يعرض 1 - 20 نتائج من 73 نتيجة بحث عن '"Epitelio pigmentario de la retina"', وقت الاستعلام: 1.14s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Vega Álvarez, Belén

    المساهمون: University/Department: Universitat Jaume I. Escola de Doctorat

    Thesis Advisors: Eiró Díaz, Noemí, Vizoso Piñeiro, Francisco José

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis
  3. 3
    Conference

    وصف الملف: application/pdf

    Relation: MARTÍNEZ RODRÍGUEZ, S. et al. Producción de membranas de Bruch artificiales de fibroína de seda mediante Dynamic Dope Destabilization Spinning para la creación un epitelio pigmentario de la retina funcional. En: XLI Congreso Anual de la Sociedad Española de Ingeniería Biomédica. Cartagena: Universidad Politécnica de Cartagena, 2023. Pp. 634-637. ISBN: 978-84-17853-76-1; http://hdl.handle.net/10317/13500

  4. 4
    Academic Journal

    المصدر: Acta Médica del Centro; Vol. 17, No. 3 (2023): Julio-Septiembre ; 2709-7927

    وصف الملف: application/pdf

    Relation: https://revactamedicacentro.sld.cu/index.php/amc/article/view/1936/1679; https://revactamedicacentro.sld.cu/index.php/amc/article/view/1936/1693; Kiernan FD, Tripathy K, Ortiz-Morales G, Vernon Stuart K, Bhagat N, Lim JI. Congenital hypertrophy of the retinal pigment epithelium. American Academy of Ophthalmology. EyeWiki [Internet]. San Francisco: American Academy of Ophthalmology; 2020 [citado 21/01/2021]. Disponible en: https://eyewiki.aao.org/Congenital_hypertrophy_of_the_retinal_pigment_epithelium; Raval V, Dalal S, Doshi S. Multimodal imaging of congenital hypertrophy of retinal pigment epithelium (chrpe) lesions at different presentations. Ophthalmology Case Rep [Internet]. 2019 [citado 21/01/2021];3(1):1-4. Disponible en: https://www.alliedacademies.org/articles/multimodal-imaging-of-congenital-hypertrophy-of-retinal-pigment-epithelium-chrpe-lesions-at-different-presentations-11418.html. https://doi.org/10.35841/ophthalmology.3.1.1-4; Steffen Novelli PC, Stachewski Russo A, Real Martinez CA, Guilherme Campos F. The significance and interpretation of congenital hypertrophy of the retinal pigment epithelium (CHRPE) diagnosed in patients with Familial Adenomatous Polyposis: A review. New Front Ophthalmol [Internet]. 2018 [citado 21/01/2021];4(6):1-3. Disponible en: https://oatext.com/pdf/NFO-4-218.pdf. https://doi.org/10.15761/NFO.1000218; Cherney E. Congenital hypertrophy of the retinal pigment epithelium. Ophthalmol Rep [Internet]. 