-
1Dissertation/ Thesis
المؤلفون: Reales López, Gabriel Jose
المساهمون: Blanco Donado, Erica, Oliveira Silva, Luis
مصطلحات موضوعية: Black Carbón, Quemas de biomasa, Exponente de absorción de Ångström, Etalómetro, Biomass burning, Ångström absorption exponent, Etalometer
جغرافية الموضوع: Barranquilla, Atlántico
وصف الملف: 125 páginas; application/pdf
Relation: Ambade, B., Sankar, T. K., Panicker, A. S., Gautam, A. S., & Gautam, S. (2021). Characterization, seasonal variation, source apportionment and health risk assessment of black carbon over an urban region of East India. Urban Climate, 38(November 2020), 100896. https://doi.org/10.1016/j.uclim.2021.100896; Anaya, J. A., Chuvieco, E., & Palacios-Orueta, A. (2009). Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 257(4), 1237–1246. https://doi.org/10.1016/j.foreco.2008.11.016; Babativa, C. L. (2018). Exploración de perfiles verticales de humedad relativa, temperatura y concentraciones de PM2. 5 y black carbon, en la localidad de puente aranda. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/733/%0Ahttps://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1732&context=ing_ambiental_sanitari; Badarinath, K. V. S., Latha, K. M., Chand, T. R. K., Reddy, R. R., Gopal, K. R., Reddy, L. S. S., Narasimhulu, K., & Kumar, K. R. (2007). Black carbon aerosols and gaseous pollutants in an urban area in North India during a fog period. Atmospheric Research, 85(2), 209–216. https://doi.org/10.1016/j.atmosres.2006.12.007; Balakrishnaiah, G., Raghavendra kumar, K., Suresh Kumar Reddy, B., Rama Gopal, K., Reddy, R. R., Reddy, L. S. S., Nazeer Ahammed, Y., Narasimhulu, K., Krishna Moorthy, K., & Suresh Babu, S. (2011). Analysis of optical properties of atmospheric aerosols inferred from spectral AODs and Ångström wavelength exponent. Atmospheric Environment, 45(6), 1275–1285. https://doi.org/10.1016/j.atmosenv.2010.12.002; Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755; Bibi, S., Alam, K., Chishtie, F., Bibi, H., & Rahman, S. (2017). Temporal variation of Black Carbon concentration using Aethalometer observations and its relationships with meteorological variables in Karachi, Pakistan. Journal of Atmospheric and Solar-Terrestrial Physics, 157–158(April), 67–77. https://doi.org/10.1016/j.jastp.2017.03.017; Blanco-Alegre, C., Calvo, A. I., Alves, C., Fialho, P., Nunes, T., Gomes, J., Castro, A., Oduber, F., Coz, E., & Fraile, R. (2020). Aethalometer measurements in a road tunnel: A step forward in the characterization of black carbon emissions from traffic. Science of the Total Environment, 703, 135483. https://doi.org/10.1016/j.scitotenv.2019.135483; Blanco-Donado, E. P., Schneider, I. L., Artaxo, P., Lozano-Osorio, J., Portz, L., & Oliveira, M. L. S. (2021). Source identification and global implications of black carbon. Geoscience Frontiers, xxxx, 101149. https://doi.org/10.1016/j.gsf.2021.101149; Bolaño-Truyol, J., Schneider, I. L., Cuadro, H. C., Bolaño-Truyol, J. D., & Oliveira, M. L. S. (2021). Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean. Geoscience Frontiers, xxxx, 101152. https://doi.org/10.1016/j.gsf.2021.101152; Bolaño-Truyol, J., Schneider, I. L., Cuadro, H. C., Bolaño-Truyol, J. D., & Oliveira, M. L. S. (2022). Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean. Geoscience Frontiers, 13(1), 0–6. https://doi.org/10.1016/j.gsf.2021.101152; Bounakhla, Y., Benchrif, A., Tahri, M., Costabile, F., Zahry, F., Bounakhla, M., & El Hassan, E. K. (2022). Black carbon aerosols at an urban site in North Africa (Kenitra, Morocco). Atmospheric Pollution Research, 13(8), 101489. https://doi.org/10.1016/j.apr.2022.101489; Brasseur, O., Declerck, P., Heene, B., & Vanderstraeten, P. (2015). Modelling black carbon concentrations in two busy street canyons in brussels using CANSBC. Atmospheric Environment, 101, 72–81. https://doi.org/10.1016/j.atmosenv.2014.10.049; Byčenkienė, S., Pashneva, D., Uogintė, I., Pauraitė, J., Minderytė, A., Davulienė, L., Plauškaitė, K., Skapas, M., Dudoitis, V., Touqeer, G., Andriejauskiene, J., Araminienė, V., Dzenajavičienė, E. F., Sicard, P., Gudynaitė-Franckevičienė, V., Varnagirytė-Kabašinskienė, I., Pedišius, N., Lemanas, E., & Vonžodas, T. (2022). Evaluation of the anthropogenic black carbon emissions and deposition on Norway spruce and silver birch foliage in the Baltic region. Environmental Research, 207(October 2021). https://doi.org/10.1016/j.envres.2021.112218; Casallas, A., Castillo-Camacho, M. P., Guevara-Luna, M. A., González, Y., Sanchez, E., & Belalcazar, L. C. (2022). Spatio-temporal analysis of PM2.5 and policies in Northwestern South America. Science of the Total Environment, 852(May). https://doi.org/10.1016/j.scitotenv.2022.158504; Casquero-Vera, J. A., Lyamani, H., Titos, G., Minguillón, M. C., Dada, L., Alastuey, A., Querol, X., Petäjä, T., Olmo, F. J., & Alados-Arboledas, L. (2021). Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. Science of the Total Environment, 768. https://doi.org/10.1016/j.scitotenv.2021.145282; Chen, P., Kang, S., Gan, Q., Yu, Y., Yuan, X., Liu, Y., Tripathee, L., Wang, X., & Li, C. (2022). Concentrations and light absorption properties of PM2.5 organic and black carbon based on online measurements in Lanzhou, China. Journal of Environmental Sciences, 131, 84–95. https://doi.org/10.1016/j.jes.2022.08.007; Cheng, Y. H., Huang, Y. C., Pipal, A. S., Jian, M. Y., & Liu, Z. S. (2022). Source apportionment of black carbon using light absorption measurement and impact of biomass burning smoke on air quality over rural central Taiwan: A yearlong study. Atmospheric Pollution Research, 13(1). https://doi.org/10.1016/j.apr.2021.101264; Chuvieco, E., Pettinari, M. L., Koutsias, N., Forkel, M., Hantson, S., & Turco, M. (2021). Human and climate drivers of global biomass burning variability. Science of the Total Environment, 779, 146361. https://doi.org/10.1016/j.scitotenv.2021.146361; Duarte, A. L., Schneider, I. L., Artaxo, P., & Oliveira, M. L. S. (2022). Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city. Geoscience Frontiers, 13(1), 101168. https://doi.org/10.1016/j.gsf.2021.101168; Dumka, U. C., Kaskaoutis, D. G., Tiwari, S., Safai, P. D., Attri, S. D., Soni, V. K., Singh, N., & Mihalopoulos, N. (2018). Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter. Atmospheric Environment, 194(August), 93–109. https://doi.org/10.1016/j.atmosenv.2018.09.033; Dutta, M., & Chatterjee, A. (2021). Assessment of the relative influences of long-range transport, fossil fuel and biomass burning from aerosol pollution under restricted anthropogenic emissions: A national scenario in India. Atmospheric Environment, 255(April), 118423. https://doi.org/10.1016/j.atmosenv.2021.118423; Galdos, M., Cavalett, O., Seabra, J. E. A., Nogueira, L. A. H., & Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 104, 576–582. https://doi.org/10.1016/j.apenergy.2012.11.002; Garavito, G., Martinez, B., Builes, J. J., Aguirre, D., Mendoza, L., Afanador, C. H., Egea, E., & Marrugo, J. (2015). Indels markers set and ancestry estimates in a population sample from Atlantic Department of Colombia. Forensic Science International: Genetics Supplement Series, 5, e177–e178. https://doi.org/10.1016/j.fsigss.2015.09.071; Goel, V., Hazarika, N., Kumar, M., & Singh, V. (2021). Source apportionment of black carbon over Delhi: A case study of extreme biomass burning events and Diwali festival. Urban Climate, 39(March), 100926. https://doi.org/10.1016/j.uclim.2021.100926; Goel, V., Hazarika, N., Kumar, M., Singh, V., Thamban, N. M., & Tripathi, S. N. (2021). Variations in Black Carbon concentration and sources during COVID-19 lockdown in Delhi. Chemosphere, 270, 129435. https://doi.org/10.1016/j.chemosphere.2020.129435; González-álvarez, Á., Viloria-Marimón, O. M., Coronado-Hernández, Ó. E., Vélez-Pereira, A. M., Tesfagiorgis, K., & Coronado-Hernández, J. R. (2019). Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020358; Hamilton, G. A., & Hartnett, H. E. (2013). Soot black carbon concentration and isotopic composition in soils from an arid urban ecosystem. Organic Geochemistry, 59, 87–94. https://doi.org/10.1016/j.orggeochem.2013.04.003; Harrison, R. M., Beddows, D. C. S., Jones, A. M., Calvo, A., Alves, C., & Pio, C. (2013). An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations. Atmospheric Environment, 80, 540–548. https://doi.org/10.1016/j.atmosenv.2013.08.026; He, C., Takano, Y., Liou, K. N., Yang, P., Li, Q., & Mackowski, D. W. (2016). Intercomparison of the GOS approach, superposition T-matrix method, and laboratory measurements for black carbon optical properties during aging. Journal of Quantitative Spectroscopy and Radiative Transfer, 184, 287–296. https://doi.org/10.1016/j.jqsrt.2016.08.004; He, Q., Guo, Q., Umeki, K., Ding, L., Wang, F., & Yu, G. (2021). Soot formation during biomass gasification: A critical review. Renewable and Sustainable Energy Reviews, 139(March 2020), 110710. https://doi.org/10.1016/j.rser.2021.110710; Healy, R. M., Sofowote, U., Su, Y., Debosz, J., Noble, M., Jeong, C. H., Wang, J. M., Hilker, N., Evans, G. J., Doerksen, G., Jones, K., & Munoz, A. (2017). Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmospheric Environment, 161, 34–47. https://doi.org/10.1016/j.atmosenv.2017.04.034; Hernandez, A. J., Morales-Rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051; Highwood, E. J., & Kinnersley, R. P. (2006). When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International, 32(4), 560–566. https://doi.org/10.1016/j.envint.2005.12.003 http://queimadas.dgi.inpe.br/queimadas/bdqueimadas; Ichoku, C., & Kaufman, Y. J. (2005). A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2636–2649. https://doi.org/10.1109/TGRS.2005.857328; Iraji, F., Memarian, M. H., Joghataei, M., & Ghafarian Malamiri, H. R. (2021). Determining the source of dust storms with use of coupling WRF and HYSPLIT models: A case study of Yazd province in central desert of Iran. Dynamics of Atmospheres and Oceans, 93(December 2020), 101197. https://doi.org/10.1016/j.dynatmoce.2020.101197; Jeong, H., & Park, D. (2017). Characteristics of elementary school children’s daily exposure to black carbon (BC) in Korea. Atmospheric Environment, 154, 179–188. https://doi.org/10.1016/j.atmosenv.2017.01.045; Jiang, H., Li, J., Wang, J., Jiang, H., Mo, Y., Tang, J., Zhang, R., Pansak, W., Zhong, G., Zhao, S., Ning, J., Tian, C., & Zhang, G. (2022). Regional monitoring of biomass burning using passive air sampling technique reveals the importance of MODIS unresolved fires. Environment International, 170(July), 107582. https://doi.org/10.1016/j.envint.2022.107582; Jiang, K., Xing, R., Luo, Z., Huang, W., Yi, F., Men, Y., Zhao, N., Chang, Z., Zhao, J., Pan, B., & Shen, G. (2024). Particuology Pollutant emissions from biomass burning : A review on emission characteristics , environmental impacts , and research perspectives. Particuology, 85, 296–309. https://doi.org/10.1016/j.partic.2023.07.012; Kalisa, E., & Adams, M. (2022). Population-scale COVID-19 curfew effects on urban black carbon concentrations and sources in Kigali, Rwanda. Urban Climate, 46(October), 101312. https://doi.org/10.1016/j.uclim.2022.101312; Kalita, G., Kunchala, R. K., Fadnavis, S., & Kaskaoutis, D. G. (2020). Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmospheric Research, 245(December 2019), 105064. https://doi.org/10.1016/j.atmosres.2020.105064; Kang, Z., Ma, P., Quan, J., Jia, X., Liao, Z., & Pan, Y. (2023). Observational evidence of the regional transported black carbon in high layer over Beijing. Atmospheric Environment, 311(August), 120000. https://doi.org/10.1016/j.atmosenv.2023.120000; Kapoor, T. S., Venkataraman, C., Sarkar, C., Phuleria, H. C., Chatterjee, A., Habib, G., & Apte, J. S. (2022). Estimation of real-time brown carbon absorption: An observationally constrained Mie theory-based optimization method. Journal of Aerosol Science, 166(June), 106047. https://doi.org/10.1016/j.jaerosci.2022.106047; Kompalli, S. K., Babu, S. S., Ajith, T. C., Moorthy, K. K., Satheesh, S. K., Boopathy, R., Das, T., Liu, D., Allan, J., & Coe, H. (2023). Aging of biomass burning emissions in the Indo-Gangetic Plain outflow: Implications for black carbon light-absorption enhancement. Atmospheric Research, 294(July), 106949. https://doi.org/10.1016/j.atmosres.2023.106949; Lee, Y. C., Lam, Y. F., Kuhlmann, G., Wenig, M. O., Chan, K. L., Hartl, A., & Ning, Z. (2013). An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong. Atmospheric Environment, 80, 478–487. https://doi.org/10.1016/j.atmosenv.2013.08.030; Li, Fangjun, Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., & Schmidt, C. C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sen; Li, Fangjun, Zhang, X., Kondragunta, S., Lu, X., Csiszar, I., & Schmidt, C. C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sensing of Environment, 281(April), 113237. https://doi.org/10.1016/j.rse.2022.113237; Li, Fangzhou, Luo, Q., Lin, W., Li, J., & Jiang, B. (2022). Simulating the impact of biomass burning aerosols on an intensive precipitation event in urban areas of the Pearl River Delta. Atmospheric Research, 266(December 2021), 105966. https://doi.org/10.1016/j.atmosres.2021.105966; Li, W., Liu, X., Duan, F., Qu, Y., & An, J. (2022). A one-year study on black carbon in urban Beijing: Concentrations, sources and implications on visibility. Atmospheric Pollution Research, 13(2). https://doi.org/10.1016/j.apr.2021.101307; Li, X., Sun, N., Jin, Q., Zhao, Z., Wang, L., Wang, Q., Gu, X., Li, Y., & Liu, X. (2022). Light absorption properties of black and brown carbon in winter over the North China Plain: Impacts of regional biomass burning. Atmospheric Environment, 278(February), 119100. https://doi.org/10.1016/j.atmosenv.2022.119100; Liang, G., Li, S., Yu, X., Bu, Q., Qu, H., Zhu, H., Yao, X., Lu, A., & Gong, W. (2022). Black