-
1Dissertation/ Thesis
المؤلفون: Méndez González, Jesús
المساهمون: University/Department: Universitat Autònoma de Barcelona. Departament de Bioquímica i Biologia Molecular
Thesis Advisors: Blanco Vaca, Francisco, Escolà Gil, Joan Carles
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Esteroles, Colesterol, Triglicéridos, Ciències Experimentals
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/129904
-
2Dissertation/ Thesis
المؤلفون: Keim, Ana Verónica Beatriz
المساهمون: University/Department: Universitat de Barcelona. Departament de Bioquímica i Biologia Molecular (Farmàcia)
Thesis Advisors: Ferrer i Prats, Albert, Arró i Plans, Montserrat
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Isoprenoides, Esteroles, Esfinbolípidos, ARV, FPS, Arabidopsis, Isoprenoids, Isoprenoid, Esterols, Sterols, Esfinbolípids, Arabidopsi, Ciències de la Salut
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/96118
-
3Dissertation/ ThesisEstudio global del metabolismo lipídico de saccharomyces spp. En fermentaciones a bajas temperaturas
المؤلفون: Redón Miralles, Maria Antonia
المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Bioquímica i Biotecnologia
Thesis Advisors: Rozès Rozès, Nicolas, Guillamón Navarro, José Manuel
المصدر: T. 1045-2011
TDX (Tesis Doctorals en Xarxa)مصطلحات موضوعية: Saccharomyces spp, Fermentación, Fermentation, Baja temperatura, Low temperature, Fosfolípidos, Phospholipids, ácidos grasos, fatty acids, Esteroles, sterols
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/31915
-
4Academic Journal
المؤلفون: Sánchez, Isabel
المصدر: Vida Científica Boletín Científico de la Escuela Preparatoria No. 4; Vol. 12 Núm. 23 (2024): Vida Científica Boletín Científico de la Escuela Preparatoria No. 4; 1-7 ; 2007-4905 ; 10.29057/prepa4.v12i23
مصطلحات موضوعية: Cáncer, hígado, garambullo, esteroles
وصف الملف: application/pdf
Relation: https://repository.uaeh.edu.mx/revistas/index.php/prepa4/article/view/11870/10943; https://repository.uaeh.edu.mx/revistas/index.php/prepa4/article/view/11870
-
5Book
المؤلفون: Tejedor Calvo, Eva, Morales, Diego, Morillo, Laura, Vega, Laura, Caro, Mercedes, Ribeiro Smiderle, Fhernanda, Iacomini, Marcello, Marco Montori, Pedro, Soler Rivas, Cristina
مصطلحات موضوعية: Amilasas, Beta-Glucanos, Diabetes, Ésteres De Los Ácidos Grasos, Esteroles, Glucosidasa, TUBERACEAE, Trufa (hongo), Acido graso (de configuración) trans, Ergosterol
وصف الملف: application/pdf
Relation: https://doi.org/10.3390/foods12142724; Yaribeygi, H.; Atkin, S.L.; Pirro, M.; Sahebkar, A. A Review of the Anti-inflammatory Properties of Antidiabetic Agents Providing Protective Effects against Vascular Complications in Diabetes. J. Cell Physiol. 2019, 234, 8286–8294. [Google Scholar] [CrossRef] [PubMed] Blaak, E.E.; Antoine, J.-M.; Benton, D.; Björck, I.; Bozzetto, L.; Brouns, F.; Diamant, M.; Dye, L.; Hulshof, T.; Holst, J.J.; et al. Impact of Postprandial Glycaemia on Health and Prevention of Disease. Obes. Rev. 2012, 13, 923–984. [Google Scholar] [CrossRef] [PubMed] Xiong, M.; Huang, Y.; Liu, Y.; Huang, M.; Song, G.; Ming, Q.; Ma, X.; Yang, J.; Deng, S.; Wen, Y.; et al. Antidiabetic Activity of Ergosterol from Pleurotus Ostreatus in KK-A y Mice with Spontaneous Type 2 Diabetes Mellitus. Mol. Nutr. Food Res. 2018, 62, 1700444. [Google Scholar] [CrossRef] Stojkovic, D.; Smiljkovic, M.; Ciric, A.; Glamoclija, J.; Van Griensven, L.; Ferreira, I.C.F.R.; Sokovic, M. An Insight into Antidiabetic Properties of Six Medicinal and Edible Mushrooms: Inhibition of α-Amylase and α-Glucosidase Linked to Type-2 Diabetes. S. Afr. J. Bot. 2019, 120, 100–103. [Google Scholar] [CrossRef] Oliach, D.; Vidale, E.; Brenko, A.; Marois, O.; Andrighetto, N.; Stara, K.; Mart, J.; Arag, D.; Colinas, C.; Bonet, A. Truffle Market Evolution: An Application of the Delphi Method. Forests 2021, 12, 1174. [Google Scholar] [CrossRef] Tejedor-Calvo, E.; Morales, D.; Marco, P.; Sánchez, S.; Garcia-Barreda, S.; Smiderle, F.R.; Iacomini, M.; Villalva, M.; Santoyo, S.; Soler-Rivas, C. Screening of Bioactive Compounds in Truffles and Evaluation of Pressurized Liquid Extractions (PLE) to Obtain Fractions with Biological Activities. Food Res. Int. 2020, 132, 109054. [Google Scholar] [CrossRef] Patel, S.; Rauf, A.; Khan, H.; Khalid, S.; Mubarak, M.S. Potential Health Benefits of Natural Products Derived from Truffles: A Review. Trends Food Sci. Technol. 