يعرض 1 - 20 نتائج من 200 نتيجة بحث عن '"Espectroscopia de rayos X"', وقت الاستعلام: 0.98s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Kaliq, Muhammad Waqas

    المساهمون: University/Department: Universitat de Barcelona. Facultat de Física

    Thesis Advisors: Foerster, Michael Joachim Ulrich, Macià Bros, Ferran, Franzese, Giancarlo

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 538.9

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis

    المؤلفون: Magkanas, Georgios

    المساهمون: University/Department: Universitat de Barcelona. Facultat de Química

    Thesis Advisors: Bagán Navarro, Héctor, García Martínez, José Francisco

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    Dissertation/ Thesis

    المؤلفون: Gallardo Hernández, Helena

    المساهمون: University/Department: Universitat de Barcelona. Facultat de Farmàcia i Ciències de l'Alimentació

    Thesis Advisors: Tapias Pantebre, Josefina Carlota, Marguí Grabulosa, Eva, Queralt i Mitjans, Ignasi

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  4. 4
    Dissertation/ Thesis

    المؤلفون: Sessa, Clarimma

    المساهمون: University/Department: Universitat de Barcelona. Departament de Química Analítica

    Thesis Advisors: García Martínez, José Francisco

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  5. 5
  6. 6
    Academic Journal
  7. 7
    Dissertation/ Thesis
  8. 8
    Dissertation/ Thesis
  9. 9
    Dissertation/ Thesis
  10. 10
    Dissertation/ Thesis
  11. 11
    Dissertation/ Thesis
  12. 12
    Dissertation/ Thesis
  13. 13
    Dissertation/ Thesis

    المؤلفون: Toalá Sánz, Jesús Alberto

    Thesis Advisors: Guerrero Roncel, Martín A., Arthur, S. Jane, Universidad de Granada. Programa Oficial de Doctorado en: Física y Matemáticas, Consejo Superior de Investigaciones Científicas (CSIC). Instituto de Astrofísica de Andalucía

    Time: 524.6, 523.4, 2101.06, 2104.07

  14. 14
    Dissertation/ Thesis

    المؤلفون: Toalá Sánz, Jesús Alberto

    Thesis Advisors: Guerrero Roncel, Martín A., Arthur, S. Jane, Universidad de Granada. Programa Oficial de Doctorado en: Física y Matemáticas, Consejo Superior de Investigaciones Científicas (CSIC). Instituto de Astrofísica de Andalucía

    Time: 524.6, 523.4, 2101.06, 2104.07

  15. 15
    Dissertation/ Thesis
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المساهمون: Quimica Analitica, Facultad de Ciencias Biologicas y Ambientales

    Relation: info:eu-repo/grantAgreement/AEI/Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i/PGC2018-096572-B-C21/ES/La memoria escrita: de la manufactura del soporte a la interpretación del texto; Pereira, F. J., López, R., Ferrer, N., Prieto, A. C., Nogal, R. A., Nodar, A. & Aller, A. J. (2021). A comparative appraisal of Raman band ratioing and chemometric analysis for classification of ancient papyri. Journal of Cultural Heritage, 52, 55-64. https://doi.org/10.1016/J.CULHER.2021.09.003; https://www.sciencedirect.com/science/article/pii/S1296207421001370; https://hdl.handle.net/10612/21353

  18. 18
    Academic Journal

    المصدر: Revista de Biología Tropical; Vol. 69 No. S1 (2021): Volume 69 – Supplement 1 – March 2021: Research on Echinoderms in Latin America V; S171-S184 ; Revista de Biología Tropical; Vol. 69 Núm. S1 (2021): Volumen 69 – Suplemento 1 – Marzo 2021: Estudios latinoamericanos en equinodermos V; S171-S184 ; Revista Biología Tropical; Vol. 69 N.º S1 (2021): Volumen 69 – Suplemento 1 – Marzo 2021: Estudios latinoamericanos en equinodermos V; S171-S184 ; 2215-2075 ; 0034-7744 ; 10.15517/rbt.v69iSuppl.1

    وصف الملف: application/pdf; text/html

  19. 19
    Dissertation/ Thesis

    المؤلفون: Gordón Pidal, José María

    المساهمون: Escarpa Miguel, Jesús Alberto, López Gil, Miguel Ángel, Universidad de Alcalá. Programa de Doctorado en Química

    وصف الملف: application/pdf

  20. 20
    Dissertation/ Thesis

    المؤلفون: Jimmy René, Junco Castro

    المساهمون: Olaya Florez, Jhon Jairo, Piamba Tulcán, Oscar Edwin, Grupo de Investigación en Corrosión, Tribologia y Energía, Junco Castro, Jimmy René 0000000150331797, https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001730209, https://scholar.google.com/citations?user=7Svyek4AAAAJ&hl=es

