يعرض 1 - 20 نتائج من 66 نتيجة بحث عن '"Espectroscopia IR"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Dissertation/ Thesis

    المؤلفون: Granell Puig, Meritxell

    المساهمون: University/Department: Universitat Autònoma de Barcelona. Departament de Bioquímica i Biologia Molecular

    Thesis Advisors: Padrós, Esteve, Lórenz Fonfría, Víctor A.

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    Dissertation/ Thesis

    المؤلفون: Sala Vergés, Santiago

    المساهمون: University/Department: Universitat Autònoma de Barcelona. Departament de Química

    Thesis Advisors: Ventosa, Nora, Veciana i Miró, Jaume

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal
  8. 8
  9. 9
    Academic Journal

    Time: Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí

    وصف الملف: application/pdf; 5 páginas

    Relation: El hombre y la máquina No. 46, (ene.-jun. 2015); 122; 46; 118; Romero, J. A., Vargas, J. E., Fonthal, F., & Cabrera, J. J. (2015). Design and Development of an Embedded System for Spectrum Analysis in the Infrared Regions NIR and MIR for Glucose Quantification. El Hombre y la Máquina, (46), 118-122. http://hdl.handle.net/10614/10684; El hombre y la máquina; Tura, A. (2007). Non-invasive glucose moni-toring: Assessment of technologies and devices according to quantitative criteria. Diabetes Re-search and Clinical Practice; González, A., Rosenzweig, J. L. & Umpierrez G. (2007). Self-monitoring of blood glucose. J. Clinical Endocrinology and Metabolism 92, 5.; Vashist, S. K. (2012). Non-invasive glucose monitoring technology in diabetes management: A review. Analytica Chimica Acta; Skoog, D., Holler, F. & Nieman, T. (2001). Principios de análisis instrumental. Introducción a los métodos espectrométricos. Mc Graw-Hill. 5th ed; Oppenheim, A. V. (1999). Discrete Time Signal Processing. Filter Design techniques. 2 ed. Prentice Hall; Castro, I. D., Vargas, J. E. & Fonthal, F. MIR regions for non invasive blood glucose mea-surement. Opt. Pura y Aplicada; Galeano, G. (2009). Programación de Sistemas Embebidos. Conceptos básicos sobre sistemas embebidos 3 - 33.; http://hdl.handle.net/10614/10684

