledas, L. (2017). Black carbon radiative forcing derived from AERONET measurements and models over an urban location in the southeastern Iberian Peninsula, 191, 44–56. https://doi.org/10.1016/j.atmosres.2017.03.007; Van Poppel, M., Peters, J., & Bleux, N. (2013). Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environmental Pollution, 183, 224–233. https://doi.org/10.1016/j.envpol.2013.02.020; Vinicius, M., Rodrigues, C., Moreira, M., & Paula, M. De. (2016). Hotspots of black carbon and PM 2 . 5 in an urban area and relationships to traf fi c characteristics *, 1–12.; Volkamer, R., Martini, F. S., Molina, L. T., Salcedo, D., Jimenez, J. L., & Molina, M. J. (2007). A missing sink for gas-phase glyoxal in Mexico City : Formation of secondary organic aerosol, 34, 1–5. https://doi.org/10.1029/2007GL030752; Wang, Q., Schwarz, J. P., Cao, J., Gao, R., Fahey, D. W., Hu, T., … Shen, Z. (2014). Science of the Total Environment Black carbon aerosol characterization in a remote area of Qinghai – Tibetan Plateau , western China. Science of the Total Environment, The, 479–480, 151–158. https://doi.org/10.1016/j.scitotenv.2014.01.098; WHO. (2012). On the variability of Black Smoke and carbonaceous aerosols in the Netherlands. Atmospheric Environment, 41(28), 5908–5920. https://doi.org/10.1016/j.atmosenv.2007.03.042; Williams, R. D., & Knibbs, L. D. (2016). Daily personal exposure to black carbon : A pilot study. Atmospheric Environment, 132, 296–299. https://doi.org/10.1016/j.atmosenv.2016.03.023; Xiao, S., Yu, X., Zhu, B., Kumar, K. R., Li, M., & Li, L. (2020). Characterization and source apportionment of black carbon aerosol in the Nanjing Jiangbei New Area based on two years of measurements from Aethalometer. Journal of Aerosol Science, 139(July 2019), 105461. https://doi.org/10.1016/j.jaerosci.2019.105461; Ye, Q., Gu, P., Li, H. Z., Robinson, E. S., Lipsky, E. M., Kaltsonoudis, C., … Donahue, N. M. (2018). Normalized d #/ dlogd va Number Distribution In highways a with In area with On In site tunnels high traffic high traffic density Normalized d #/ dlogd va Vehicle Vehicle Diameter Diameter va. https://doi.org/10.1021/acs.est.8b01011; Zhan, C., Wan, D., Han, Y., & Zhang, J. (2019). Science of the Total Environment Historical variation of black carbon and PAHs over the last ~ 200 years in central North China : Evidence from lake sediment records. Science of the Total Environment, 690, 891–899. https://doi.org/10.1016/j.scitotenv.2019.07.008; Zhu, C., Cao, J., Hu, T., Shen, Z., Tie, X., Huang, H., & Wang, Q. (2017). Science of the Total Environment Spectral dependence of aerosol light absorption at an urban and a remote site over the Tibetan Plateau, 591(97), 14–21. https://doi.org/10.1016/j.scitotenv.2017.03.057; Zhu, C., Kanaya, Y., Yoshikawa-inoue, H., & Irino, T. (2019). Sources of atmospheric black carbon and related carbonaceous components at Rishiri Island , Japan : The roles of Siberian wild fi res and of crop residue burning in China *. Environmental Pollution, 247, 55–63. https://doi.org/10.1016/j.envpol.2019.01.003; Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Mocnik, G., … Prévôt, A. S. H. (2017). Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmospheric Chemistry and Physics, 17(6), 4229–4249. https://doi.org/10.5194/acp-17-4229-2017; http://hdl.handle.net/11323/6012; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/