    وصف الملف: 174 páginas; application/pdf

    Relation: LaReferencia; Ted Swanson, “NASA Engineering Network – Lessons Learned; Entry 0913; Space Mechanisms Reliability.”; Bassett Adele, “Lucha contra la corrosión ‘normas del Comité G01 de Lucha contra Tendencias Destructivas de la Naturaleza,’” Astm journal.; D. R. Gabe, Principles of Metal Surface Treatment and Protection. 1978.; N. Perez, “Electrochemical Corrosion,” in Electrochemistry and Corrosion Science, Cham: Springer International Publishing, 2016, pp. 1–23. doi:10.1007/978-3-319-24847-9_1.; D. R. GABE, “Theory of Corrosion Protection,” Principles of Metal Surface Treatment and Protection, pp. 179–198, Jan. 1978, doi:10.1016/B978-0-08-022703-0.50013-6.; S. Hochstrasser-Kurz et al., “ICP-MS, SKPFM, XPS, and Microcapillary Investigation of the Local Corrosion Mechanisms of WC–Co Hardmetal,” J Electrochem Soc, vol. 155, no. 8, p. C415, 2008, doi:10.1149/1.2929822.; A. M. Human and H. E. Exner, “The relationship between electrochemical behaviour and in-service corrosion of WC based cemented carbides,” Int J Refract Metals Hard Mater, vol. 15, no. 1–3, pp. 65–71, Jan. 1997, doi:10.1016/S0263-4368(96)00014-5.; A. M. F. Rocha et al., “Corrosion behaviour of WC hardmetals with nickel-based binders,” Corros Sci, vol. 147, pp. 384–393, Feb. 2019, doi:10.1016/j.corsci.2018.11.015.; S. Hochstrasser(-Kurz), Y. Mueller, C. Latkoczy, S. Virtanen, and P. Schmutz, “Analytical characterization of the corrosion mechanisms of WC-Co by electrochemical methods and inductively coupled plasma mass spectroscopy,” Corros Sci, vol. 49, no. 4, pp. 2002–2020, Apr. 2007, doi:10.1016/j.corsci.2006.08.022.; W. J. Tomlinson and I. D. Molyneux, “Corrosion, erosion-corrosion, and the flexural strength of WC-Co hardmetals,” J Mater Sci, vol. 26, no. 6, pp. 1605–1608, Mar. 1991, doi:10.1007/BF00544670.; A. Musbah, W. Eljaafari, E. Fessatwi, Y. Elsahli, and W. Com, “Comparison Between Chemical Vapor Deposition CVD and Physical Vapor Deposition PVD Coating Techniques: A Review Paper,” 2021. [Online]. Available: https://www.researchgate.net/publication/358818945; L.-C. Ardila-Tellez, G. Orozco-Hernandez, F. Estupiñan-Mongui, C.-M. Moreno-Téllez, and J.-J. Olaya-Florez, “Review of Nitride-Based Multifunctional PVD-Deposited Coatings,” Revista Científica, vol. 46, no. 1, pp. 162–176, Jan. 2023, doi:10.14483/23448350.20093.; R. D. Arnell and P. J. Kelly, “Recent advances in magnetron sputtering,” Surf Coat Technol, vol. 112, no. 1–3, pp. 170–176, Feb. 1999, doi:10.1016/S0257-8972(98)00749-X.; P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum, vol. 56, no. 3, pp. 159–172, Mar. 2000, doi:10.1016/S0042-207X(99)00189-X.; J. Musil and J. Vlček, “Magnetron sputtering of films with controlled texture and grain size,” Mater Chem Phys, vol. 54, no. 1–3, pp. 116–122, Jul. 1998, doi:10.1016/S0254-0584(98)00020-0.; U. P. Morales, Á. M. Camargo, and O. F. Jhon Jairo, “magnetrón desbalanceado: configuración del campo magnético y su correlación con el campo de 2 espiras concéntricas,” 2012.; Stephan Bolz, “One system, many advantages. One system, many users.,” https://www.cemecon.com/us-en/coating-plants/cc-800-hipims.; J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, “High power impulse magnetron sputtering discharge,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 30, no. 3, May 2012, doi:10.1116/1.3691832.; A. Anders, “Discharge physics of high power impulse magnetron sputtering,” Surf Coat Technol, vol. 205, no. SUPPL. 2, Jul. 2011, doi:10.1016/j.surfcoat.2011.03.081.; Asim. Aijaz, HiPIMS-Based Novel Deposition Processes for Thin Films. Linkopings Universitet, 2012.; H. O. Pierson, “The Refractory Nitrides,” Handbook of Refractory Carbides and Nitrides, pp. 156–162, Jan. 1996, doi:10.1016/B978-081551392-6.50010-6.; G. K. Inwati et al., “2D Personality of Multifunctional Carbon Nitrides towards Enhanced Catalytic Performance in Energy Storage and Remediation,” Applied Sciences, vol. 12, no. 8, p. 3753, Apr. 2022, doi:10.3390/app12083753.; Y.