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal

    Time: Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí

    وصف الملف: application/pdf; 12 páginas

    Relation: Óptica Pura y Aplicada. Volumen 45, número 3, (2012); páginas 323-334; 45; Fonthal Rico, F., Castro, I., Vargas, J. E (2012). Identificación de longitudes de onda en las regiones NIR y MIR para la medición no invasiva de glucosa en sangre. Óptica Pura y Aplicada. 45(3), 323-334. http://red.uao.edu.co//handle/10614/11971; Óptica Pura y Aplicada; J. G. Webster, E. R. Ritenour, S. Tabakov, N. G. Kwan‐Hoong, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, CRC Press, Boca Raton, pp. 1‐40 (2009).; M. Duarte, G. Muñoz, J. Rodriguez, A. Escorza, “Prevalencia, detección y tratamiento de la diabetes gestacional”, Revista Salud Pública y nutrición 5, No. 1 (2004). Disponible en: http://www.respyn.uanl.mx/v/1/ensayos/diebetes_gest.htm Revisado en julio de 2011.; A. González, J. L. Rosenzweig, G. Umpierrez, “Self‐monitoring of blood glucose”, J. Clinical Endocrinology and Metabolism 92, No. 5 p.0 (2007).; P. Restrepo, “Glucómetro no invasivo”, Revista de la Facultad de Medicina 10, 22‐27 (2005).; L. Pulenta, E. Ávila, “Medición no invasiva de glucosa por infrarrojo cercano”. XV Congreso Argentino de Bioingeniería, Argentina 047ei (2005).; C. Araujo‐Andrade, F. Ruiz, J. R. Martínez, H. Terrones, “Predicción no invasiva de los niveles Fisiológicos de glucosa utilizando espectroscopia de absorción infrarroja (NIR)”, Congreso Anual de la AMCA, México, pp. 281‐285 (2004).; J. E. Vargas, D. Montaño, Estudio sobre la Utilización de Espectroscopía Infrarrojo para Medir la Concentración de Glucosa en Sangre, Trabajo de Grado, Ingeniero Biomédico, Universidad Autónoma de Occidente, Facultad de Ingeniería, Santiago de Cali, Colombia (2009).; J. G. Webster, E. R. Ritenour, S. Tabakov, N. G. Kwan‐Hoong, Handbook of Optical Sensing of Glucose in Fluids and Tissues, CRC Press, Boca Raton, pp. 97‐114 (2009).; J. E. Vargas, I. D. Castro, F. Fonthal, “Identificación espectroscópica en la región media y cercana del infrarrojo para su aplicación en mediciones no invasivas de glucosa”, V Congreso Latinoamericano de ngeniería Biomédica, CLAIB 2011, La Habana, Cuba. IFMBE Proceedings, 33, Id Trabajo: 226 (2011).; I. Gabriely, “Transcutaneous glucose measurement using near‐infrared spectroscopy during hypo glycemia”, Diabetes Care 22, 2026‐2032 (1999).; Y. C. Shen, A. G. Davies, E. H. Linfield, “Determination of glucose concentration in whole blood using Fourier‐Transform Infrared spectroscopy”, J. Biol. Phys. 29, 129‐133 (2003).; A. Savitzky, M. Golay, “Smoothing and differentiation of data by simplified least squares procedures”, Anal. Chem. 36, 1627–1639 (1964).; T. Lan, Y. Fang, W. Xiong, C. Kong, “Automatic baseline correction of infrared spectra”, Chin. Opt. Lett. 5, 613‐616 (2007).; A. Candolfia, R. De Maesschalcka, D. Jouan‐Rimbauda, P. A. Haineyb, D. L. Massart, “The influence of data pre‐processing in the pattern recognition of excipients near‐infrared spectra”, J. Pharmaceut. Biomed. 21, 115‐132 (1999).; M. A. Romero, Desarrollo de Nuevas Metodologías Analíticas en el Control de Calidad de la Industria Farmacéutica, PhD Thesis in Chemistry, Universidad Autónoma de Barcelona (Spain), Department of Chemistry (2001).; F. M. González, Desarrollo de un Método de Selección de Variables para Datos Espectroscópicos en el Infrarrojo Cercano, Trabajo de Grado, Ingeniero Electrónico, Universitat Rovira i Virgili de Tarragona (Spain), Departamento de Ingeniería Electrónica, Eléctrica y Automática (2004).; N. Benoudjit, D. Francois, M. Meurens, M. Verleysen, “Spectrophotometric variable selection by mutual information”, Chemometr. Intel. Lab. 74, 243‐251 (2004).; F. Rossi, A. Lendasse, D. Francois, V. Wertz, M. Verleysen, “Mutual information for the selection of relevant variables in spectrometric nonlinear modelling”, Chemometr. Intel. Lab. 76,, 215‐226 (2006).; Y. J. Kim, G. Yoon, “Prediction of glucose in whole blood by near‐infrared spectroscopy: Influence of wavelength region, preprocessing, and haemoglobin concentration”, J. Biomed. Opt. 11, 041128 (2006).; C. Petibois, “Determination of glucose in dried serum samples by Fourier transform infrared spectroscopy”, Clin. Chem. 45, 1530‐1535 (1999).; Y. J. Kim, S. Hahn, G. Yoon, “Determination of glucose in whole blood samples by mid‐infrared spectroscopy”, Appl. Opt. 42, 745‐749 (2003).; http://red.uao.edu.co//handle/10614/11971

  14. 14
    Academic Journal
  15. 15
    Dissertation/ Thesis

    المساهمون: Santos, Luciene da Silva, orcid:0000-0002-3489-8125, http://lattes.cnpq.br/5509940421252262, Freitas, Júlio Cézar de Oliveira, orcid:0000-0003-1324-9705, http://lattes.cnpq.br/2357217530716519, Campos, Leila Maria Aguilera, Bicudo, Tatiana de Campos