2017, 70, 1–8. [Google Scholar] [CrossRef] Morales, D.; Smiderle, F.R.; Villalva, M.; Abreu, H.; Rico, C.; Santoyo, S.; Iacomini, M.; Soler-Rivas, C. Testing the Effect of Combining Innovative Extraction Technologies on the Biological Activities of Obtained β-Glucan-Enriched Fractions from Lentinula edodes. J. Funct. Foods 2019, 60, 103446. [Google Scholar] [CrossRef] Morales, D.; Tejedor-Calvo, E.; Jurado-Chivato, N.; Polo, G.; Tabernero, M.; Ruiz-Rodríguez, A.; Largo, C.; Soler-Rivas, C. In Vitro and In Vivo Testing of the Hypocholesterolemic Activity of Ergosterol- and β-Glucan-Enriched Extracts Obtained from Shiitake Mushrooms (Lentinula edodes). Food Funct. 2019, 10, 7325–7332. [Google Scholar] [CrossRef] Palanisamy, M.; Aldars-García, L.; Gil-Ramírez, A.; Ruiz-Rodríguez, A.; Marín, F.R.; Reglero, G.; Soler-Rivas, C. Pressurized Water Extraction of β-Glucan Enriched Fractions with Bile Acids-Binding Capacities Obtained from Edible Mushrooms. Biotechnol. Prog. 2014, 30, 391–400. [Google Scholar] [CrossRef] Tejedor-calvo, E.; García-Barreda, S.; Sánchez, S. Application of Pressurized Liquid Extractions to Obtain Bioactive Compounds from Tuber aestivum and Terfezia claveryi. Foods 2022, 11, 298. [Google Scholar] [CrossRef] [PubMed] Gil-Ramírez, A.; Caz, V.; Martin-Hernandez, R.; Marín, F.R.; Largo, C.; Rodríguez-Casado, A.; Tabernero, M.; Ruiz-Rodríguez, A.; Reglero, G.; Soler-Rivas, C. Modulation of Cholesterol-Related Gene Expression by Ergosterol and Ergosterol-Enriched Extracts Obtained from Agaricus bisporus. Eur. J. Nutr. 2016, 55, 1041–1057. [Google Scholar] [CrossRef] [PubMed] Wang, Q.; Cheng, J.; Wang, L.; Yan, S.; Wang, R.; Zhang, H.; Shao, H.; Yang, X. Valorization of Spent Shiitake Substrate for Recovery of Antitumor Fungal Sterols by Ultrasound-Assisted Extraction. J. Food Biochem. 2018, 42, e12602. [Google Scholar] [CrossRef] Kobori, M.; Yoshida, M.; Ohnishi-Kameyama, M.; Shinmoto, H. Ergosterol Peroxide from an Edible Mushroom Suppresses Inflammatory Responses in RAW264.7 Macrophages and Growth of HT29 Colon Adenocarcinoma Cells. Br. J. Pharmacol. 2007, 150, 209–219. [Google Scholar] [CrossRef] Sommer, K.; Vetter, W. Gas Chromatography with Mass Spectrometry Detection and Characterization of 27 Sterols in Two Truffle (Tuber) Species. J. Food Compos. Anal. 2020, 94, 103650. [Google Scholar] [CrossRef] Beara, I.; Majkić, T.; Torović, L. Bioguided Design of New Black Truffle (Tuber aestivum Vittad.) Product Enriched with Herbs and Spices. LWT 2021, 138, 110637. [Google Scholar] [CrossRef] Bhotmange, D.U.; Wallenius, J.H.; Singhal, R.S.; Shamekh, S.S. Enzymatic Extraction and Characterization of Polysaccharide from Tuber aestivum. Bioact. Carbohydr. Diet. Fibre 2017, 10, 1–9. [Google Scholar] [CrossRef] Deveci, E.; Çayan, F.; Tel-Çayan, G.; Duru, M.E. Inhibitory Activities of Medicinal Mushrooms on α-Amylase and α-Glucosidase-Enzymes Related to Type 2 Diabetes. S. Afr. J. Bot. 2021, 137, 19–23. [Google Scholar] [CrossRef] Kosanić, M.; Ranković, B.; Stanojković, T.; Radović-Jakovljević, M.; Ćirić, A.; Grujičić, D.; Milošević-Djordjević, O. Craterellus cornucopioides Edible Mushroom as Source of Biologically Active Compounds. Nat. Prod. Commun. 2019, 14, 1934578X1984361. [Google Scholar] [CrossRef] Bach, F.; Zielinski, A.A.F.; Helm, C.V.; Maciel, G.M.; Pedro, A.C.; Stafussa, A.P.; Ávila, S.; Haminiuk, C.W.I. Bio Compounds of Edible Mushrooms: In Vitro Antioxidant and Antimicrobial Activities. LWT 2019, 107, 214–220. [Google Scholar] [CrossRef] Zhang, T.; Jayachandran, M.; Ganesan, K.; Xu, B. Black Truffle Aqueous Extract Attenuates Oxidative Stress and Inflammation in STZ-Induced Hyperglycemic Rats via Nrf2 and NF-ΚB Pathways. Front. Pharmacol. 