carbon-mediated degradation of organic pollutants: A critical review. Process Safety and Environmental Protection, 160, 610–619. https://doi.org/10.1016/j.psep.2022.02.049; Liñán-Abanto, R. N., Salcedo, D., Arnott, P., Paredes-Miranda, G., Grutter, M., Peralta, O., Carabali, G., Serrano-Silva, N., Ruiz-Suárez, L. G., & Castro, T. (2021). Temporal variations of black carbon, carbon monoxide, and carbon dioxide in Mexico City: Mutual correlations and evaluation of emissions inventories. Urban Climate, 37(April). https://doi.org/10.1016/j.uclim.2021.100855; Liu, S., Luo, T., Zhou, L., Song, T., Wang, N., Luo, Q., Huang, G., Jiang, X., Zhou, S., Qiu, Y., & Yang, F. (2022). Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China. Environmental Pollution, 312(June), 119966. https://doi.org/10.1016/j.envpol.2022.119966; Liu, T., Mickley, L. J., Singh, S., Jain, M., DeFries, R. S., & Marlier, M. E. (2020). Crop residue burning practices across north India inferred from household survey data: Bridging gaps in satellite observations. Atmospheric Environment: X, 8(September), 100091. https://doi.org/10.1016/j.aeaoa.2020.100091; Liu, Xinhui, Zhu, R., Jin, B., Zu, L., Wang, Y., Wei, Y., & Zhang, R. (2023). Emission characteristics and light absorption apportionment of carbonaceous aerosols: A tunnel test conducted in an urban with fully enclosed use of E10 petrol. Environmental Research, 216(P3), 114701. https://doi.org/10.1016/j.envres.2022.114701; Liu, Xuyan, Wang, S., Zhang, Q., Jiang, C., Liang, L., Tang, S., Zhang, X., Han, X., & Zhu, L. (2023). Origins of black carbon from anthropogenic emissions and open biomass burning transported to Xishuangbanna, Southwest China. Journal of Environmental Sciences (China), 125, 277–289. https://doi.org/10.1016/j.jes.2021.12.020; Liu, Y., Liu, J., Yan, C., Xiao, J., Ye, J., Guo, L., & Zheng, M. (2023). Metrological traceability of black carbon measurement based on optical methods and its challenges in China : A review. Atmospheric Research, 292(February), 106854. https://doi.org/10.1016/j.atmosres.2023.106854; Lizundia-Loiola, J., Franquesa, M., Khairoun, A., & Chuvieco, E. (2022). Global burned area mapping from Sentinel-3 Synergy and VIIRS active fires. Remote Sensing of Environment, 282(March), 113298. https://doi.org/10.1016/j.rse.2022.113298; López-Caravaca, A., Crespo, J., Galindo, N., Yubero, E., Castañer, R., & Nicolás Aguilera, J. F. (2022). Characterization of aerosol absorption properties and PM1 at a mountain site located in the southeast of the Iberian Peninsula. Atmospheric Pollution Research, 13(10). https://doi.org/10.1016/j.apr.2022.101559; Lu, X., Zhang, X., Li, F., & Cochrane, M. A. (2022). Improved estimation of fire particulate emissions using a combination of VIIRS and AHI data for Indonesia during 2015–2020. Remote Sensing of Environment, 281(September), 113238. https://doi.org/10.1016/j.rse.2022.113238; Mani, S. A., Peltier, R. E., Le Mestre, M., Gunkel-Grillon, P., Shah, S., & Mani, F. S. (2022). Black carbon and elemental characterization of PM2.5 in dense traffic areas in two cities in Fiji, a Small Island Developing State. Science of the Total Environment, 845(June), 157136. https://doi.org/10.1016/j.scitotenv.2022.157136; Marinho, A. A. R., Gois, G. de, Oliveira-Júnior, J. F. de, Correia Filho, W. L. F., Santiago, D. de B., Silva Junior, C. A. da, Teodoro, P. E., de Souza, A., Capristo-Silva, G. F., Freitas, W. K. de, & Rogério, J. P. (2021). Temporal record and spatial distribution of fire foci in State of Minas Gerais, Brazil. Journal of Environmental Management, 280(April 2020). https://doi.org/10.1016/j.jenvman.2020.111707; Meena, G. S., Mukherjee, S., Buchunde, P., Safai, P. D., Singla, V., Aslam, M. Y., Sonbawne, S. M., Made, R., Anand, V., Dani, K. K., & Pandithurai, G. (2021). Seasonal variability and source apportionment of black carbon over a rural high-altitude and an urban site in western India. Atmospheric Pollution Research, 12(2), 32–45. https://doi.org/10.1016/j.apr.2020.10.006; Milinković, A., Gregorič, A., Grgičin, V. D., Vidič, S., Penezić, A., Kušan, A. C., Alempijević, S. B., Kasper-Giebl, A., & Frka, S. (2021). Variability of black carbon aerosol concentrations and sources at a Mediterranean coastal region. Atmospheric Pollution Research, 12(11). https://doi.org/10.1016/j.apr.2021.101221; Minderytė, A., Pauraite, J., Dudoitis, V., Plauškaitė, K., Kilikevičius, A., Matijošius, J., Rimkus, A., Kilikevičienė, K., Vainorius, D., & Byčenkienė, S. (2022). Carbonaceous aerosol source apportionment and assessment of transport-related pollution. Atmospheric Environment, 279(March), 119043. https://doi.org/10.1016/j.atmosenv.2022.119043; Morales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J. P., Sarmiento, O. L., Gallo-Murcia, S. M., & Contreras, Y. (2017). Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157(1), 135–145. https://doi.org/10.1016/j.atmosenv.2017.03.006; Mousavi, A., Sowlat, M. H., Hasheminassab, S., Polidori, A., & Sioutas, C. (2018). Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles Basin. Science of the Total Environment, 640–641, 1231–1240. https://doi.org/10.1016/j.scitotenv.2018.06.022; Mousavi, A., Sowlat, M. H., Lovett, C., Rauber, M., Szidat, S., Boffi, R., Borgini, A., De Marco, C., Ruprecht, A. A., & Sioutas, C. (2019). Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmospheric Environment, 203(September 2018), 252–261. https://doi.org/10.1016/j.atmosenv.2019.02.009; Mukherjee, S., Verma, A., Meena, G. S., Kodoli, S., Buchunde, P., Aslam, M. Y., Patil, R. D., Panicker, A., Safai, P. D., & Pandithurai, G. (2022). Compensatory effect of biomass burning on black carbon concentrations during COVID-19 lockdown at a high-altitude station in SW India. Atmospheric Pollution Research, 13(10), 101566. https://doi.org/10.1016/j.apr.2022.101566; Nam, J. J., Gustafsson, O., Kurt-Karakus, P., Breivik, K., Steinnes, E., & Jones, K. C. (2008). Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environmental Pollution, 156(3), 809–817. https://doi.org/10.1016/j.envpol.2008.05.027; Ngan, F., Loughner, C. P., & Stein, A. (2019). The evaluation of mixing methods in HYSPLIT using measurements from controlled tracer experiments. Atmospheric Environment, 219(April), 117043. https://doi.org/10.1016/j.atmosenv.2019.117043; Nie, D., Qiu, Z., Wang, X., & Liu, Z. (2022). Characterizing the source apportionment of black carbon and ultrafine particles near urban roads in Xi’an, China. Environmental Research, 215(P1), 114209. https://doi.org/10.1016/j.envres.2022.114209; Ningombam, S. S., Khatri, P., Larson, E. J. L., Dumka, U. C., Sarangi, C., & Vineeth, R. (2023). Classification of MODIS fire emission data based on aerosol absorption Angstrom exponent retrieved from AERONET data. Science of the Total Environment, 858(August 2022), 159898. https://doi.org/10.1016/j.scitotenv.2022.159898; Olson, M. R., Yuqin, W., de Foy, B., Li, Z., Bergin, M. H., Zhang, Y., & Schauer, J. J. (2022). Source attribution of black and Brown carbon near-UV light absorption in Beijing, China and the impact of regional air-mass transport. Science of the Total Environment, 807, 150871. https://doi.org/10.1016/j.scitotenv.2021.150871; Pani, S. K., Wang, S. H., Lin, N. H., Chantara, S., Lee, C. Te, & Thepnuan, D. (2020). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental Pollution, 259, 113871. https://doi.org/10.1016/j.envpol.2019.113871; Pei, C., Wu, Y., Tao, J., Zhang, L., Zhang, T., Zhang, R., & Li, S. (2022). Seasonal variations of mass absorption efficiency of elemental carbon in PM2.5 in urban Guangzhou of South China. Journal of Environmental Sciences, 133, 83–92. https://doi.org/10.1016/j.jes.2022.04.019; Pérez-Pastor, R., Salvador, P., García-Gómez, H., García-Alonso, S., Toro, M., Artíñano, B., & Alonso, R. (2023). Characterization of organic aerosols at the Natura 2000 remote environment of Sanabria Lake (Spain): Evaluating the influence of African dust and regional biomass burning smoke. Atmospheric Environment, 298(October 2022). https://doi.org/10.1016/j.atmosenv.2023.119634; Pirouzmand, A., Kowsar, Z., & Dehghani, P. (2018). Atmospheric dispersion assessment of radioactive materials during severe accident conditions for Bushehr nuclear power plant using HYSPLIT code. Progress in Nuclear Energy, 108(April), 169–178. https://doi.org/10.1016/j.pnucene.2018.05.015; Prabhu, V., Soni, A., Madhwal, S., Gupta, A., Sundriyal, S., Shridhar, V., Sreekanth, V., & Mahapatra, P. S. (2020). Black carbon and biomass burning associated high pollution episodes observed at Doon valley in the foothills of the Himalayas. Atmospheric Research, 243(December 2019), 105001. https://doi.org/10.1016/j.atmosres.2020.105001; Qiu, Y., Wu, X., Zhang, Y., Xu, L., Hong, Y., Chen, J., Chen, X., & Deng, J. (2019). Aerosol light absorption in a coastal city in Southeast China: Temporal variations and implications for brown carbon. Journal of Environmental Sciences (China), 80, 257–266. https://doi.org/10.1016/j.jes.2019.01.002; Qiu, Z., Wang, X., Liu, Z., & Luo, J. (2022). Quantitative assessment of cyclists’ exposure to PM and BC on different bike lanes. Atmospheric Pollution Research, 13(11), 101588. https://doi.org/10.1016/j.apr.2022.101588; Qu, Y., Liu, H., Zhou, Y., Dai, W., Shi, J., & Wang, N. (2023). Spectral dependence of light absorption and direct radiative forcing of the TSP , PM 10 , PM 2 . 