    وصف الملف: application/pdf

    Relation: SILVA, Wellington Jefferson Oliveira da. Avaliação físico-química e quimiométrica de combustível aeronáutico: uma abordagem acerca da estabilidade após estocagem e com adição de adulterantes. 2021. 101f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2021.; https://repositorio.ufrn.br/handle/123456789/47536

  16. 16
    Dissertation/ Thesis

    المؤلفون: Orrego Restrepo, Estefanía

    المساهمون: Ordóñez Loza, Javier Alonso, Chejne Janna, Farid, Termodinámica Aplicada Y Energías Alternativas (TAYEA)

    وصف الملف: 94 páginas; application/pdf

    Relation: [1] H. L. Friedman, “Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic,” J. Polym. Sci. Part C Polym. Symp., vol. 6, no. 1, pp. 183–195, 1964, doi:10.1002/polc.5070060121.; [2] M. J. Antal and H. L. Friedman, “Kinetics of Cellulose Pyrolysis in Nitrogen and Steam,” Combust. Sci. Technol., vol. 21, pp. 141–152, 1980.; [3] A. G. W. Bradbury, Y. Sakai, and F. Shafizadeh, “A kinetic model for pyrolysis of cellulose,” J. Appl. Polym. Sci., vol. 23, pp. 3271–3280, 1979, doi:10.1002/app.1979.070231112.; [4] J. P. Diebold, “A unified, global model for the pyrolysis of cellulose,” Biomass and Bioenergy, vol. 7, no. 1–6, pp. 75–85, 1994, doi:10.1016/0961-9534(94)00039-V.; [5] E. Ranzi et al., “Chemical kinetics of biomass pyrolysis,” Energy and Fuels, vol. 22, no. 6, pp. 4292–4300, 2008, doi:10.1021/ef800551t.; [6] Ministerio de Minas y Energía de Colombia, “Colombia has great potential for producing biomass energy: Minister of Mines and Energy,” 2017. [Online]. Available: https://www.minminas.gov.co/web/ingles/noticias?idNoticia=23882538. [Accessed: 05-Mar-2019].; [7] N. Altawell, The Selection Process of Biomass Materials for the Production of Bio-fuels and Co-firing. New York, United States of America: Institute of Electrical and Electronics Engineers Inc., 2014.; [8] M. S. Mettler, D. G. Vlachos, and P. J. Dauenhauer, “Top ten fundamental challenges of biomass pyrolysis for biofuels,” Energy Environ. Sci., vol. 5, no. 7, pp. 7797–7809, 2012, doi:10.1039/c2ee21679e.; [9] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, “Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins,” Energy and Fuels, vol. 30, pp. 6505–6524, 2016, doi:10.1021/acs.energyfuels.6b01242.; [10] S. Hameed, A. Sharma, V. Pareek, H. Wu, and Y. Yu, “A review on biomass pyrolysis models: Kinetic, network and mechanistic models,” Biomass and Bioenergy, vol. 123, pp. 104–122, 2019, doi:10.1016/j.biombioe.2019.02.008.; [11] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, 2017, doi:10.1016/j.pecs.2017.05.004.; [12] R. Parthasarathi, G. Bellesia, S. P. S. Chundawat, B. E. Dale, P. Langan, and S. Gnanakaran, “Insights into hydrogen bonding and stacking interactions in cellulose,” J. Phys. Chem. A, vol. 115, pp. 14191–14202, 2011, doi:10.1021/jp203620x.; [13] J. Zhang, Y. S. Choi, C. G. Yoo, T. H. Kim, R. C. Brown, and B. H. Shanks, “Cellulose-hemicellulose and cellulose-lignin interactions during fast pyrolysis,” ACS Sustain. Chem. Eng., vol. 3, pp. 293–301, 2015, doi:10.1021/sc500664h.; [14] Q. Liu, Z. Zhong, S. Wang, and Z. Luo, “Interactions of biomass components during pyrolysis: A TG-FTIR study,” J. Anal. Appl. Pyrolysis, vol. 90, no. 2, pp. 213–218, 