2013 [citado 21/01/2021];6(4):55-59. Disponible en: https://journals.eco-vector.com/ov/article/view/366. https://doi.org/10.17816/OV2013455-59; Ireland AC, Rodman J. Congenital Hypertrophy of Retinal Pigment Epithelium [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [citado 05/08/2023]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK576424/; Meyer CH, Rodrigues EB. Congenital Hypertrophy of the Retinal Pigment Epithelium. In: Sadda SR, Sarraf D, Freund KB, Hinton DR, Schachat AP, Wilkinson CP, Wiedemann P, editores. Ryan’s Retina [Internet]. 7th ed. Toronto: Elsevier; 2022 [citado 05/08/2023]. p. 2633-2638. Disponible en: https://www.elsevier.ca/ca/product.jsp?isbn=9780323722148; Shanmugam PM, Konana VK, Ramanjulu R, Mishra KCD, Sagar P, Simakurthy S. Ocular coherence tomography angiography features of congenital hypertrophy of retinal pigment epithelium. Indian J Ophthalmol [Internet]. 2019 [citado 21/01/2021];67(4):563-566. Disponible en: https://www.ijo.in/article.asp?issn=0301-4738;year=2019;volume=67;issue=4;spage=563;epage=566;aulast=Shanmugam; Vélez Montoya R, García Aguirre G. Congenital Hypertrophy of the Retinal Pigment Epithelium. En: Torres Soriano ME, García Aguirre G, Gordon M, Kon Graversen V. Ophthalmology: Current and Future Developments. Diagnostic Atlas of Retinal Diseases. Vol. 3 [Internet]. Sharjah, UAE: Bentham Science Publishers; 2017 [citado 21/01/2021]. p. 195-201. Disponible en: http://www.eurekaselect.com/ebook_volume/2217. https://doi.org/10.2174/9781681084152117030028; Amit SN, Pushpanjali R, Smitesh S. Congenital hypertrophy of retinal pigment epithelium (CHRPE) with typical ‘bear track’ presentation. J Ophthalmol Relat Sci [Internet]. 2019 [citado 21/01/2021];1(1):10-11. Disponible en: https://jors.journals.ekb.eg/article_28322_59ddc2116c5bd4a0e7917a4e5d0f832e.pdf; Zloto O, Moroz I, Vishnevskia-Dai V. Congenital hypertrophy of retinal pigment epithelium. BMJ Case Rep [Internet]. 2020 [citado 21/01/2021];13(8):e235508. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449305/. https://doi.org/10.1136/bcr-2020-235508; Zografos L. Congenital hypertrophy of the retinal pigment epithelium (RPE). Acta Ophthalmologica [Internet]. 2013 [citado 21/01/2021];91(s252):[aprox. 1 p.]. Disponible en: https://doi.org/10.1111/j.1755-3768.2013.3241.x; https://revactamedicacentro.sld.cu/index.php/amc/article/view/1936