-Y. Chang, C.-M. Cheng, Y.-Y. Liou, W. Tillmann, F. Hoffmann, and T. Sprute, “High temperature wettability of multicomponent CrAlSiN and TiAlSiN coatings by molten glass,” Surf Coat Technol, vol. 231, pp. 24–28, Sep. 2013, doi:10.1016/j.surfcoat.2012.04.050.; L. A. Cañon Tafur, J. B. Luis Camilo, and O. F. Jhon Jairo, “Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo.”; B.-S. Lou, Y.-C. Yang, Y.-X. Qiu, W. Diyatmika, and J.-W. Lee, “Hybrid high power impulse and radio frequency magnetron sputtering system for TiCrSiN thin film depositions: Plasma characteristics and film properties,” Surf Coat Technol, vol. 350, pp. 762–772, Sep. 2018, doi:10.1016/j.surfcoat.2018.04.072.; Y.-C. Kuo, C.-J. Wang, and J.-W. Lee, “The microstructure and mechanical properties evaluation of CrTiAlSiN coatings: Effects of silicon content,” Thin Solid Films, vol. 638, pp. 220–229, Sep. 2017, doi:10.1016/j.tsf.2017.07.058.; F. A. Estupiñan, C. M. Moreno, J. J. Olaya, and L. C. Ardila, “Wear Resistance of TiAlCrSiN Coatings Deposited by Means of the Co-Sputtering Technique,” Lubricants, vol. 9, no. 6, p. 64, Jun. 2021, doi:10.3390/lubricants9060064.; K. Ichijo, H. Hasegawa, and T. Suzuki, “Microstructures of (Ti,Cr,Al,Si)N films synthesized by cathodic arc method,” Surf Coat Technol, vol. 201, no. 9–11, pp. 5477–5480, Feb. 2007, doi:10.1016/J.SURFCOAT.2006.07.016.; K. Bobzin, T. Brögelmann, N. C. Kruppe, and M. Carlet, “Nanocomposite (Ti,Al,Cr,Si)N HPPMS coatings for high performance cutting tools,” Surf Coat Technol, vol. 378, p. 124857, Nov. 2019, doi:10.1016/J.SURFCOAT.2019.07.073.; L. Ni, T. Yang, J. Xiong, and Y. Fei, “Structure and mechanical properties of TiAlCrSiN coatings deposited on Ti(C,N)-NbC-Ni cermets with varied Mo2C contents,” Int J Refract Metals Hard Mater, vol. 86, p. 105083, Jan. 2020, doi:10.1016/J.IJRMHM.2019.105083.; H. Ezura, K. Ichijo, H. Hasegawa, K. Yamamoto, A. Hotta, and T. Suzuki, “Micro-hardness, microstructures and thermal stability of (Ti,Cr,Al,Si)N films deposited by cathodic arc method,” Vacuum, vol. 82, no. 5, pp. 476–481, Jan. 2008, doi:10.1016/J.VACUUM.2007.07.048.; P. Steiner, H. H�chst, and S. H�fner, “XPS investigation of simple metals,” Zeitschrift f�r Physik B Condensed Matter and Quanta, vol. 30, no. 2, pp. 129–143, Jun. 1978, doi:10.1007/BF01320978.; John F. Moulder, William F. Stickle, Peter E. Sobol, and Kenneth D. Bomben, Handbook of X ray Photoelectron Spectros. Eden Prairie, Minnesota 55344 United States of America: Perkin-Elmer Corporation, , 1992.; Committee on Corrosion Loss in Japan, “Report on Corrosion Loss in Japan,” Boshoku- Gijutsu (Corros.Eng), vol. 401, Jul. 1977.; “Survey Cost of Corrosion in Japan,” Zairyo-to-Kankyo, vol. 50, no. 11, pp. 490–512, 2001, doi:10.3323/jcorr1991.50.490.; G. H. Koch, M. P. H. Brongers, N. G. Thompson, Y. P. Virmani, and J. H. Payer, “Corrosion Cost and Preventive Strategies in the United States [Final report],” NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE, Mar. 2002, Accessed: Nov. 07, 2022. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/40697; T. P. Hoar, “A Survey of Corrosion and Protection in the United Kingdom,” London, 1971.; Jong Jip Kim, “Survey of National Corrosion Cost,” Corros. Sci. Tech. , vol. 5, no. 5, p. . 173-176, Oct. 2006, Accessed: Nov. 08, 2022. [Online]. Available: https://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00050500173&vol=5&no=5&type=aissue; B. Hou et al., “The cost of corrosion in China,” Npj Mater Degrad, vol. 1, no. 1, p. 4, Dec. 2017, doi:10.1038/s41529-017-0005-2.; J. Cuervo Tafur, J. Delgado Lastra, F. J. Herrera, and C. E. Arroyave, “INDICADORES DE LOS COSTOS DE LA CORROSIÓN EN COLOMBIA,” Contaduría Universidad de Antioquia, vol. 0, no. 33, pp. 95–132, Jan. 2016, [Online]. Available: https://revistas.udea.edu.co/index.php/cont/article/view/25545; “Más de 26 mil millones de pesos pierde la industria colombiana debido a la corrosión de