2018, 9, 1257. [Google Scholar] [CrossRef] Smiderle, F.R.; Morales, D.; Gil-Ramírez, A.; de Jesus, L.I.; Gilbert-López, B.; Iacomini, M.; Soler-Rivas, C. Evaluation of Microwave-Assisted and Pressurized Liquid Extractions to Obtain β-D-Glucans from Mushrooms. Carbohydr. Polym. 2017, 156, 165–174. [Google Scholar] [CrossRef] Gil-Ramírez, A.; Aldars-García, L.; Palanisamy, M.; Jiverdeanu, R.M.; Ruiz-Rodríguez, A.; Marín, F.R.; Reglero, G.; Soler-Rivas, C. Sterol Enriched Fractions Obtained from Agaricus bisporus Fruiting Bodies and By-Products by Compressed Fluid Technologies (PLE and SFE). Innov. Food Sci. Emerg. Technol. 2013, 18, 101–107. [Google Scholar] [CrossRef] Rivera, C.S.; Blanco, D.; Marco, P.; Oria, R.; Venturini, M.E. Effects of Electron-Beam Irradiation on the Shelf Life, Microbial Populations and Sensory Characteristics of Summer Truffles (Tuber aestivum) Packaged under Modified Atmospheres. Food Microbiol. 2011, 28, 141–148. [Google Scholar] [CrossRef] [PubMed] Morales, D.; Smiderle, F.R.; Piris, A.J.; Soler-Rivas, C.; Prodanov, M. Production of a β-d-Glucan-Rich Extract from Shiitake Mushrooms (Lentinula edodes) by an Extraction/Microfiltration/Reverse Osmosis (Nanofiltration) Process. Innov. Food Sci. Emerg. Technol. 2018, 51, 80–90. [Google Scholar] [CrossRef] Pettolino, F.A.; Walsh, C.; Fincher, G.B.; Bacic, A. Determining the Polysaccharide Composition of Plant Cell Walls. Nat. Protoc. 2012, 7, 1590–1607. [Google Scholar] [CrossRef] Tejedor-Calvo, E.; Morales, D.; Marco, P.; Venturini, M.E.; Blanco, D.; Soler-Rivas, C. Effects of Combining Electron-Beam or Gamma Irradiation Treatments with Further Storage under Modified Atmospheres on the Bioactive Compounds of Tuber Melanosporum Truffles. Postharvest Biol. Technol. 2019, 155, 149–155. [Google Scholar] [CrossRef] Malone Steverson, E.; Korus, R.A.; Admassu, W.; Heimsch, R.C. Kinetics of the Amylase System of Saccharomycopsis fibuliger. Enzym. Microb. Technol. 1984, 6, 549–554. [Google Scholar] [CrossRef] Khan, A.A.; Gani, A.; Khanday, F.A.; Masoodi, F.A. Biological and Pharmaceutical Activities of Mushroom β-Glucan Discussed as a Potential Functional Food Ingredient. Bioact. Carbohydr. Diet. Fibre 2018, 16, 1–13. [Google Scholar] [CrossRef] Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Awasthi, A. Therapeutic Potential of Mushrooms in Diabetes Mellitus: Role of Polysaccharides. Int. J. Biol. Macromol. 2020, 164, 1194–1205. [Google Scholar] [CrossRef] [PubMed] Wunjuntuk, K.; Ahmad, M.; Techakriengkrai, T.; Chunhom, R.; Jaraspermsuk, E.; Chaisri, A.; Kiwwongngam, R.; Wuttimongkolkul, S.; Charoenkiatkul, S. Proximate Composition, Dietary Fibre, Beta-Glucan Content, and Inhibition of Key Enzymes Linked to Diabetes and Obesity in Cultivated and Wild Mushrooms. J. Food Compos. Anal. 2022, 105, 104226. [Google Scholar] [CrossRef] Tang, Y.; Li, H.-M.; Tang, Y.-J. Comparison of Sterol Composition between Tuber Fermentation Mycelia and Natural Fruiting Bodies. Food Chem. 2012, 132, 1207–1213. [Google Scholar] [CrossRef] Yeh, C.W.; Kan, S.C.; Lin, C.C.; Shieh, C.J.; Liu, Y.C. Polyhydroxylated Steroids and Triterpenoids from an Entophytic Fungus, Hypocreales sp. NCHU01 Isolated from Tuber Magnatum. J. Taiwan. Inst. Chem. Eng. 2016, 64, 22–30. [Google Scholar] [CrossRef] Mello, A.; Murat, C.; Bonfante, P. Truffles: Much More than a Prized and Local Fungal Delicacy. FEMS Microbiol. Lett. 2006, 260, 1–8. [Google Scholar] [CrossRef] Tejedor-Calvo, E.; Marco, P.; Spègel, P.; Soler-Rivas, C. Extraction and Trapping of Truffle Flavoring Compounds into Food Matrices Using Supercritical CO2. Food Res. Int. 2023, 164, 112422. [Google Scholar] [CrossRef] [PubMed] Tejedor-Calvo, E.; Morales, D.; García-Barreda, S.; Sánchez, S.; Venturini, M.E.; Blanco, D.; Soler-Rivas, C.; Marco, P. Effects of Gamma Irradiation on the Shelf-Life and Bioactive Compounds of Tuber aestivum Truffles Packaged in Passive Modified Atmosphere. Int. J. Food Microbiol. 