  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المصدر: Cell Death & Disease Vol.12, No.1128, 2021

    وصف الملف: application/pdf

    Relation: Dieguez, H. H. et al. Enriched environment and visual stimuli protect the retinal pigment epithelium and photoreceptors in a mouse model of non-exudative age-related macular degeneration [en línea]. Cell Death & Disease. 2021, 12 (1128). doi:10.1038/s41419-021-04412-1. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14600; 2041-4889 (online); https://repositorio.uca.edu.ar/handle/123456789/14600

  7. 7
    Academic Journal

    المصدر: Revista Cubana de Neurologia y Neurocirugia; Vol. 11 No. 1 (2021): enero-abril ; Revista Cubana de Neurología y Neurocirugía; Vol. 11 No. 1 (2021): enero-abril ; 2225-4676

    وصف الملف: application/pdf

    Relation: https://revneuro.sld.cu/index.php/neu/article/view/435/622; https://revneuro.sld.cu/index.php/neu/article/downloadSuppFile/435/261; https://revneuro.sld.cu/index.php/neu/article/downloadSuppFile/435/262; Ropper AH, Samuels MA. Adams y Victor. Principios de Neurología. 9 Ed. Boston: McGraw-Hill´s Inc.; 2011. p. 1366-83.; Hahn C, Salajegheh MK. Myotonic disorders: A review article. Iran J Neurol. 2016 [citado: 30/08/2020];15(1):46-53. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852070/; Sellier C, Cerro-Herreros E, Blatter M, Freyermuth F, Gaucherot A, Ruffenach F, et al. rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences. Nat Commun. 2018;9(1):2009. Doi:10.1038/s41467-018-04370-x.; Johnson NE. Myotonic Muscular Dystrophies. Continuum (Minneap Minn). 2019;25(6):1682-95. Doi:10.1212/CON.0000000000000793.; U.S. National Library of Medicine. Myotonic dystrophy; 2020 [citado: 26/08/2020]. Disponible en: https://ghr.nlm.nih.gov/condition/myotonic-dystrophy#; Online Mendelian Inheritance in Man, OMIM®. MYOTONIC DYSTROPHY 2; DM2. Johns Hopkins University, Baltimore, MD. Número MIM: 160900; 2017. [citado: 26/08/2020]. Disponible en: https://omim.org/entry/602668?search=myotonic%20dystrophy&highlight=%28myotonia%7Cmyotonic%29%20dystrophy; Kevin Yum K, Wang ET, Kalsotra A. Myotonic Dystrophy: Disease Repeat Range, Penetrance, Age of Onset, and Relationship Between Repeat Size and Phenotypes. Curr Opin Genet Dev. 2017;44:30-7. Doi:10.1016/j.gde.2017.01.007; Wenninger S, Montagnese F, Schoser B. Core Clinical Phenotypes in Myotonic Dystrophies. Front Neurol. 2018;9:303. Doi:10.3389/fneur.2018.00303; LoRusso S, Weiner B, Arnold WD. Myotonic Dystrophies: Targeting Therapies for Multisystem Disease. Neurotherapeutics. 2018;15(4):872-84. Doi:10.1007/s13311-018-00679-z; Hilbert JE, Barohn RJ, Clemens PR, Luebbe EA, Martens WB, McDermott MP, et al. High frequency of gastrointestinal manifestations in myotonic dystrophy type 1 and type 2. Neurology. 2017;89(13):1348-54. Doi:10.1212/WNL.0000000000004420; Knight AK, Tidehag L, Mattsson G, Magnusson P. Myotonic dystrophy type 1 - a rare cause of bradycardia in the young. Lakartidningen. 2020 [citado: 20/08/2020];117:FR47. Disponible en: https://europepmc.org/article/med/31961442; Comas-Valdespino RL, Landrian-Davis A, Serra Ruíz M. Distrofia miotónica de Steinert. Presentación de un caso. Medisur. 