materiales.”; W. Aperador, C. Ramirez, and J. Bautista-Ruiz, “Sinergia entre la corrosión erosión del acero 1045 recubierto por multicapas de TiN/TiAlN.” [Online]. Available: https://www.researchgate.net/publication/256137131; M. Torres, H. Ascolani, and J. Olaya, “RESISTENCIA A LA CORROSIÓN DE RECUBRIMIENTOS DE CrN SOBRE SUSTRATOS DE ACERO MEDIANTE EIE,” Revista Latinoamericana de Metalurgia y Materiales, vol. 34, no. 1, pp. 107–117, 2014, Accessed: Jan. 04, 2024. [Online]. Available: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0255-69522014000100012&lng=es&nrm=iso&tlng=es; F. Y. Velasco Velasco, L. C. Jiménez Borrego, and J. J. Olaya Flórez, “Recubrimiento TiSiN sobre acero inoxidable AISI 316 L: comportamiento mecánico, resistencia al desgaste y resistencia a la corrosión,” Universidad Nacional de Colombia, Bogotá D.C, 2020.; D. Garcia and A. Mariño, “RECUBRIMIENTOS DE (Ti,Al)N SOBRE ACERO AISI 4140 POR SPUTTERING REACTIVO (Ti,Al)N COATINGS ON AISI 4140 BY R.F. SPUTTERING,” Año, vol. 74, pp. 181–185, 2007.; J. E. Sanchéz et al., “Mechanical, tribological, and electrochemical behavior of Cr1−xAlxN coatings deposited by r.f. reactive magnetron co-sputtering method,” Appl Surf Sci, vol. 256, no. 8, pp. 2380–2387, Feb. 2010, doi:10.1016/j.apsusc.2009.10.071.; G. Milena and P. Novoa, “Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por ‘co-sputtering’ reactivo.”; F. A. Orjuela, F. F. Vallejo, H. Hahn, J. J. Olaya, J. E. Alfonso, and L. Velasco, “Nitrogen flux effect on the mechanical properties of AlCrTiN Nanostructured coatings obtained by R. F. magnetron sputtering,” Ceram Int, vol. 49, no. 11, pp. 17867–17875, Jun. 2023, doi:10.1016/j.ceramint.2023.02.153.; G. Prieto-Novoa, F. Vallejo, O. Piamba, J. Olaya, and Y. Pineda, “Effects of Cr Concentration on the Structure and the Electrical and Optical Properties of Ti-Al-Cr-N Thin Films Prepared by Means of Reactive Co-Sputtering,” Crystals (Basel), vol. 12, no. 12, p. 1831, Dec. 2022, doi:10.3390/cryst12121831.; A. M. G. Palacios, J. J. Olaya, and J. E. Alfonso, “Influence of Si on the Structural, Electrical, and Optical Properties of (Al, Ti, Si)N Films Deposited Via Reactive DC Sputtering,” Materials Research, vol. 23, no. 6, 2020, doi:10.1590/1980-5373-mr-2019-0687.; H. A. Macías, L. Yate, E. Coy, W. Aperador, and J. J. Olaya, “Insights and optimization of the structural and mechanical properties of TiWSiN coatings using the Taguchi method,” Appl Surf Sci, vol. 558, p. 149877, Aug. 2021, doi:10.1016/j.apsusc.2021.149877.; H. A. Macías, L. Yate, L. E. Coy, W. Aperador, and J. J. Olaya, “Influence of Si-addition on wear and oxidation resistance of TiWSixN thin films,” Ceram Int, vol. 45, no. 14, pp. 17363–17375, Oct. 2019, doi:10.1016/j.ceramint.2019.05.295.; H. A. Macías, L. Yate, L. E. Coy, J. J. Olaya, and W. Aperador, “Effect of nitrogen flow ratio on microstructure, mechanical and tribological properties of TiWSiNx thin film deposited by magnetron co-sputtering,” Appl Surf Sci, vol. 456, pp. 445–456, Oct. 2018, doi:10.1016/j.apsusc.2018.06.129.; L. Prakash, “Fundamentals and General Applications of Hardmetals,” in Comprehensive Hard Materials, Elsevier, 2014, pp. 29–90. doi:10.1016/B978-0-08-096527-7.00002-7.; H. M. Ortner, P. Ettmayer, H. Kolaska, and I. Smid, “The history of the technological progress of hardmetals,” Int J Refract Metals Hard Mater, vol. 49, pp. 3–8, Mar. 2015, doi:10.1016/j.ijrmhm.2014.04.016.; H.