يعرض 1 - 13 نتائج من 13 نتيجة بحث عن '"Equational basis"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal

    المساهمون: Luca Aceto and Valentina Castiglioni and Anna Ingólfsdóttir and Bas Luttik

    مصطلحات موضوعية: Equational basis, Weak semantics, CCS, Parallel composition

    وصف الملف: application/pdf

    Relation: Is Part Of LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022); https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.6

  3. 3
    Academic Journal

    المساهمون: CMA - Centro de Matemática e Aplicações, DM - Departamento de Matemática

    Relation: PURE: 33427342; PURE UUID: 72bb1ecb-c82c-4e11-8b80-1a90b836a1d9; Scopus: 85112599685; WOS: 000681506200001; ORCID: /0000-0003-1186-6216/work/101182626; ORCID: /0000-0002-6882-8651/work/111322896; http://hdl.handle.net/10362/132653; https://doi.org/10.1080/00927872.2021.1955901

  4. 4
    Academic Journal

    المصدر: Studia Logica: An International Journal for Symbolic Logic, 2009 Jun 01. 92(1), 109-120.

  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المؤلفون: Kowalski, Tomasz

    وصف الملف: application/pdf

    Relation: mr:MR2682483; zbl:Zbl 1224.08005; reference:[1] Evans T., Neumann B.H.: On varieties of groupoids and loops.J. London Math. Soc. 28 (1953), 342–350. Zbl 0050.01705, MR 0057867, 10.1112/jlms/s1-28.3.342; reference:[2] Kinyon M.K., Kunen K., Phillips J.D.: A generalization of Moufang and Steiner loops.Algebra Universalis 48 (2002), 81–101. Zbl 1058.20057, MR 1930034, 10.1007/s00012-002-8205-0; reference:[3] Chang C.C., Keisler H.J.: Model Theory.Studies in Logic and the Foundations of Mathematics, vol. 73, 3rd edition, North-Holland, Amsterdam, 1990. Zbl 0697.03022, MR 1059055

  8. 8
    Academic Journal

    المؤلفون: Pilitowska, Agata

    وصف الملف: application/pdf

    Relation: mr:MR2562800; zbl:Zbl 1212.08004; reference:[1] Baker K.A., McNulty G.F., Werner H.: The finitely based varieties of graph algebras.Acta Sci. Math. (Szeged) 51 (1987), 3--15. Zbl 0629.08003, MR 0911554; reference:[2] Bošnjak I., Madarász R.: On power structures.Algebra Discrete Math. 2 (2003), 14--35. Zbl 1063.08001, MR 2048654; reference:[3] Brink C.: Power structures.Algebra Universalis 30 (1993), 177--216. Zbl 0787.08001, MR 1223628, 10.1007/BF01196091; reference:[4] Davey B.A., Idziak P.H., Lampe W.A., McNulty G.F.: Dualizability and graph algebras.Discrete Math. 214 (2000), 145--172. Zbl 0945.08001, MR 1743633, 10.1016/S0012-365X(99)00225-3; reference:[5] Grätzer G., Lakser H.: Identities for globals $($complex algebras$)$ of algebras.Colloq. Math. 56 (1988), 19--29. MR 0980508; reference:[6] Grätzer G., Whitney S.: Infinitary varieties of structures closed under the formation of complex structures.Colloq. Math. 48 (1984), 485--488. MR 0750749; reference:[7] McNulty G.F., Shallon C.: Inherently nonfinitely based finite algebras.R. Freese, O. Garcia (Eds.), Universal Algebra and Lattice Theory (Puebla, 1982), Lecture Notes in Mathematics, 1004, Springer, Berlin, 1983, pp. 205--231. Zbl 0513.08003, MR 0716184; reference:[8] Shafaat A.: On varieties closed under the construction of power algebras.Bull. Austral. Math. Soc. 11 (1974), 213--218. Zbl 0295.08002, MR 0364055, 10.1017/S000497270004380X; reference:[9] Shallon C.R.: Nonfinitely based binary algebras derived from lattices.Ph.D. Thesis, University of California at Los Angeles, 1979.