2011, doi:10.1016/j.jaap.2010.12.009.; [15] J. Yu, N. Paterson, J. Blamey, and M. Millan, “Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass,” Fuel, vol. 191, pp. 140–149, 2017, doi:10.1016/j.fuel.2016.11.057.; [16] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, and C. Roy, “Characterization of bio-oils in chemical families,” Biomass and Bioenergy, vol. 31, pp. 222–242, 2007, doi:10.1016/j.biombioe.2006.02.006.; [17] F. Stankovikj and M. Garcia-perez, “TG-FTIR method for the characterization of bio-oils in chemical families,” Energy and Fuels, vol. 31, p. 1689−1701, 2017, doi:10.1021/acs.energyfuels.6b03132.; [18] S. Wang, R. U. Bin, L. I. N. Haizhou, S. U. N. Wuxing, Y. U. Chunjiang, and L. U. O. Zhongyang, “Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes,” Chem. Res. Chin. Univ., vol. 30, no. 5, pp. 848–854, 2014, doi:10.1007/s40242-014-4019-9.; [19] D. K. Shen and S. Gu, “The mechanism for thermal decomposition of cellulose and its main products,” Bioresour. Technol., vol. 100, no. 24, pp. 6496–6504, 2009, doi:10.1016/j.biortech.2009.06.095.; [20] X. Gu, X. Ma, L. Li, C. Liu, K. Cheng, and Z. Li, “Pyrolysis of poplar wood sawdust by TG-FTIR and Py-GC/MS,” J. Anal. Appl. Pyrolysis, vol. 102, pp. 16–23, 2013, doi:10.1016/j.jaap.2013.04.009.; [21] Q. Liu, S. Wang, Y. Zheng, Z. Luo, and K. Cen, “Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis,” J. Anal. Appl. Pyrolysis, vol. 82, pp. 170–177, 2008, doi:10.1016/j.jaap.2008.03.007.; [22] F. xiang Xu, X. Zhang, F. Zhang, L. qun Jiang, Z. li Zhao, and H. bin Li, “TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures,” Fuel, vol. 268, pp. 1–8, 2020, doi:10.1016/j.fuel.2020.117365.; [23] V. K. Ponnusamy et al., “A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential,” Bioresour. Technol., vol. 271, pp. 462–472, 2019, doi:10.1016/j.biortech.2018.09.070.; [24] P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón, J. Pascual-Cosp, M. Benítez-Guerrero, and J. M. Criado, “An improved model for the kinetic description of the thermal degradation of cellulose,” Cellulose, vol. 18, pp. 1487–1498, 2011, doi:10.1007/s10570-011-9602-3.; [25] S. Wu, D. Shen, J. Hu, H. Zhang, and R. Xiao, “Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods,” Biomass and Bioenergy, vol. 95, pp. 55–63, 2016, doi:10.1016/j.biombioe.2016.09.015.; [26] L. Taiz and E. Zeiger, Plant Physiology, 3rd ed. Sunderland, England: Sinauer, 2002.; [27] D. Shen, R. Xiao, S. Gu, and H. Zhang, “The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass,” in Cellulose - Biomass Conversion, Intech, 2013, pp. 193–226.; [28] E. Terrell, L. D. Dellon, A. Dufour, E. Bartolomei, L. J. Broadbelt, and M. Garcia-Perez, “A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling,” Ind. Eng. Chem. Res., vol. 59, no. 2, pp. 526–555, 2020, doi:10.1021/acs.iecr.9b05744.; [29] S. H. Ghaffar and M. Fan, “Structural analysis for lignin characteristics in biomass straw,” Biomass and Bioenergy, vol. 57, pp. 264–279, 2013, doi:10.1016/j.biombioe.2013.07.015.; [30] J. Ralph, C. Lapierre, and W. Boerjan, “Lignin structure and its engineering,” Curr. Opin. Biotechnol., vol. 56, pp. 240–249, 2019, doi:10.1016/j.copbio.2019.02.019.; [31] G. Costa and I. Plazanet, “Plant Cell Wall, a Challenge for Its Characterisation,” Adv. Biol. Chem., vol. 