-O. Andrén, “Microstructures of cemented carbides,” Mater Des, vol. 22, no. 6, pp. 491–498, Sep. 2001, doi:10.1016/S0261-3069(01)00006-1.; P. Yi et al., “Effect of plasma electrolytic nitriding on the corrosion behavior and interfacial contact resistance of titanium in the cathode environment of proton-exchange membrane fuel cells,” J Power Sources, vol. 418, pp. 42–49, Apr. 2019, doi:10.1016/J.JPOWSOUR.2019.02.043.; J. Jin, Z. He, and X. Zhao, “Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti–6Al–4V bipolar plates for PEMFC,” Int J Hydrogen Energy, vol. 45, no. 22, pp. 12489–12500, Apr. 2020, doi:10.1016/J.IJHYDENE.2020.02.152.; T. Li, Z. Yan, Z. Liu, Y. Yan, and Y. Chen, “Surface microstructure and performance of TiN monolayer film on titanium bipolar plate for PEMFC,” Int J Hydrogen Energy, vol. 46, no. 61, pp. 31382–31390, Sep. 2021, doi:10.1016/J.IJHYDENE.2021.07.021.; J. Lin, X. Zhang, Y. Ou, and R. Wei, “The structure, oxidation resistance, mechanical and tribological properties of CrTiAlN coatings,” Surf Coat Technol, vol. 277, pp. 58–66, Sep. 2015, doi:10.1016/J.SURFCOAT.2015.07.013.; D. Zhou, L. Huang, J. Yuan, and C. Li, “Influences of different sputtering current on the microstructure and electrical properties of silicon nitride thin films deposited on cemented carbide tools,” Ceram Int, vol. 47, no. 22, pp. 32160–32167, Nov. 2021, doi:10.1016/J.CERAMINT.2021.08.108.; D. You, Y. Jiang, Y. Zhao, W. Guo, and M. Tan, “Widely tunable refractive index silicon nitride films deposited by ion-assisted pulsed DC reactive magnetron sputtering,” Opt Mater (Amst), vol. 136, p. 113354, Feb. 2023, doi:10.1016/J.OPTMAT.2022.113354.; H. P. Löbl and M. Huppertz, “Thermal stability of nonstoichiometric silicon nitride films made by reactive dc magnetron sputter deposition,” Thin Solid Films, vol. 317, no. 1–2, pp. 153–156, Apr. 1998, doi:10.1016/S0040-6090(97)00512-9.; M. Vila, D. Cáceres, and C. Prieto, “Mechanical properties of sputtered silicon nitride thin films,” J Appl Phys, vol. 94, no. 12, p. 7868, 2003, doi:10.1063/1.1626799.; A. and N. H. Macmillan. Kelly, Strong Solids., 3rd ed. Oxford, 1986.; H. Hasegawa and T. Suzuki, “Effects of second metal contents on microstructure and micro-hardness of ternary nitride films synthesized by cathodic arc method,” Surf Coat Technol, vol. 188–189, no. 1-3 SPEC.ISS., pp. 234–240, Nov. 2004, doi:10.1016/J.SURFCOAT.2004.08.033.; T. Li, Z. Yan, Z. Liu, M. He, Y. Yan, and Y. Chen, “High corrosion resistance and surface conductivity of (Ti1-Cr )N coating for titanium bipolar plate,” Corros Sci, vol. 200, p. 110256, May 2022, doi:10.1016/j.corsci.2022.110256.; J. Lin, B. Mishra, J. J. Moore, and W. D. Sproul, “Microstructure, mechanical and tribological properties of Cr1−xAlxN films deposited by pulsed-closed field unbalanced magnetron sputtering (P-CFUBMS),” Surf Coat Technol, vol. 201, no. 7, pp. 4329–4334, Dec. 2006, doi:10.1016/j.surfcoat.2006.08.090.; Z. Li, S. Miyake, M. Kumagai, H. Saito, and Y. Muramatsu, “Structure and Properties of Ti–Si–N Films Deposited by dc Magnetron Cosputtering on Positively Biased Substrates,” Jpn J Appl Phys, vol. 42, no. Part 1, No. 12, pp. 7510–7515, Dec. 2003, doi:10.1143/JJAP.42.7510.; S. Vepřek, “The search for novel, superhard materials,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 17, no. 5, pp. 2401–2420, Sep. 1999, doi:10.1116/1.581977.; E. Martinez, R. Sanjinés, O. Banakh, and F. Lévy, “Electrical, optical and mechanical properties of sputtered CrNy and Cr1−xSixN1.02 thin films,” Thin Solid Films, vol. 447–448, pp. 332–336, Jan. 2004, doi:10.1016/S0040-6090(03)01113-1.; H. Liu, X. Wang, C. Pei, and D. Sun, “Tribological properties and corrosion resistance of CrSiN coatings prepared via hybrid HiPIMS and DCMS,” Mater Res Express, vol. 6, no. 8, p. 086432, May 2019, doi:10.1088/2053-1591/ab2001.; T. Polcar and A. Cavaleiro, “High temperature behavior of nanolayered CrAlTiN coating: Thermal stability, oxidation, and tribological properties,” Surf Coat Technol, vol. 257, pp. 70–77, Oct. 2014, doi:10.1016/J.SURFCOAT.2014.07.053.; Kenneth Holmberg and Allan Matthews, “Properties, Mechanisms, Techniques and Applications in Surface Engineering.”; Y. Deng, W. Chen, B. Li, C. Wang, T. Kuang, and Y. Li, “Physical vapor deposition technology for coated cutting tools: A review,” Ceram Int, vol. 46, no. 11, pp. 18373–18390, Aug. 2020, doi:10.1016/j.ceramint.2020.04.168.; N. A. S. M. Idris, S. Abubakar, A. L. Khalaf, M. H. Yaacob, S. Sagadevan, and S. Paiman, “Optical and optoelectronic metal