2017 [citado: 20/08/2020];15(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1727-897X2017000100016&nrm=iso; van der Velden BG, Okkersen K, Pc Kessels R, Groenewoud J, van Engelen B, Knoop H, et al. Affective symptoms and apathy in myotonic dystrophy type 1 a systematic review and meta-analysis. J Affect Disord. 2019;250:260-9. Doi:10.1016/j.jad.2019.03.036.; Lagrue E, Dogan C, De Antonio M, Audic F, Bach N, Barnerias C. A large multicenter study of pediatric myotonic dystrophy type 1 for evidence-based management. Neurology. 2019;92(8):e852-e865. Doi:10.1212/WNL.0000000000006948.; Angeard N, Huerta E, Jacquette A, Cohen D, Xavier J, Gargiulo M, et al. Childhood-onset form of myotonic dystrophy type 1 and autism spectrum disorder: Is there comorbidity? Neuromuscul Disord. 2018;28(3):216-21. Doi:10.1016/j.nmd.2017.12.006.; Kersten H, Roxburgh R, Danesh-Meyer H. Ophthalmic manifestations of inherited neurodegenerative disorders. Nat Rev Neurol. 2019 [citado: 20/08/2020];10:349-62. Disponible en: https://www.nature.com/articles/nrneurol.2014.79; Kang MJ, Yim HB, Hwang HB. Two cases of myotonic dystrophy manifesting various ophthalmic findings with genetic evaluation. Indian J Ophthalmol. 2016;64(7):535-7. Doi:10.4103/0301-4738.190157; Dalvin LA, Shields CL, Pulido JS, Sioufi K, Cohen V, Shields JA. Uveal Melanoma Associated with Myotonic Dystrophy. A Report of 6 Cases. JAMA Ophthalmol. 2018;136(5):543-7. Doi:10.1001/jamaophthalmol.2018.0554.; Santiesteban-Freixas R, Aguilera-Pacheco O, Francisco-Plasencia M, Luis-Gonzalez S. Enfermedad de Steinert. Manifestaciones oftalmológicas. Rev. Cubana Oftalmol. 1995;8(1):8-12.; Landfeldt E, Nikolenko N, Jimenez-Moreno C, Cumming S, Monckton DG, Gorman G, et al. Disease burden of myotonic dystrophy type 1. J Neurol. 2019;266(4):998-1006. Doi:10.1007/s00415-019-09228-w.; Choi SH, Yang HK, Hwang JM, Park KS. Ocular Findings of Myotonic Dystrophy Type 1 in the Korean Population. Graefes Arch Clin Exp Ophthalmol. 2016;254:1189-93. Doi: https://doi.org/10.1007/s00417-016-3266-5; Ikeda KS, Iwabe-Marchese C, França MC, Nucci N, Monteiro de Carvalho K. Myotonic dystrophy type 1: frequency of ophthalmologic findings. Arq. Neuro-Psiquiatr. 2016;74(3). Doi: https://doi.org/10.1590/0004-282X20150218; Vanacore N, Rastelli E, Antonini G, Bianchi MLE, Botta A, Bucci E, et al. An Age-Standardized Prevalence Estimate and a Sex and Age Distribution of Myotonic Dystrophy Types 1 and 2 in the Rome Province, Italy. Neuroepidemiology. 2016;46:191-7. Doi: https://doi.org/10.1159/000444018; Spaziani M, Semeraro A, Bucci E, Rossi F, Garibaldi M, Papassifachis MA, et al. Hormonal and metabolic gender differences in a cohort of myotonic dystrophy type 1 subjects: a retrospective, case–control study. Journal of Endocrinological Investigation. 2020;43:663-75. Doi:10.1007/s40618-019-01156-w#citeas; Pagoulatos D, Kapsala Z, Makri OE, Georgakopoulos CD. Christmas tree cataract and myotonic dystrophy type 1. Eye (Lond). 2018;32(11):1794-5. Doi:10.1038/s41433-018-0161-9.; Ekström AB, Tulinius M, Aring E. Visual Function in Congenital and Childhood Myotonic Dystrophy Type 1. Ophthalmology. 2011;117(5):976-82. Doi: https://doi.org/10.1016/j.ophtha.2010.01.055; Rubin GS. Visual Acuity and Contrast Sensitivity. In: Schachat AP editor. Ryan´s Retina. 