2020, 332, 108774. [Google Scholar] [CrossRef] [PubMed] Tejedor-Calvo, E.; Amara, K.; Reis, F.S.; Barros, L.; Martins, A.; Calhelha, R.C.; Eugenia Venturini, M.; Blanco, D.; Redondo, D.; Marco, P.; et al. Chemical Composition and Evaluation of Antioxidant, Antimicrobial and Antiproliferative Activities of Tuber and Terfezia Truffles. Food Res. Int. 2020, 140, 110071. [Google Scholar] [CrossRef] Shah, N.N.; Hokkanen, S.; Pastinen, O.; Eljamil, A.; Shamekh, S. A Study on the Fatty Acid Composition of Lipids in Truffles Selected from Europe and Africa. 3 Biotech 2020, 10, 415. [Google Scholar] [CrossRef] Yan, X.; Wang, Y.; Sang, X.; Fan, L. Nutritional Value, Chemical Composition and Antioxidant Activity of Three Tuber Species from China. AMB Express 2017, 7, 136. [Google Scholar] [CrossRef] Yadav, D.; Negi, P.S. Bioactive Components of Mushrooms: Processing Effects and Health Benefits. Food Res. Int. 2021, 148, 110599. [Google Scholar] [CrossRef] Kalogeropoulos, N.; Yanni, A.E.; Koutrotsios, G.; Aloupi, M. Bioactive Microconstituents and Antioxidant Properties of Wild Edible Mushrooms from the Island of Lesvos, Greece. Food Chem. Toxicol. 2013, 55, 378–385. [Google Scholar] [CrossRef] Muszyńska, B.; Grzywacz-Kisielewska, A.; Kała, K.; Gdula-Argasińska, J. Anti-Inflammatory Properties of Edible Mushrooms: A Review. Food Chem. 2018, 243, 373–381. [Google Scholar] [CrossRef] [PubMed] Palacios, I.; Lozano, M.; Moro, C.; D’Arrigo, M.; Rostagno, M.A.; Martínez, J.A.; García-Lafuente, A.; Guillamón, E.; Villares, A. Antioxidant Properties of Phenolic Compounds Occurring in Edible Mushrooms. Food Chem. 2011, 128, 674–678. [Google Scholar] [CrossRef] Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, Vegetables, and Mushrooms for the Preparation of Extracts with α-Amylase and α-Glucosidase Inhibition Properties: A Review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef] [PubMed] Zhu, Z.Y.; Zhang, J.Y.; Chen, L.J.; Liu, X.C.; Liu, Y.; Wang, W.X.; Zhang, Y.M. Comparative Evaluation of Polysaccharides Isolated from Astragalus, Oyster Mushroom, and Yacon as Inhibitors of α-Glucosidase. Chin. J. Nat. Med. 2014, 12, 290–293. [Google Scholar] [CrossRef] Cui, J.; Gu, X.; Wang, F.; Ouyang, J.; Wang, J. Purification and Structural Characterization of an α-Glucosidase Inhibitory Polysaccharide from Apricot (Armeniaca sibirica L. Lam.) Pulp. Carbohydr. Polym. 2015, 121, 309–314. [Google Scholar] [CrossRef] Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef] Su, C.-H.; Hsu, C.-H.; Ng, L.-T. Inhibitory Potential of Fatty Acids on Key Enzymes Related to Type 2 Diabetes. BioFactors 2013, 39, 415–421. [Google Scholar] [CrossRef] Kaewnarin, K.; Suwannarach, N.; Kumla, J.; Lumyong, S. Phenolic Profile of Various Wild Edible Mushroom Extracts from Thailand and Their Antioxidant Properties, Anti-Tyrosinase and Hyperglycaemic Inhibitory Activities. J. Funct. Foods 2016, 27, 352–364. [Google Scholar] [CrossRef]; Foods, 2023, 12, 14, 2724-NA; http://hdl.handle.net/10532/6492
الاتاحة: http://hdl.handle.net/10532/6492
-
6Academic Journal
المصدر: Revista Colombiana de Biotecnología, Vol 25, Iss 1 (2023)
مصطلحات موضوعية: Macromiceto, esteroles, azúcares, proteína, biotecnología, Biotechnology, TP248.13-248.65
وصف الملف: electronic resource
-
7Academic Journal
المصدر: Revista Colombiana de Biotecnología; Vol. 25 No. 1 (2023); 46-56 ; Revista Colombiana de Biotecnología; Vol. 25 Núm. 1 (2023); 46-56 ; 1909-8758 ; 0123-3475
مصطلحات موضوعية: Macromiceto, esteroles, azúcares, proteína, biotecnología, Macromycete, sterols, sugars, protein, biotechnology
وصف الملف: application/pdf
-
8Academic Journal
المؤلفون: Karaosmanoğlu, H.