oxide-based sensors; (optical sensors, principle, computational modeling, and application-based development),” Metal Oxides for Optoelectronics and Optics-Based Medical Applications, pp. 151–164, Jan. 2022, doi:10.1016/B978-0-323-85824-3.00008-7.; Inc. Magna-Power Electronics, “SL Series Documentation,” release 1, Jan. 2022.; Ionautics AB, “HiPSTER 6, User Manual,” Linköping, SWEDEN, May 2020.; Ionautics AB, “HiPSTER Sync Unit, User Manual,” Linköping, SWEDEN, Sep. 2018.; MDQ. Ing. MYRIAM MORENO AMADO, “Resistencia a la corrosión y al desgaste de recubrimientos nanoestructurados de Zirconia (ZrO2) –Plata (Ag) y/o Alúmina (Al2O3) obtenidos con técnica de ‘Sputtering’reactivo con magnetrón desbalanceado”.; J. F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES. Wiley, 2019. doi:10.1002/9781119417651.; B. (Burkhard) Beckhoff, Handbook of practical X-ray fluorescence analysis. Springer, 2006.; C. Ni, “Scanning Electron Microscopy (SEM),” in Encyclopedia of Tribology, Boston, MA: Springer US, 2013, pp. 2977–2982. doi:10.1007/978-0-387-92897-5_1217.; M. Raza, “Oxygen vacancy stabilized zirconia (OVSZ); synthesis and properties”, doi:10.13140/RG.2.2.30274.58566.; D. D. Le Pevelen, “Small Molecule X-Ray Crystallography, Theory and Workflow,” Encyclopedia of Spectroscopy and Spectrometry, Second Edition, pp. 2559–2576, Jan. 2010, doi:10.1016/B978-0-12-374413-5.00359-6.; R. Shahbazian-Yassar, “Atomic Force Microscopy (AFM),” in Encyclopedia of Tribology, Boston, MA: Springer US, 2013, pp. 129–133. doi:10.1007/978-0-387-92897-5_1213.; F. Mansfeld, “The Polarization Resistance Technique for Measuring Corrosion Currents,” in Advances in Corrosion Science and Technology, Boston, MA: Springer US, 1976, pp. 163–262. doi:10.1007/978-1-4684-8986-6_3.; M. Stern and A. L. Geaby, “Electrochemical Polarization,” J Electrochem Soc, vol. 104, no. 1, p. 56, 1957, doi:10.1149/1.2428496.; “Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements.” Accessed: Mar. 21, 2022. [Online]. Available: https://www.astm.org/g0059-97r20.html; “ASTM G5-14(2021).” Accessed: Mar. 21, 2022. [Online]. Available: https://www.techstreet.com/standards/astm-g5-14-2021?product_id=2232537; S. Grassini, “Electrochemical impedance spectroscopy (EIS) for the in-situ analysis of metallic heritage artefacts,” Corrosion and Conservation of Cultural Heritage Metallic Artefacts, pp. 347–367, Jan. 2013, doi:10.1533/9781782421573.4.347.; C. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behavior of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrossion behaviour,” Corros Sci, vol. 45, no. 6, pp. 1257–1273, Jun. 2003, doi:10.1016/S0010-938X(02)00214-7.; M. C. Biesinger, C. Brown, J. R. Mycroft, R. D. Davidson, and N. S. McIntyre, “X‐ray photoelectron spectroscopy studies of chromium compounds,” Surface and Interface Analysis, vol. 36, no. 12, pp. 1550–1563, Dec. 2004, doi:10.1002/sia.1983.; M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl Surf Sci, vol. 257, no. 7, pp. 2717–2730, Jan. 2011, doi:10.1016/j.apsusc.2010.10.051.; T. Do and N. S. McIntyre, “Application of parallel factor analysis and X-ray photoelectron spectroscopy to the initial stages in oxidation of aluminium,” Surf Sci, vol. 433–435, pp. 136–141, Aug. 1999, doi:10.1016/S0039-6028(99)00064-3.; A. Kubala-Kukuś et al., “X-ray photoelectron spectroscopy analysis of chemically modified halloysite,” Radiation Physics and Chemistry, vol. 175, p. 108149, Oct. 2020, doi:10.1016/j.radphyschem.2019.02.008.; thermofisher, “Aluminum X-ray photoelectron spectra, aluminum electron configuration, and other elemental information.”; XPS International LLC, “BE Lookup Table.”; A. Lippitz and Th. Hübert, “XPS investigations of chromium nitride thin films,” Surf Coat Technol, vol. 200, no. 1–4, pp. 250–253, Oct. 2005, doi:10.1016/j.surfcoat.2005.02.091.; I. Milošev, H. H. Strehblow, and B. Navinšek, “Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation,” Thin Solid Films, vol. 303, no. 1–2, pp. 246–254, Jul. 