06, pp. 70–105, 2016, doi:10.4236/abc.2016.63008.; [32] P. Bajpai, “Structure of Lignocellulosic Biomass,” in Pretreatment of Lignocellulosic Biomass Feedstocks for Biofuel Production, SpringerBriefs in Green Chemistry for Sustainability, 2016, p. 5.; [33] J. Montoya, “Kinetic Study and Phenomenological Modeling of a Biomass Particle During Fast Pyrolyss Process,” 2016.; [34] G. P. Marrugo Escobar, “Efecto de los cambios estructurales de diferentes biomasas pirolizadas sobre las características del gas de síntesis, obtenido a partir de la gasificación de biochar,” Universidad Nacional de Colombia, 2015.; [35] H. A. Ibrahim, “Introductory Chapter : Pyrolysis,” in Recent Advances in Pyrolysis, Hamah, Syria, 2020, pp. 1–12.; [36] L. Loweska, P. Miskowiec, T. Lojewski, and L. M. Proniewicz, “Cellulose oxidative and hydrolytic degradation: In situ FTIR approach,” Polym. Degrad. Stab., vol. 88, pp. 512–520, 2005, doi:10.1016/j.polymdegradstab.2004.12.012.; [37] A. Broido and M. A. Nelson, “Char yield on pyrolysis of cellulose,” Combust. Flame, vol. 24, no. C, pp. 263–268, 1975, doi:10.1016/0010-2180(75)90156-X.; [38] C. Zhao, E. Jiang, and A. Chen, “Volatile production from pyrolysis of cellulose, hemicellulose and lignin,” J. Energy Inst., vol. 90, pp. 902–913, 2017, doi:10.1016/j.joei.2016.08.004.; [39] T. Hosoya, H. Kawamoto, and S. Saka, “Pyrolysis behaviors of wood and its constituent polymers at gasification temperature,” J. Anal. Appl. Pyrolysis, vol. 78, pp. 328–336, 2007, doi:10.1016/j.jaap.2006.08.008.; [40] M. Benítez-Guerrero, J. López-Beceiro, P. E. Sánchez-Jiménez, and J. Pascual-Cosp, “Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products,” Thermochim. Acta, vol. 581, pp. 70–86, 2014, doi:10.1016/j.tca.2014.02.013.; [41] B. C. Smith, Infrared spectral interpretation: a systematic approach, vol. 1. Boca Raton, Florida.: CRC Press LLC, 1999.; [42] B. C. Smith, “A Process for Successful Infrared Spectral Interpretation,” Spectroscopy, vol. 31, no. 1, pp. 14–21, 2016.; [43] B. C. Smith, Fundamentals of Fourier Transform Infrered Spectroscopy, 2nd ed. Boca Raton, Florida.: CRC Press LLC, 2011.; [44] J. Coates, “Interpretation of infrared Spectra, A Practical Approach,” in Encyclopedia ofAnalytical Chemistry, R. A. Meyers, Ed. Chichester: John Wiley & Sons Ltd., 2000, pp. 10815–10837.; [45] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, pp. 1781–1788, 2007, doi:10.1016/j.fuel.2006.12.013.; [46] S. J. Parikh, B. J. Lafferty, and D. L. Sparks, “An ATR-FTIR spectroscopic approach for measuring rapid kinetics at the mineral/water interface,” J. Colloid Interface Sci., vol. 320, pp. 177–185, 2008, doi:10.1016/j.jcis.2007.12.017.; [47] T. Siengchum, M. Isenberg, and S. S. C. Chuang, “Fast pyrolysis of coconut biomass - An FTIR study,” Fuel, vol. 105, pp. 559–565, 2013, doi:10.1016/j.fuel.2012.09.039.; [48] D. K. Shen, S. Gu, and A. V. Bridgwater, “Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR,” J. Anal. Appl. Pyrolysis, vol. 87, no. 2, pp. 199–206, 2010, doi:10.1016/j.jaap.2009.12.001.; [49] F. Wülfert, W. T. Kok, and A. K. Smilde, “Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models,” Anal. Chem., vol. 70, pp. 1761–1767, 1998, doi:10.1021/ac9709920.; [50] S. Vyazovkin and