6th Edition. China: Elsevier Inc.; 2018. p. 340-6.; Garcia Filho CA, Santos T, Siqueira AK, Doi M, Soares LA. Intraocular pressure, corneal thickness, and corneal hysteresis in Steinert’s myotonic dystrophy. Arq Bras Oftalmol. 2011;74(3):161-2. Doi: https://doi.org/10.1590/S0004-27492011000300002.; Rosa N, Lanza M, Borrelli M, Filosa ML, De Bernardo M, Ventriglia VM, et al. Corneal thickness and endothelial cell characteristics in patients with myotonic dystrophy. Ophthalmology. 2010;117(2):223-5. Doi: https://doi.org/10.1016/j.ophtha.2009.07.003; De Bernardo M, Russo V, Rosa N. OPINION Ophthalmological findings in myotonic dystrophy. Arq. Neuro-Psiquiatr. 2017;75(5). Doi: http://dx.doi.org/10.1590/0004-282x20170045.; Rao RC, Choudhry N. A Christmas Tree Cataract. J Ophthalmol. 2016;51(6):e160-e161. Doi:10.1016/j.jcjo.2016.03.005; Natung T, Thangkhiew L, Keditsu A, Shullai W. Christmas Tree Cataract - A Cataract that Glitters. J Clin Diagn Res. 2016;10(4):NJ01-NJ02. Doi:10.7860/JCDR/2016/18923.7580; Huguet A, Medja F, Nicole A, Vignaud A, Guiraud-Dogan C, Ferry A, et al. Molecular, Physiological, and Motor Performance Defects in DMSXL Mice Carrying >1,000 CTG Repeats from the Human DM1 Locus. PLoS Genetics. 2012;8(11):e1003043. Doi:10.1371/journal.pgen.1003043; Magaña JJ, Leyva-García N, Cisneros B. Pathogenesis of myotonic dystrophy type 1. Gac Med Mex. 2009 [citado: 08/09/2020];145(4):331-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20073433/; Rodríguez N, Solis A, Rodriguez D, Gonzalez VC. Structural and funcional findings measured with macular OCT and microperimetry in presymptomatic patients with myotonic dystrophy type 1. Invest. Ophthalmol. Vis. Sci. 2018 [citado: 08/09/2020];59(9):1537. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2689948; Bird TD. Myotonic Dystrophy Type 1. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993-2021. 2019 [citado: 07/09/2020]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK1165/; Dogan C, De Antonio M, Hamroun D, Varet H, Fabbro M, Rougier F, et al. Gender as a Modifying Factor Influencing Myotonic Dystrophy Type 1 Phenotype Severity and Mortality: A Nationwide Multiple Databases Cross-Sectional Observational Study. PLoS One. 2016;11(2):e0148264. Doi:10.1371/journal.pone.0148264.; Abed E, D'Amico G, Rossi S, Perna A, Bianchi MLE, Silvestri G. Spectral domain optical coherence tomography findings in myotonic dystrophy. Neuromuscular Disorders. 2020;30(2):144-50.; Hernandez-Hernandez O, Guiraud-Dogan C, Sicot G, Huguet A, Luilier S, Steidl E, et al. Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour. Brain. 2013 [citado: 08/09/2020];136(3):957-70. Disponible en: https://academic.oup.com/brain/article/136/3/957/318229; Tian M, Xu CS, Montpetit R, Kramer RH. Rab3A mediates vesicle delivery at photoreceptor ribbon synapses. J Neurosci. 2012 [citado: 08/09/2020];32(20):6931-6. Doi:10.1523/JNEUROSCI.0265-12.2012; Sohn EH, Mullins RF, Stone EM. Macular Dystrophies. In: Schachat AP editor. Ryan´s Retina. 6th Edition. China: Elsevier Inc.; 2018. p. 953-96; Constable PA, Bach M, Frishman LJ, Jeffrey BG, Robson AG; International Society for Clinical Electrophysiology of Vision. ISCEV Standard for clinical electro-oculography (2017 update). Doc Ophthalmol. 2017 Feb;134(1):1-9. Doi:10.1007/s10633-017-9573-2.; https://revneuro.sld.cu/index.php/neu/article/view/435