1997, doi:10.1016/S0040-6090(97)00069-2.; Vincent Crist, “Surface Contamination.”; D. Jaeger and J. Patscheider, “A complete and self-consistent evaluation of XPS spectra of TiN,” J Electron Spectros Relat Phenomena, vol. 185, no. 11, pp. 523–534, Nov. 2012, doi:10.1016/J.ELSPEC.2012.10.011.; S. Veprek et al., “Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa,” Surf Coat Technol, vol. 133–134, pp. 152–159, Nov. 2000, doi:10.1016/S0257-8972(00)00957-9.; A. A. Galuska, J. C. Uht, and N. Marquez, “Reactive and nonreactive ion mixing of Ti films on carbon substrates,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 6, no. 1, pp. 110–122, Jan. 1988, doi:10.1116/1.574992.; A. K.-V. S. W. G. and C. J. P. Alexander V. Naumkin, “NIST X-ray Photoelectron Spectroscopy Database ,” NIST Standard Reference Database Number 20, National Institute of Standards and Technology.; A. Seeber, A. N. Klein, C. V. Speller, P. Egert, F. A. Weber, and A. Lago, “Sintering unalloyed titanium in DC electrical abnormal glow discharge,” Materials Research, vol. 13, no. 1, pp. 99–106, Mar. 2010, doi:10.1590/S1516-14392010000100020.; N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study,” J Appl Phys, vol. 72, no. 7, pp. 3072–3079, Oct. 1992, doi:10.1063/1.351465.; T. Hagio, A. Takase, and S. Umebayashi, “X-ray photoelectron spectroscopic studies of ?-sialons,” J Mater Sci Lett, vol. 11, no. 12, pp. 878–880, 1992, doi:10.1007/BF00730493.; I. Bertóti, “Characterization of nitride coatings by XPS,” Surf Coat Technol, vol. 151–152, pp. 194–203, Mar. 2002, doi:10.1016/S0257-8972(01)01619-X.; F. Werfel and O. Brümmer, “Corundum Structure Oxides Studied by XPS,” Phys Scr, vol. 28, no. 1, pp. 92–96, Jul. 1983, doi:10.1088/0031-8949/28/1/013.; X.-F. Zhang, P.-G. Wen, and Y. Yan, “Silicon nitride thin films deposited by DC pulse reactive magnetron sputtering,” J. Chu and Z. Wang, Eds., Oct. 2010, p. 79951M. doi:10.1117/12.888164.; M. C. Biesinger, “Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review,” Appl Surf Sci, vol. 597, p. 153681, Sep. 2022, doi:10.1016/j.apsusc.2022.153681.; L. ZHU, C. SONG, W. NI, and Y. LIU, “Effect of 10% Si addition on cathodic arc evaporated TiAlSiN coatings,” Transactions of Nonferrous Metals Society of China, vol. 26, no. 6, pp. 1638–1646, Jun. 2016, doi:10.1016/S1003-6326(16)64273-5.; Y. Tanaka, N. Ichimiya, Y. Onishi, and Y. Yamada, “Structure and properties of Al–Ti–Si–N coatings prepared by the cathodic arc ion plating method for high speed cutting applications,” Surf Coat Technol, vol. 146–147, pp. 215–221, Sep. 2001, doi:10.1016/S0257-8972(01)01391-3.; J. J. Pittari, J. J. Swab, J. Wright, and K. Atwater, “Mechanical evaluation of WC-Co materials with varying microstructures,” Int J Refract Metals Hard Mater, vol. 104, p. 105809, Apr. 2022, doi:10.1016/J.IJRMHM.2022.105809.; J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” Journal of Vacuum Science and Technology, vol. 11, no. 4, pp. 666–670, Jul. 1974, doi:10.1116/1.1312732.; J. A. Thornton, “Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings,” Journal of Vacuum Science and Technology, vol. 12, no. 4, pp. 830–835, Jul. 1975, doi:10.1116/1.568682.; E. Kusano, “Structure-Zone Modeling of Sputter-Deposited Thin Films: A Brief Review,” Applied Science and Convergence Technology, vol. 28, no. 6, pp. 179–185, Nov. 2019, doi:10.5757/ASCT.2019.28.6.179.; R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 2, no. 2, pp. 500–503, Apr. 1984, doi:10.1116/1.572604.; H. Alejandro and M. Ramírez, “Recubrimientos nanoestructurados de Ti-W-Si-N depositados mediante la técnica de co-sputtering magnetrón reactivo.”; I. Mónica and L. Rojas Flórez, “Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering,” 2023.; L.-C. Chang, Y.-H. Liu, and Y.