C. A. Wight, “Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data,” Thermochim. Acta, vol. 340–341, pp. 53–68, 1999, doi:10.1016/S0040-6031(99)00253-1.; [51] A. K. Galwey, “Solid state reaction kinetics, mechanisms and catalysis: a retrospective rational review,” React. Kinet. Mech. Catal., vol. 114, no. 1, pp. 1–29, 2014, doi:10.1007/s11144-014-0770-7.; [52] J. M. Criado, P. E. Sánchez-Jiménez, and L. A. Pérez-Maqueda, “Critical study of the isoconversional methods of kinetic analysis,” J. Therm. Anal. Calorim., vol. 92, no. 1, pp. 199–203, 2008, doi:10.1007/s10973-007-8763-7.; [53] Y. C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, and G. W. Huber, “Kinetics and mechanism of cellulose pyrolysis,” J. Phys. Chem. C, vol. 113, pp. 20097–20107, 2009, doi:10.1021/jp906702p.; [54] S. Wang, Q. Liu, Z. Luo, L. Wen, and K. Cen, “Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy,” Front. Energy Power Eng. China, vol. 1, no. 4, pp. 413–419, 2007, doi:10.1007/s11708-007-0060-8.; [55] P. Aggarwal, D. Dollimore, and K. Heon, “Comparative thermal analysis study of two biopolymers, starch and cellulose,” J. Therm. Anal., vol. 50, pp. 7–17, 1997, doi:10.1007/bf01979545.; [56] D. Chen, J. Zhou, and Q. Zhang, “Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo,” Bioresour. Technol., vol. 169, pp. 313–319, 2014, doi:10.1016/j.biortech.2014.07.009.; [57] C. Şerbǎnescu, “Kinetic analysis of cellulose pyrolysis: A short review,” Chem. Pap., vol. 68, no. 7, pp. 847–860, 2014, doi:10.2478/s11696-013-0529-z.; [58] G. Zhu, X. Zhu, Z. Xiao, and F. Yi, “Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 126–130, 2012, doi:10.1016/j.jaap.2011.11.016.; [59] R. Capart, L. Khezami, and A. K. Burnham, “Assessment of various kinetic models for the pyrolysis of a microgranular cellulose,” Thermochim. Acta, vol. 417, pp. 79–89, 2004, doi:10.1016/j.tca.2004.01.029.; [60] J. Lédé, “Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 17–32, 2012, doi:10.1016/j.jaap.2011.12.019.; [61] P. K. Chatterjee and C. M. Conrad, “Kinetics of the Pyrolysis of Cotton Cellulose,” Text. Res. J., vol. 36, no. 6, pp. 487–494, 1966, doi:10.1177/004051756603600601.; [62] S. Matsuoka, H. Kawamoto, and S. Saka, “What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end,” J. Anal. Appl. Pyrolysis, vol. 106, pp. 138–146, 2014, doi:10.1016/j.jaap.2014.01.011.; [63] Specac, “High Temperature High Pressure Cell - User Manual,” 2016.; [64] P. H. Eilers and H. F. Boelens, “Asymmetric Least Squares Smoothing,” Leiden Univ. Med. Cent. Rep., vol. 1, p. 5, 2005.; [65] A. Kuzmiakova, A. M. Dillner, and S. Takahama, “An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters,” Atmos. Meas. Tech., vol. 9, pp. 2615–2631, 2016, doi:10.5194/amt-9-2615-2016.; https://repositorio.unal.edu.co/handle/unal/79780; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  17. 17
    Dissertation/ Thesis

    المساهمون: Silva Yumi, Jorge Efrén, Cazar Ramírez, Robert Alcides

    وصف الملف: application/pdf

    Relation: UDCTFC;156T0040; Tubón Pérez, Katherine Lissette. (2021). Estudio termodinámico de la adsorción de colorantes catiónicos en oxido de grafeno reducido. Escuela Superior Politécnica de Chimborazo. Riobamba.; http://dspace.espoch.edu.ec/handle/123456789/15351

  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20