المصدر: Grasas y Aceites; Vol. 74 No. 4 (2023); e535 ; Grasas y Aceites; Vol. 74 Núm. 4 (2023); e535 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2023.v74.i4
مصطلحات موضوعية: Antoxidant activity, Fatty acid profile, Hazelnut oil, Oxidative stability, Sterol, Tocopherol, Aceite de avellana, Actividad antioxidante, Estabilidad oxidativa, Esteroles, Perfil de ácidos grasos, Tocoferoles
وصف الملف: text/html; application/pdf; text/xml
Relation: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2117/3134; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2117/3135; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2117/3136; Alasalvar C, Amaral JS, Satır G, Shahidi F. 2009. Lipid characteristics and essential minerals of native Turkish hazelnut varieties (Corylus avellana L.). Food Chem. 113, 919-925. https://doi.org/10.1016/j.foodchem.2008.08.019; Alasalvar C, Shahidi F, Ohshima T, Wanasundara U, Yurttas HC, Liyanapathirana CM, Rodrigues FB. 2003. Turkish Tombul hazelnut (Corylus avellana L.) 2. lipid characteristics and oxidative stability.J. Agric. Food Chem. 51 (13), 3797-3805. https://doi.org/10.1021/jf021239x PMid:12797746; Amaral JS, Casal S, Citova I, Santos A., Seabra RM, Oliviera BPP. 2006. Characterization of several hazelnut (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition. Eur. Food Res. Technol. 222, 274-280. https://doi.org/10.1007/s00217-005-0068-0; Amira MSAQ. 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agric. Sci. 10 (1), 7-15 https://doi.org/10.1016/j.jssas.2010.06.002; Arcan I, Yemenicioğlu A. 2009. Antioxidant activity and phenolic content of fresh and dry nuts with or without the seed coat. J. Food Compost. Anal. 22, 184-188. https://doi.org/10.1016/j.jfca.2008.10.016; Baccouri O, Guerfel M, Baccouri B, Cerretani L, Bendini A, Lercker G, Zarrouk M, Miled DDB. 2008. Chemical composition and oxidative stability of Tunisian monovarietal virgin olive oils with regard to fruit ripening. Food Chem. 109 (4), 743-754. https://doi.org/10.1016/j.foodchem.2008.01.034 PMid:26049987; Belviso S, Bello BD, Giacosa S, Bertolini M, Ghirardello D, Giardano M, Rolle L, Gerbi V, Zeppa G. 2017. Chemical, mechanical and sensory monitoring of hot air-and infrared roasted hazelnuts (Corylus avellana L.) during nine months of storage. Food Chem. 217, 398-408. https://doi.org/10.1016/j.foodchem.2016.08.103 PMid:27664651; Bouali I, Trabelsi H, Abdallah IB, Albouchi A, Martine L, Grégoire S., Bouzaien G, Gandour M, Boukhchina S, Berdeaux O. 2013. Changes in fatty acid, tocopherol and xanthophyll contents during the development of Tunisian-grown pecan nuts. J. Am. Oil Chem. Soc. 90 (12), 1869-1876. https://doi.org/10.1007/s11746-013-2340-y; Bouali I, Rattouli H, Herchi W, Martine L, Grégoire S, Albouchi A, Martínez-Force E, Boukhchina S, Berdeaux O. 2022. Chemical composition and thermal properties of Tunisian pecan nut oils. Grasas Aceites 73 (3), e468. https://doi.org/10.3989/gya.0436211; Ciemniewska-Żytkiewicz H, Pasini F, Verardo V, Bryś J, Koczoń P, Caboni MF. 2015a. Changes of the lipid fraction during fruit development in hazelnuts (Corylus avellana L.) grown in Poland. Eur. J. Lipid Sci. Technol. 117 (5), 710-717. https://doi.org/10.1002/ejlt.201400345; Ciemniewska-Zytkiewicz H, Verardo V, Pasini F, Brys J, Koczon P, Caboni MF. 2015b. Determination of lipid and phenolic fraction in two hazelnut (Corylus avellana L.) cultivars grown in Poland. Food Chem. 168, 615-622. https://doi.org/10.1016/j.foodchem.2014.07.107 PMid:25172755; Cristofori V, Bertazza G, Bignami C. 2015. Changes in kernel chemical composition during nut development of three Italian hazelnut cultivars. Fruits 70 (5), 311-322. https://doi.org/10.1051/fruits/2015025; Demirtas I, Pelvan E, Ozdemir IS, Alasalvar C, Ertas E. 2013. Lipid characteristics and phenolics of native grape seed oils grown in Turkey. Eur. J. Lipid Sci. Technol. 115 (6), 641-647. https://doi.org/10.1002/ejlt.201200159; Fernández-Cuesta A, León L, Velasco L, De la Rosa R. 2013. Changes in squalene and sterols associated with olive maturation. Food Res. Int. 54 (2), 1885-1889. https://doi.org/10.1016/j.foodres.2013.07.049; Gama T, Wallace HM, Trueman SJ, Jones K, Hosseini-Bai S. 2020. Late-dropping macadamia nuts have reduced shelf life. Sci. Hortic. 268, 109378. https://doi.org/10.1016/j.scienta.2020.109378; Hanczakowska E, Świątkiewicz M, Grela ER. 2015. Effect of dietary inclusion of a herbal extract mixture and different oils on pig performance and meat quality. Meat Sci. 108, 61-66. https://doi.org/10.1016/j.meatsci.2015.05.020 PMid:26047978; Ilyasoglu H. 2015. Changes in sterol composition of hazelnut during fruit development. Int. J. Food Prop. 18 (2), 456-463. https://doi.org/10.1080/10942912.2013.837065; İlyasoğlu H. 2016. Changes in fatty acid composition of hazelnut during fruit development. Gıda 41 (3), 137-140. https://doi.org/10.15237/gida.GD16017; Jin S, Daniell H. 2014. Expression of γ‐tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal‐induced oxidative stresses by reducing reactive oxygen species. Plant Biotechnol J. 12 (9), 1274-1285. https://doi.org/10.1111/pbi.12224 PMid:25051898 PMCid:PMC4247799; Karaosmanoğlu H. 2022. Lipid characteristics, bioactive properties, and mineral content in hazelnut grown under different cultivation systems. J. Food Process. Preserv. 