  8. 8
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
  12. 12
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المصدر: Biomedica; Vol. 41 No. 3 (2021); 388-395 ; Biomédica; Vol. 41 Núm. 3 (2021); 388-395 ; 2590-7379 ; 0120-4157

    وصف الملف: application/pdf; text/xml

    Relation: https://revistabiomedica.org/index.php/biomedica/article/view/5604/4797; https://revistabiomedica.org/index.php/biomedica/article/view/5604/4943; Stone EM, Lotery AJ, Munier FL, Heón E, Piguet B, Guymer RH, et al. A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet. 1999;22:199-202. https://doi.org/10.1038/9722; Marmorstein LY, Munier FL, Arsenijevic Y, Schorderet DF, McLaughlin PJ, Chung D, et al. Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc Natl Acad Sci USA. 2002;99:13067-72. https://doi.org/10.1073/pnas.202491599; Souied EH, Leveziel N, Letien V, Darmon J, Coscas G, Soubrane G. Optical coherent tomography features of Malattia Leventinese. Am J Ophthalmol. 2006;141:404-7. https://doi.org/10.1016/j.ajo.2005.09.001; Johnson LV, Anderson DH. Age-related macular degeneration and the extracellular matrix. N Engl J Med. 2004;351:320-2. https://doi.org/10.1056/NEJMp048131; Pager CK, Sarin LK, Federman JL, Eagle R, Hageman G, Rosenow J, et al. Malattia Leventinese presenting with subretinal neovascular membrane and hemorrhage. Am J Ophthalmol. 2001;131:517-8. https://doi.org/10.1016/s0002-9394(00)00821-7; Matsumoto M, Traboulsi EI. Dominant radial drusen and Arg345Trp EFEMP1 mutation. Am J Ophthalmol. 2001;131:810-2. https://doi.org/10.1016/s0002-9394(00)00926-0; Guymer R. The genetics of age-related macular degeneration. Clin Exp Optom. 2001;84:182-9. https://doi.org/10.1111/j.1444-0938.2001.tb05023.x; Zhan T, Xie X, Cao G, Jiang H, Wu S, Su Z, et al. Malattia Leventinese/Doyne honeycomb retinal dystrophy in a Chinese family with mutation of the EFEMP1 gene. Retina. 2014;34:2462-71. https://doi.org/10.1097/IAE.0000000000000259; Khan KN, Mahroo OA, Khan RS, Mohamed MD, McKibbin M, Bird A, et al. Differentiating drusen: Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res. 2016;53:70-106. https://doi.org/10.1016/j.preteyeres.2016.04.008; Ardeljan D, Chan CC. Aging is not a disease: Distinguishing age-related macular degeneration from aging. Prog Retin Eye Res. 2013;37:68-89. https://doi.org/10.1016/j.preteyeres.2013.07.003; Guymer RH. Splitting the lumps: The importance of phenotyping drusen. Ophthalmol. 2018;125:6-7. https://doi.org/10.1016/j.ophtha.2017.09.007; Narendran N, Guyner RH, Cair M, Baird PN. Analysis of the EFEMP1 gene in individuals and families with early onset drusen. Eye (Lond.). 2005;19:11-5. https://doi.org/10.1038/sj.eye.6701435; Michaelides M, Jenkins SA, Brantley MA, Andrews RM, Waseem N, Luong V, et al. Maculopathy due to the R345W substitution in fibulin-3: Distinct clinical features, disease variability, and extent of retinal dysfunction. Invest Ophthalmol Vis Sci. 2006;47:3085-97. https://doi.org//10.1167/iovs.05-1600; Livingstone I, Uversky VN, Furniss D, Wiberg A. The pathophysiological significance of fibulin-3. Biomolecules. 2020;10:1294. https://doi.org//10.3390/biom10091294; Roybal CN, Marmorstein LY, Vander Jagt DL, Abcouwer SF. Aberrant accumulation of fibulin-3 in the endoplasmic reticulum leads to activation of the unfolded protein response and VEGF expression. Investig Ophthalmol Vis Sci. 2005;46:3973-9. https://doi.org//10.1167/iovs.05-0070; Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519-29. https://doi.org//10.1038/nrm2199; https://revistabiomedica.org/index.php/biomedica/article/view/5604

  15. 15
    Dissertation/ Thesis
  16. 16
  17. 17
    Dissertation/ Thesis
  18. 18

    المؤلفون: Atienzar Aroca, Sandra

    المساهمون: Romero Gómez, Francisco Javier, Sancho Pelluz, Francisco Javier

    المصدر: RIUCV. Repositorio de la Universidad Católica de Valencia San Vicente Mártir
    instname
    RIUCV: Repositorio de la Universidad Católica de Valencia San Vicente Mártir
    Universidad Católica de Valencia San Vicente Mártir

  19. 19
  20. 20

    المؤلفون: González Zamora, Jorge

    المساهمون: García-Sancho Martín, Francisco Javier, Alonso Alonso, María Teresa, Rojo Ruiz, Jonathan, Universidad de Valladolid. Facultad de Medicina

    المصدر: UVaDOC. Repositorio Documental de la Universidad de Valladolid
    instname

    وصف الملف: application/pdf