  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2426892; zbl:Zbl 1192.20058; reference:[1] Bates G.E., Kiokemeister F.: A note on homomorphic mappings of quasigroups into multiplicative systems.Bull. Amer. Math. Soc. 54 (1948), 1180-1185. Zbl 0034.29801, MR 0027768, 10.1090/S0002-9904-1948-09146-7; reference:[2] Bruck R.H.: A Survey of Binary Systems, third printing, corrected.Ergebnisse der Mathematik und ihrer Grenzgebiete, New Series 20, Springer, Berlin, 1971. MR 0093552; reference:[3] Colbourn C.J., Rosa A.: Triple Systems.Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl 1030.05017, MR 1843379; reference:[4] Conway J.H.: A simple construction for the Fischer-Griess monster group.Invent. Math. 79 (1985), 513-540. Zbl 0564.20010, MR 0782233, 10.1007/BF01388521; reference:[5] Dénes J., Keedwell A.D.: Latin Squares and their Applications.Akadémiai Kiadó, Budapest, 1974. MR 0351850; reference:[6] Doro S.: Simple Moufang loops.Math. Proc. Cambridge Philos. Soc. 83 (1978), 377-392. Zbl 0381.20054, MR 0492031, 10.1017/S0305004100054669; reference:[7] Evans T.: Homomorphisms of non-associative systems.J. London Math. Soc. 24 (1949), 254-260. MR 0032664, 10.1112/jlms/s1-24.4.254; reference:[8] Fenyves F.: Extra loops II. On loops with identities of Bol-Moufang type.Publ. Math. Debrecen 16 (1969), 187-192. MR 0262409; reference:[9] Hall M.: The Theory of Groups.The Macmillan Co., New York, 1959. Zbl 0919.20001, MR 0103215; reference:[10] Goodaire E.G., Jespers E., Polcino Milies C.: Alternative Loop Rings.North-Holland Mathematics Studies 184, North-Holland Publishing Co., Amsterdam, 1996. Zbl 0878.17029, MR 1433590; reference:[11] Kiechle H.: Theory of K-loops.Lecture Notes in Mathematics 1778, Springer, Berlin, 2002. Zbl 0997.20059, MR 1899153, 10.1007/b83276; reference:[12] Kinyon M.K., Phillips J.D., Vojtěchovský P.: C-loops: Extensions and constructions.J. Algebra Appl. 6 (2007), 1 1-20. Zbl 1129.20043, MR 2302693, 10.1142/S0219498807001990; reference:[13] Kunen K.: Quasigroups, loops, and associative laws.J. Algebra 185 (1996), 1 194-204. Zbl 0860.20053, MR 1409983, 10.1006/jabr.1996.0321; reference:[14] Mann H.B.: On certain systems which are almost groups.Bull. Amer. Math. Soc. 50 (1944), 879-881. Zbl 0063.03769, MR 0011313, 10.1090/S0002-9904-1944-08256-6; reference:[15] McCune W.W.: Prover9 and Mace, download at http://www.prover9.org.; reference:[16] Nagy G.P.: A class of proper simple Bol loops.submitted, available at arXiv:math/0703919.; reference:[17] Ormes N., Vojtěchovský P.: Powers and alternative laws.Comment. Math. Univ. Carolin. 48 1 (2007), 25-40. Zbl 1174.20343, MR 2338827; reference:[18] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767; reference:[19] Pflugfelder H.O: Historical notes on loop theory.Comment. Math. Univ. Carolin. 41 2 (2000), 359-370. Zbl 1037.01010, MR 1780877; reference:[20] Phillips J.D., Vojtěchovský P.: C-loops: An introduction.Publ. Math. Debrecen 2006 1-2 115-137. MR 2213546; reference:[21] Phillips J.D., Vojtěchovský P.: The varieties of loops of Bol-Moufang type.Algebra Universalis 54 (2005), 3 259-271. Zbl 1102.20054, MR 2219409, 10.1007/s00012-005-1941-1; reference:[22] Phillips J.D., Vojtěchovský P.: The varieties of quasigroups of Bol-Moufang type: An equational reasoning approach.J. Algebra 293 (2005), 17-33. Zbl 1101.20046, MR 2173964, 10.1016/j.jalgebra.2005.07.011; reference:[23] : Problem 10888.American Mathematical Monthly 110, no. 4 (April 2003), 347. 10.2307/3647897; reference:[24] Robinson D.A.: Bol loops.Trans. Amer. Math. Soc. 123 (1966), 341-354. Zbl 0163.02001, MR 0194545, 10.1090/S0002-9947-1966-0194545-4; reference:[25] Schafer R.D.: An Introduction to Nonassociative Algebras.Pure and Applied Mathematics 22, Academic Press, New York-London, 1966. Zbl 0145.25601, MR 0210757; reference:[26] Sharma B.L.: Left loops which satisfy the left Bol identity.Proc. Amer. Math. Soc. 61 (1976), 2 189-195. MR 0422480, 10.1090/S0002-9939-1976-0422480-4; reference:[27] Sharma B.L.: Left loops which satisfy the left Bol identity II.Ann. Soc. Sci. Bruxelles Sér. I 91 (1977), 2 69-78. Zbl 0385.20044, MR 0444826; reference:[28] Springer T.A., Veldkamp F.D.: Octonions, Jordan Algebras and Exceptional Groups.Springer Monographs in Mathematics, Springer, Berlin, 2000. Zbl 1087.17001, MR 1763974; reference:[29] Smith W.D.: Inclusions among diassociativity-related loop properties.preprint.; reference:[30] Tits J., Weiss R.M.: Moufang polygons.Springer Monographs in Mathematics, Springer, Berlin, 2002. Zbl 1010.20017, MR 1938841; reference:[31] Ungar A.A.: Beyond Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces.Kluwer Academic Publishers, Dordrecht-Boston-London, 2001. MR 1978122

  10. 10
    Academic Journal
  11. 11
    Periodical

    المؤلفون: Cheng, V., Wismath, S.

    المصدر: Demonstratio Mathematica. Warsaw Technical University Institute of Mathematics.

  12. 12
  13. 13
    Electronic Resource