46, e16717. https://doi.org/10.1111/jfpp.16717; Karaosmanoğlu H, Üstün NŞ. 2019. Variations in fatty acid composition and oxidative stability of hazelnut (Corylus avellana L.) varieties stored by traditional method. Grasas Aceites 70 (1), e288. https://doi.org/10.3989/gya.0463181; Kazantzis I, Nanos GD, Stavroulakis GG. 2003. Effect of harvest time and storage conditions on almond kernel oil and sugar composition. J. Sci. Food Agric. 83 (4), 354-359. https://doi.org/10.1002/jsfa.1312; Misina I, Sipeniece E, Rudzińska M, Grygier A, Radzimirska-Graczyk M, Kaufmane E, Seglina D, Lacis G, Górnaś P. 2020. Associations between oil yield and profile of fatty acids, sterols, squalene, carotenoids, and tocopherols in seed oil of selected Japanese Quince genotypes during fruit development. Eur. J. Lipid Sci. Technol. 122 (4), 1900386. https://doi.org/10.1002/ejlt.201900386; Persic M, Mikulic-Petkovsek M, Slatnar A, Solar A, Veberic R. 2018. Changes in phenolic profiles of red-colored pellicle walnut and hazelnut kernel during ripening. Food Chem. 252, 349-355. https://doi.org/10.1016/j.foodchem.2018.01.124 PMid:29478553; Pycia K, Kapusta I, Jaworska G. 2019. Impact of the degree of maturity of walnuts (Juglans regia L.) and their variety on the antioxidant potential and the content of tocopherols and polyphenols. Molecules 24 (16), 2936. https://doi.org/10.3390/molecules24162936 PMid:31412665 PMCid:PMC6718977; Pycia K, Kapusta I, Jaworska G. 2020. Changes in antioxidant activity, profile, and content of polyphenols and tocopherols in common hazel seed (Corylus avellana L.) depending on variety and harvest date. Molecules 25 (1), 43. https://doi.org/10.3390/molecules25010043 PMid:31877675 PMCid:PMC6983069; Seyhan F, Ozay G, Saklar S, Ertaş E, Satır G, Alasalvar C. 2007. Chemical changes of three native Turkish hazelnut varieties (Corylus avellana L.) during fruit development. Food Chem. 105 (2), 590-596. https://doi.org/10.1016/j.foodchem.2007.04.016; Ulbricht TLV, Southgate DAT. 1991. Coronary heart disease: Seven dietary factors. Lancet 338, 985-992. https://doi.org/10.1016/0140-6736(91)91846-M PMid:1681350; Wang Y, Yao X, Yang L, Fei X, Cao Y, Wang K, Guo S. 2021. Effects of harvest time on the yield, quality and active substance of Torreya Grandis nut and its oil. J. Oleo Sci. 70 (2), 175-184. https://doi.org/10.5650/jos.ess20155 PMid:33456001; Yorulmaz HO, Konuskan DB. 2017. Antioxidant activity, sterol and fatty acid compositions of Turkish olive oils as an indicator of variety and ripening degree. Food Sci. Technol. 54 (12), 4067-4077. https://doi.org/10.1007/s13197-017-2879-y PMid:29085150 PMCid:PMC5643826; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2117
-
9Academic Journal
المؤلفون: Deniz Şirinyıldız, D., Yıldırım Vardin, A., Yorulmaz, A.
المصدر: Grasas y Aceites; Vol. 74 No. 1 (2023); e490 ; Grasas y Aceites; Vol. 74 Núm. 1 (2023); e490 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2023.v74.i1
مصطلحات موضوعية: Fig seed oil, Microwave, Sterols, Tocopherols, Triacylglycerols, Aceite de semilla de higo, Esteroles, Microondas, Tocoferoles, Triacilgliceroles
وصف الملف: text/html; application/pdf; text/xml
Relation: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1974/3013; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1974/3014; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1974/3015; Ali MA, Nargis A, Othman NH, Noor AF, Sadik G, Hossen J. 2017. Oxidation stability and compositional characteristics of oils from microwave roasted pumpkin seeds during thermal oxidation. Int. J. Food Prop. 20, 2569-2580. https://doi.org/10.1080/10942912.2016.1244544; AOCS 2003. Official and Recommended Methods of the American Oil Chemists' Society. AOCS Press, Champaign.; Azadmard-Damirchi S, Habibi-Nodeh F, Hesari J, Nemati M, Achachlouei BF. 2010. Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chem. 121, 1211-1215. https://doi.org/10.1016/j.foodchem.2010.02.006; Azadmard-Damirchi S, Alirezalu K, Achachlouei BF. 2011. Microwave pretreatment of seeds to extract high quality vegetable oil. World Acad. Sci. Eng. Technol. 57, 72-75.; Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT. 2014. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol. 52, 1487-1503. https://doi.org/10.3109/13880209.2014.892515 PMid:25017517; Bakhshabadi H, Mirzaei H, Ghodsvali A, Jafari SM, Ziaiifar AM, Farzaneh, V. 2017. The effect of microwave pretreatment on some physico-chemical properties and bioactivity of Black cumin seeds' oil. In. Crop Prod. 97, 1-9. https://doi.org/10.1016/j.indcrop.2016.12.005; Baygeldi N, Küçükerdönmez Ö, Akder RN, Çağındı, Ö. 2021. Medicinal and nutritional analysis of fig (Ficus carica) seed oil; A new gamma tocopherol and omega-3 source. Prog. Nutr. 23 (2), 1-6.; Duman E, Yazıcı AS. 2018. Physico-chemical properties of fresh fig (mor güz - sarı lop) seed and seed oil. Anadolu J. Aegean Agric. Res. Inst. 28, 69-76.; Đurđević S, Milovanović S, Šavikin K, Ristić M, Menković N, Pljevljakušić D, Bogdanović A. 2017. Improvement of supercritical CO2 and n-hexane extraction of wild growing pomegranate seed oil by microwave pretreatment. Ind. Crop Prod. 104, 21-27. https://doi.org/10.1016/j.indcrop.2017.04.024; Fathi-Achachlouei B, Azadmard-Damirchi S, Zahedi Y, Shaddel, R. 2019. Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Ind. Crop Prod. 128, 527-533. https://doi.org/10.1016/j.indcrop.2018.11.034; Ghafoor K, Özcan MM, Fahad AJ, Babiker EE, Fadimu GJ. 2019. Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven-and microwave-roasted poppy seeds and oil. LWT-Food Sci. Technol. 99, 490-496. https://doi.org/10.1016/j.lwt.2018.10.017; Goszkiewicz A, Kołodziejczyk E, Ratajczyk F. 2020. Comparison of microwave and convection method of roasting sunflower seeds and its effect on sensory quality, texture and physicochemical characteristics. Food Struct. 25, 100144. https://doi.org/10.1016/j.foostr.2020.100144; Güneşer BA, Yilmaz E. 2017. Effects of microwave roasting on the yield and composition of cold pressed orange seed oils. Grasas Aceites 68, e175. https://doi.org/10.3989/gya.0800162; Güven N, Gökyer A, Koç A, Temiz NN, Selvi S, Koparal B, Erman C. 2019. Physiochemical composition of fig seed oil from Turkey. J. Pharm. Pharmacol. 7, 541-545. https://doi.org/10.17265/2328-2150/2019.10.003; Holčapek M, Lísa M, Jandera P, Kabátová N. 2005. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 28, 1315-1333. https://doi.org/10.1002/jssc.200500088 PMid:16138684; İçyer NC, Toker OS, Karasu S, Tornuk F, Kahyaoglu T, Arici, M. 2017. Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. J. Food Meas. Charact. 11, 50-57. https://doi.org/10.1007/s11694-016-9370-8; IUPAC. 1987. International Union of Pure and Applied Chemistry. Standard methods for analysis of oils, fats and derivates (7th ed.), Method 2.301. Palo Alto, CA: Blackwell Scientific Publications.; Ji J, Liu Y, Shi L, Wang N, Wang X. 2019. Effect of roasting treatment on the chemical composition of sesame oil. LWT-Food Sci. Technol. 101, 191-200. https://doi.org/10.1016/j.lwt.2018.11.008; Joseph B, Raj SJ. 2011. Pharmacognostic and traditional properties of Cissus quadrancularis Linn-An overview. Int. J. Pharm. Bio Sci. 2, 131-139.; Moreau RA. 2003. PIant SteroIs in FunctionaI Foods. Phytosterols as functional food components and nutraceuticals, 317. https://doi.org/10.1201/9780203913413.ch7; Nakilcioğlu-Taş E. 2018. Biochemical characterization of fig (Ficus carica L.) seeds. J. Agric. Sci. 25, 232-237. https://doi.org/10.15832/ankutbd.398268; Ozcan MM, Al-Juhaimi FY, Ahmed IAM, Osman MA, Gassem MA. 2019. Effect of different microwave power setting on quality of chia seed oil obtained in a cold press. Food Chem. 278, 190-196. https://doi.org/10.1016/j.foodchem.2018.11.048 PMid:30583361; Solomon A, Golubowicz S, Yablowicz Z, Grossman S, Bergman M, Gottlieb HE, Flaishman MA. 2006. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J. Agric. Food Chem. 54, 7717-7723. https://doi.org/10.1021/jf060497h PMid:17002444; Suri K, Singh B, Kaur A, Yadav MP, Singh N. 2020. Influence of microwave roasting on chemical composition, oxidative stability and fatty acid composition of flaxseed (Linum usitatissimum L.) oil. Food Chem. 326, 126974. https://doi.org/10.1016/j.foodchem.2020.126974 PMid:32413759; Veberic R, Colaric M, Stampar F. 2008. Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem. 106, 153-157. https://doi.org/10.1016/j.foodchem.2007.05.061; WHO. 2008.World Health Organization. Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food and Nutrition Paper. 91. Rome: FAO.; Ye M, Zhou H, Hao J, Chen T, He Z, Wu F, Liu X. 2021. Microwave pretreatment on microstructure, characteristic compounds and oxidative stability of Camellia seeds. Ind. Crop Prod. 161, 113193. https://doi.org/10.1016/j.indcrop.2020.113193; Yoshida H, Tomiyama Y, Hirakawa Y, Mizushina Y. 2006. Microwave roasting effects on the oxidative stability of oils and molecular species of triacylglycerols in the kernels of pumpkin (Cucurbita spp.) seeds. J. Food Compos. Anal. 19, 330-339. https://doi.org/10.1016/j.jfca.2004.10.004; Zhou Y, Fan W, Chu F, Pei D. 2016. Improvement of the flavor and oxidative stability of walnut oil by microwave pretreatment. J. Am. Oil Chem. Soc. 93, 1563-1572. https://doi.org/10.1007/s11746-016-2891-9; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1974
-
10Conference
المؤلفون: Sandonís Pozo, Leire, Arnó Satorra, Jaume, Rufat i Lamarca, Josep, Villar Mir, Josep Ma., Martínez Casasnovas, José Antonio, Pascual Roca, Miquel