5 and PM 0 . 1 in a rural region of northwestern China. Atmospheric Environment, 292(97), 119417. https://doi.org/10.1016/j.atmosenv.2022.119417; Rajesh, T. A., Ramachandran, S., & Dhaker, V. K. (2021). Black carbon aerosols: Relative source strengths of vehicular emissions and residential/open wood burning over an urban and a semi-urban environment. Atmospheric Pollution Research, 12(6), 101060. https://doi.org/10.1016/j.apr.2021.101060; Rangel-Buitrago, N., Gracia C., A., Vélez-Mendoza, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2018). Abundance and distribution of beach litter along the Atlantico Department, Caribbean coast of Colombia. Marine Pollution Bulletin, 136(August), 435–447. https://doi.org/10.1016/j.marpolbul.2018.09.040; Rangel-Buitrago, N., Mendoza, A. V., Gracia C, A., Mantilla-Barbosa, E., Arana, V. A., Trilleras, J., & Arroyo-Olarte, H. (2019). Litter impacts on cleanliness and environmental status of Atlantico department beaches, Colombian Caribbean coast. Ocean and Coastal Management, 179(March), 104835. https://doi.org/10.1016/j.ocecoaman.2019.104835; Rathod, T. D., Sahu, S. K., Tiwari, M., Bhangare, R. C., & Ajmal, P. Y. (2021). Light absorption enhancement due to mixing in black carbon and organic carbon generated during biomass burning. Atmospheric Pollution Research, 12(12), 101236. https://doi.org/10.1016/j.apr.2021.101236; Resquin, M. D., Santágata, D., Gallardo, L., Gómez, D., Rössler, C., & Dawidowski, L. (2018). Local and remote black carbon sources in the Metropolitan Area of Buenos Aires. Atmospheric Environment, 182(March), 105–114. https://doi.org/10.1016/j.atmosenv.2018.03.018; Reyna-Bensusan, N., Wilson, D. C., Davy, P. M., Fuller, G. W., Fowler, G. D., & Smith, S. R. (2019). Experimental measurements of black carbon emission factors to estimate the global impact of uncontrolled burning of waste. Atmospheric Environment, 213(January), 629–639. https://doi.org/10.1016/j.atmosenv.2019.06.047; Rodríguez, S., Cuevas, E., González, Y., Ramos, R., Romero, P. M., Pérez, N., Querol, X., & Alastuey, A. (2008). Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5-10 concentrations in a coastal city. Atmospheric Environment, 42(26), 6523–6534. https://doi.org/10.1016/j.atmosenv.2008.04.022; Roldan-Vargas, J. C., Toro-Gómez, M. V., & Marín-Sánchez, A. (2021). Estimación y modelización de la dispersión de black carbon en el Valle de Aburrá, Colombia. TecnoLógicas, 24(50), e1580. https://doi.org/10.22430/22565337.1580; Saha, A., & Despiau, S. (2009). Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmospheric Research, 92(1), 27–41. https://doi.org/10.1016/j.atmosres.2008.07.007; Şahin, Ü. A., Onat, B., Akın, Ö., Ayvaz, C., Uzun, B., Mangır, N., Doğan, M., & Harrison, R. M. (2020). Temporal variations of atmospheric black carbon and its relation to other pollutants and meteorological factors at an urban traffic site in Istanbul. Atmospheric Pollution Research, 11(7), 1051–1062. https://doi.org/10.1016/j.apr.2020.03.009; Sandradewi, J., Prévôt, A. S. H., Weingartner, E., Schmidhauser, R., Gysel, M., & Baltensperger, U. (2008). A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmospheric Environment, 42(1), 101–112. https://doi.org/10.1016/j.atmosenv.2007.09.034; Schkolnik, G., Chand, D., Hoffer, A., Andreae, M. O., Erlick, C., Swietlicki, E., & Rudich, Y. (2007). Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmospheric Environment, 41(5), 1107–1118. https://doi.org/10.1016/j.atmosenv.2006.09.035; Shi, Y., Gong, S., Zang, S., Zhao, Y., Wang, W., Lv, Z., Matsunaga, T., Yamaguchi, Y., & Bai, Y. (2021). High-resolution and multi-year estimation of emissions from open biomass burning in Northeast China during 2001–2017. Journal of Cleaner Production, 310(January), 127496. https://doi.org/10.1016/j.jclepro.2021.127496; Silva, L. F. O., Schneider, I. L., Artaxo, P., Núñez-Blanco, Y., Pinto, D., Flores, É. M. M., Gómez-Plata, L., Ramírez, O., & Dotto, G. L. (2022). Particulate matter geochemistry of a highly industrialized region in the Caribbean: Basis for future toxicological studies. Geoscience Frontiers, 13(1). https://doi.org/10.1016/j.gsf.2020.11.012; Skrynyk, O., Voloshchuk, V., Budak, I., & Bubin, S. (2019). Regional HYSPLIT simulation of atmospheric transport and deposition of the Chernobyl 137Cs releases. Atmospheric Pollution