-I. Chen, “Mechanical Properties and Oxidation Behavior of Cr-Si-N Coatings,” 2019, doi:10.3390/coatings9080528.; M. Fenker et al., “Improvement of the corrosion resistance of hard wear resistant coatings by intermediate plasma etching or multilayered structure,” Surf Coat Technol, vol. 150, no. 1, pp. 101–106, Feb. 2002, doi:10.1016/S0257-8972(01)01506-7.; J. C. Caicedo, G. Cabrera, H. H. Caicedo, C. Amaya, and W. Aperador, “Nature in corrosion–erosion surface for [TiN/TiAlN]n nanometric multilayers growth on AISI 1045 steel,” Thin Solid Films, vol. 520, no. 13, pp. 4350–4361, Apr. 2012, doi:10.1016/J.TSF.2012.02.061.; P. V. Nazarenko, A. G. Molyar, I. E. Polishchuk, O. G. Yachinskaya, and A. A. Il’in, “Structural defects and the electrochemical properties of nitride coatings,” Metal Science and Heat Treatment, vol. 32, no. 4, pp. 305–308, Apr. 1990, doi:10.1007/BF00729879.; A. Trentin, A. Pakseresht, A. Duran, Y. Castro, and D. Galusek, “Electrochemical Characterization of Polymeric Coatings for Corrosion Protection: A Review of Advances and Perspectives,” Polymers (Basel), vol. 14, no. 12, p. 2306, Jun. 2022, doi:10.3390/polym14122306.; C. Liliana and E. Peña, “Resistencia a la corrosión y al desgaste de películas delgadas de aceros inoxidables con y sin plata para aplicaciones biomédicas.”; F. Leonardo and A. Vega, “Sintetizar y caracterizar de la resistencia a la corrosión de recubrimientos cerámicos de (SiO2-TiO2-ZrO2-Bi2O3) producidos mediante la técnica sol-gel y depositados sobre las aleaciones de acero inoxidable AISI 316L y de titanio Ti6Al4V,” 2017.; R. Lakra, R. Kumar, D. Nath Thatoi, P. Kumar Sahoo, and A. Soam, “Synthesis and characterization of cobalt oxide (Co3O4) nanoparticles,” Mater Today Proc, vol. 41, pp. 269–271, 2021, doi:10.1016/j.matpr.2020.09.099.; R. N. Bhowmik and N. Naresh, “Structure, ac conductivity and complex impedance study of Co 3 O 4 and Fe 3 O 4 mixed spinel ferrites,” 2010. [Online]. Available: www.ijest-ng.com; T. Ingsel, F. M. de Souza, and R. K. Gupta, “Introduction to Electrocatalysts,” 2022, pp. 1–29. doi:10.1021/bk-2022-1431.ch001.; B. Tlili, C. Nouveau, G. Guillemot, A. Besnard, and A. Barkaoui, “Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films,” J Mater Eng Perform, vol. 27, no. 2, pp. 457–470, Feb. 2018, doi:10.1007/s11665-018-3132-1.; Y. X. Wang, S. Zhang, J.-W. Lee, W. S. Lew, and B. Li, “Influence of bias voltage on the hardness and toughness of CrAlN coatings via magnetron sputtering,” Surf Coat Technol, vol. 206, no. 24, pp. 5103–5107, Aug. 2012, doi:10.1016/j.surfcoat.2012.06.041.; F. F. Klimashin et al., “High-power-density sputtering of industrial-scale targets: Case study of (Al,Cr)N,” Mater Des, vol. 237, p. 112553, Jan. 2024, doi:10.1016/j.matdes.2023.112553.; Y. Lin et al., “Effect of titanium addition on structure, corrosion resistance and mechanical properties of aluminum coatings on NdFeB by ion-beam-assisted magnetron sputtering,” Vacuum, vol. 181, p. 109642, Nov. 2020, doi:10.1016/j.vacuum.2020.109642.; P. M. Perillo, “Corrosion Behavior of Coatings of Titanium Nitride and Titanium-Titanium Nitride on Steel Substrates,” CORROSION, vol. 62, no. 2, pp. 182–185, Feb. 2006, doi:10.5006/1.3278263.; A. M. Oje and A. A. Ogwu, “Chromium oxide coatings with the potential for eliminating the risk of chromium ion release in orthopaedic implants,” R Soc Open Sci, vol. 4, no. 7, p. 170218, Jul. 2017, doi:10.1098/rsos.170218.; M. Habibi et al., “Microstructure, fractal geometry and corrosion properties of CrN thin films: The effect of shot number and angular position,” Mater Today Commun, vol. 32, p. 104072, Aug. 2022, doi:10.1016/j.mtcomm.2022.104072.; A. Ferreira et al., “Nanostructured Cr(N,O) based thin films for relative humidity sensing,” Vacuum, vol. 191, p. 110333, Sep. 2021, doi:10.1016/j.vacuum.2021.110333.; T. Wierzchoń, I. Ulbin-Pokorska, and K. Sikorski, “Corrosion resistance of chromium nitride and oxynitride layers produced under glow discharge conditions,” Surf Coat Technol, vol. 130, no. 2–3, pp. 274–279, Aug. 2000, doi:10.1016/S0257-8972(00)00696-4.; https://repositorio.unal.edu.co/handle/unal/87133; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/