مصطلحات موضوعية: Olea europaea, Porosidad dosel, Polifenoles, Esteroles, Cultivados en sistema intensivo, Producción de aceitunas, Calidad del aceite, Ácidos monoinsaturados, Ácidos saturados
Relation: info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/; Jornadas Nacionales del Grupo de Olivicultura: "El olivar frente al cambio climático: retos y oportunidades". Sociedad Española de Ciencias Hortícolas (SECH). Octubre, 19-20, 2022. Logroño (La Rioja); http://hdl.handle.net/10459.1/84118
الاتاحة: http://hdl.handle.net/10459.1/84118
-
11Book
المؤلفون: Kodad, Ossama, Fernández Cuesta, A., Velasco, L., Estopañán Muñoz, Gloria, El Baji, Mira, Martínez García, Pedro José, Martínez Gómez, P., Socias i Company, Rafel
مصطلحات موضوعية: Prunus dulcis, Esteroles, Tocoferoles, Factores ambientales
جغرافية الموضوع: Laboratorios, Ciencia vegetal
Time: Laboratorios
وصف الملف: application/pdf
Relation: https://www.mdpi.com/2674-1024/1/4/22; Seeds, vol. 1, num. 4, (2022); http://hdl.handle.net/10532/6209
الاتاحة: http://hdl.handle.net/10532/6209
-
12Dissertation/ Thesis
المؤلفون: González Larena, Marina
Thesis Advisors: Barberá Sáez, Reyes, Lagarda Blanch, María Jesús, García Llatas, Guadalupe, Departament de Medicina Preventiva i Salut Pública, Ciències de l'Alimentació, Toxicologia i Medicina Legal
مصطلحات موضوعية: Óxidos de esteroles vegetales, Bebidas, Esteroles vegetales, UNESCO::QUÍMICA::Bioquímica ::Esteroides, UNESCO::CIENCIAS MÉDICAS ::Ciencias de la Nutrición ::Otras, UNESCO::CIENCIAS TECNOLÓGICAS::Tecnología de los alimentos::Bebidas no alcohólicas
URL الوصول: http://hdl.handle.net/10550/40977
-
13Dissertation/ Thesis
المؤلفون: González Larena, Marina
Thesis Advisors: Barberá Sáez, Reyes, Lagarda Blanch, María Jesús, García Llatas, Guadalupe, Departament de Medicina Preventiva i Salut Pública, Ciències de l'Alimentació, Toxicologia i Medicina Legal
مصطلحات موضوعية: Óxidos de esteroles vegetales, Bebidas, Esteroles vegetales, UNESCO::QUÍMICA::Bioquímica ::Esteroides, UNESCO::CIENCIAS MÉDICAS ::Ciencias de la Nutrición ::Otras, UNESCO::CIENCIAS TECNOLÓGICAS::Tecnología de los alimentos::Bebidas no alcohólicas
URL الوصول: http://hdl.handle.net/10803/569719
-
14Dissertation/ Thesis
المؤلفون: González Larena, Marina
Thesis Advisors: Barberá Sáez, Reyes, Lagarda Blanch, María Jesús, García Llatas, Guadalupe, Departament de Medicina Preventiva i Salut Pública, Ciències de l'Alimentació, Toxicologia i Medicina Legal
مصطلحات موضوعية: Óxidos de esteroles vegetales, Bebidas, Esteroles vegetales, UNESCO::QUÍMICA::Bioquímica ::Esteroides, UNESCO::CIENCIAS MÉDICAS ::Ciencias de la Nutrición ::Otras, UNESCO::CIENCIAS TECNOLÓGICAS::Tecnología de los alimentos::Bebidas no alcohólicas
URL الوصول: http://hdl.handle.net/10550/40977
-
15Academic Journal
المؤلفون: Mousavi, Soraya, Stanzione, Vitale, Mariotti, Roberto, Mastio, Valerio, Azariadis, Aristotelis, Passeri, Valentina, Valeri, Maria Cristina, Baldoni, Luciana, Bufacchi, Marina
المصدر: Antioxidants 11 (4) : 672 (April 2022)
مصطلحات موضوعية: Olea europaea, Antioxidantes, Esteroles, Antioxidants, Sterols, Genotypes, Genotipos, Olivo
وصف الملف: application/pdf
Relation: http://hdl.handle.net/20.500.12123/12923; https://www.mdpi.com/2076-3921/11/4/672; https://doi.org/10.3390/antiox11040672
-
16Dissertation/ Thesis
المؤلفون: Carmona Castellano, María de los Ángeles
Thesis Advisors: Ruiz-Arrebola, J.R., Jiménez-Sanchidrián, César
مصطلحات موضوعية: Esteroles, Fitoesteroles, Desodorización, Aceites vegetales, Espectroscopia Raman, Industria oleícola, Revalorización de subproductos
URL الوصول: http://hdl.handle.net/10396/13797
-
17Dissertation/ Thesis
Thesis Advisors: Sánchez Viñas, Mercedes, Gázquez Evangelista, Domingo, Bagur-González, María Gracia, Universidad de Granada. Departamento de Química Analítica
المصدر: Pérez Castaño, E. Aplicabilidad del perfil de esteroles para la cuantificación de aceite de oliva en alimentos. Granada: Universidad de Granada, 2013. 318 p. [http://hdl.handle.net/10481/25149]
مصطلحات موضوعية: Aceite de oliva, Esteroles
Time: 2417.19
URL الوصول: http://hdl.handle.net/10481/25149
-
18Dissertation/ Thesis
المؤلفون: Pérez Castaño, Estefanía
Thesis Advisors: Universidad de Granada. Departamento de Química Analítica, Sánchez Viñas, Mercedes, Gázquez Evangelista, Domingo, Bagur-González, María Gracia
مصطلحات موضوعية: Aceite de oliva, Esteroles
Time: 2417.19
URL الوصول: http://hdl.handle.net/10481/25149
-
19Dissertation/ Thesis
المؤلفون: Pérez Castaño, Estefanía
Thesis Advisors: Sánchez Viñas, Mercedes, Gázquez Evangelista, Domingo, Bagur-González, María Gracia, Universidad de Granada. Departamento de Química Analítica
مصطلحات موضوعية: Aceite de oliva, Esteroles
Time: 2417.19
URL الوصول: http://hdl.handle.net/10481/25149
-
20Dissertation/ Thesis
المؤلفون: Pérez Castaño, Estefanía
Thesis Advisors: Sánchez Viñas, Mercedes, Gázquez Evangelista, Domingo, Bagur-González, María Gracia, Universidad de Granada. Departamento de Química Analítica
مصطلحات موضوعية: Aceite de oliva, Esteroles
Time: 2417.19
URL الوصول: http://hdl.handle.net/10481/25149