Research, 10(6), 1953–1963. https://doi.org/10.1016/j.apr.2019.09.001; Srivastava, R., Asutosh, A., Sabu, P., & Anilkumar, N. (2021). Investigation of Black Carbon characteristics over southern ocean: Contribution of fossil fuel and biomass burning. Environmental Pollution, 276, 116645. https://doi.org/10.1016/j.envpol.2021.116645; Swarnkar, A., & Gurjar, B. R. (2023). GIS-based emission inventory of heavy metals from road transport and NMVOCs associated with biomass burning for megacity Delhi. Urban Climate, 51(December 2022), 101600. https://doi.org/10.1016/j.uclim.2023.101600; Targino, A. C., Krecl, P., Oukawa, G. Y., & Mollinedo, E. M. (2022). A short climatology of black and brown carbon and their sources at a suburban site impacted by smoke in Brazil. xxxx, 1–14. https://doi.org/10.1016/j.jes.2022.12.025 ul Haq, E., Alam, K., Bibi, S., & Roy, A. (2023). High concentration of black carbon in northern Pakistan: Characteristics, source apportionment and emission source regions. Atmospheric Environment, 293(October 2022), 119475. https://doi.org/10.1016/j.atmosenv.2022.119475; Jiang, H., Li, J., Wang, J., Jiang, H., Mo, Y., Tang, J., Zhang, R., Pansak, W., Zhong, G., Zhao, S., Ning, J., Tian, C., & Zhang, G. (2022). Regional monitoring of biomass burning using passive air sampling technique reveals the importance of MODIS unresolved fires.; Lack, D. A., Moosmüller, H., McMeeking, G. R., Chakrabarty, R. K., & Baumgardner, D. (2014). Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties. Analytical and Bioanalytical Chemistry, 406(1), 99–122. https://doi.org/10.1007/s00216-013-7402-3; Ngoc Trieu, T. T., Morino, I., Uchino, O., Tsutsumi, Y., Izumi, T., Sakai, T., Shibata, T., Ohyama, H., & Nagahama, T. (2023). Long-range transport of CO and aerosols from Siberian biomass burning over northern Japan during 18–20 May 2016. Environmental Pollution, 322(December 2022). https://doi.org/10.1016/j.envpol.2023.121129; Nielsen, I. E., Eriksson, A. C., Lindgren, R., Martinsson, J., Nyström, R., Nordin, E. Z., Sadiktsis, I., Boman, C., Nøjgaard, J. K., & Pagels, J. (2017). Time-resolved analysis of particle emissions from residential biomass combustion – Emissions of refractory black carbon, PAHs and organic tracers. Atmospheric Environment, 165, 179–190. https://doi.org/10.1016/j.atmosenv.2017.06.033; Pani, S. K., Lin, N. H., Chantara, S., Wang, S. H., Khamkaew, C., Prapamontol, T., & Janjai, S. (2018). Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Science of the Total Environment, 633, 892–911. https://doi.org/10.1016/j.scitotenv.2018.03.204; Targino, A. C., Krecl, P., Oukawa, G. Y., & Mollinedo, E. M. (2022). A short climatology of black and brown carbon and their sources at a suburban site impacted by smoke in Brazil. xxxx, 1–14. https://doi.org/10.1016/j.jes.2022.12.025; Ul Haq, E., Alam, K., Bibi, S., & Roy, A. (2023). High concentration of black carbon in northern Pakistan: Characteristics, source apportionment and emission source regions. Atmospheric Environment, 293(October 2022), 119475. https://doi.org/10.1016/j.atmosenv.2022.119475; Valenzuela, A., Olmo, F. J., Lyamani, H., Antón, M., Titos, G., Cazorla, A., & Alados-Arboledas, L. (2015). Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain). Atmospheric Research, 154, 1–13. https://doi.org/10.1016/j.atmosres.2014.10.015; Voinea, S., & Stefan, S. (2019). Study of the Ångström turbidity over Romanian Black Sea coast. Journal of Atmospheric and Solar-Terrestrial Physics, 182(November 2018), 67–78. https://doi.org/10.1016/j.jastp.2018.11.001; Wang, Q., Wang, L., Tao, M., Chen, N., Lei, Y., Sun, Y., Xin, J., Li, T., Zhou, J., Liu, J., Ji, D., & Wang, Y. (2021). Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity Wuhan and its surrounding cities, China. Science of the Total Environment, 791, 148226. https://doi.org/10.1016/j.scitotenv.2021.148226; Wang, T., Zhao, G., Tan, T., Yu, Y., Tang, R., Dong, H., Chen, S., Li, X., Lu, K., Zeng, L., Gao, Y., Wang, H., Lou, S., Liu, D., Hu, M., Zhao, C., & Guo, S. (2021). Effects of biomass burning and photochemical oxidation on the black carbon mixing state and light absorption in summer season. Atmospheric Environment, 248, 118230. https://doi.org/10.1016/j.atmosenv.2021.118230; Wang, W., Khanna, N., Lin, J., & Liu, X. (2023). Black carbon emissions and reduction potential in China: 2015–2050. Journal of Environmental Management, 329(June 2022), 117087. https://doi.org/10.1016/j.jenvman.2022.117087; Wang, X., Li, J., Zhang, X., Cheng, Z., Jiang, H., Jiang, H., Lin, B., Zhu, S., Zhao, S., Liu, J., Tian, C., Zhang, R., & Zhang, G. (2023). An innovative passive sampler to reveal the high contribution of biomass burning to black carbon over Indo-China Peninsula: Radiocarbon constraints. Atmospheric Environment, 294(August 2022), 119522. https://doi.org/10.1016/j.atmosenv.2022.119522; Wyche, K. P., Cordell, R. L., Smith M, L., Smallbone, K. L., Lyons, P., Hama, S. M. L., Monks, P. S., Staelens, J., Hofman, J., Stroobants, C., Roekens, E., Kos, G. P. A., Weijers, E. P., Panteliadis, P., & Dijkema, M. B. A. (2020). The spatio-temporal evolution of black carbon in the North-West European ‘air pollution hotspot.’ Atmospheric Environment, 243(July), 117874. https://doi.org/10.1016/j.atmosenv.2020.117874; Xiao, H. W., Mao, D. Y., Huang, L. L., Xiao, H. Y., & Wu, J. F. (2021). Evaluation of black carbon source apportionment based on one year’s daily observations in Beijing. Science of the Total Environment, 773, 145668. https://doi.org/10.1016/j.scitotenv.2021.145668; Xiao, H., Xu, Y., & Xiao, H. (2023). Source apportionment of black carbon aerosols in winter across China. 298(January). https://doi.org/10.1016/j.atmosenv.2023.119622; Xu, R., Tie, X., Li, G., Zhao, S., Cao, J., Feng, T., & Long, X. (2018). Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling. Science of the Total Environment, 645, 901–912. https://doi.org/10.1016/j.scitotenv.2018.07.165; Yang, J., Ji, Z., Kang, S., & Tripathee, L. (2021). Contribution of South Asian biomass burning to black carbon over the Tibetan Plateau and its climatic impact. Environmental Pollution, 270, 116195. https://doi.org/10.1016/j.envpol.2020.116195; Yang, Xiaoyang, Ji, D., Li, J., He, J., Gong, C., Xu, X., Wang, Z., Liu, Y., Bi, F., Zhang, Z., & Chen, Y. (2023). Impacts of springtime biomass burning in Southeast Asia on atmospheric carbonaceous components over the Beibu Gulf in China: Insights from aircraft observations. Science of the Total Environment, 857(August 2022), 159232. https://doi.org/10.1016/j.scitotenv.2022.159232; Yang, Xiuleng, Orjuela, J. P., McCoy, E., Vich, G., Anaya-Boig, E., Avila-Palencia, I., Brand, C., Carrasco-Turigas, G., Dons, E., Gerike, R., Götschi, T., Nieuwenhuijsen, M., Panis, L. I., Standaert, A., & de Nazelle, A. (2022). The impact of black carbon (BC) on mode-specific galvanic skin response (GSR) as a measure of stress in urban environments. Environmental Research, 214(June), 16–18. https://doi.org/10.1016/j.envres.2022.114083; Yu, R., Liu, X. C., Larson, T., & Wang, Y. (2015). Coherent approach for modeling and nowcasting hourly near-road Black Carbon concentrations in Seattle, Washington. Transportation Research Part D: Transport and Environment, 34, 104–115. https://doi.org/10.1016/j.trd.2014.10.009; Yuan, M., Wang, Q., Zhao, Z., Zhang, Y., Lin, Y., Wang, X., Chow, J. C., Watson, J. G., Tian, R., Liu, H., Tian, J., & Cao, J. (2022). Seasonal variation of optical properties and source apportionment of black and brown carbon in Xi’an, China. Atmospheric Pollution Research, 13(6), 101448. https://doi.org/10.1016/j.apr.2022.101448; Zeng, X., Li, S., Xing, J., Yang, J., Wang, Q., Song, G., Teng, M., Zhou, D., & Lu, J. (2023). CALIPSO-observed Southeast Asia biomass-burning influences on aerosol vertical structure in Guangdong-Hong Kong-Macao Greater Bay Area. Atmospheric Research, 289(April), 106755. https://doi.org/10.1016/j.atmosres.2023.106755; Zhang, Junmei, Qi, A., Wang, Q., Huang, Q., Yao, S., Li, J., Yu, H., & Yang, L. (2022). Characteristics of water-soluble organic carbon (WSOC) in PM2.5 in inland and coastal cities, China. Atmospheric Pollution Research, 13(6), 101447. https://doi.org/10.1016/j.apr.2022.101447; Zhang, L., Luo, Z., Du, W., Li, G., Shen, G., Cheng, H., & Tao, S. (2020). Light absorption properties and absorption emission factors for indoor biomass burning. Environmental Pollution, 267, 115652. https://doi.org/10.1016/j.envpol.2020.115652; Zhang, Y., Zhang, X., Fan, X., Ni, C., Sun, Z., Wang, S., Fan, J., & Zheng, C. (2020). Modifying effects of temperature on human mortality related to black carbon particulates in Beijing, China. Atmospheric Environment, 243(24), 117845. https://doi.org/10.1016/j.atmosenv.2020.117845; Zhu, C., Miyakawa, T., Irie, H., Choi, Y., Taketani, F., & Kanaya, Y. (2021). Light-absorption properties of brown carbon aerosols in the Asian outflow: Implications of a combination of filter and ground remote-sensing observations at Fukue Island, Japan. Science of the Total Environment, 797, 149155. https://doi.org/10.1016/j.scitotenv.2021.149155; https://hdl.handle.net/11323/10487; Corporacion Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/