-
1Dissertation/ Thesis
المؤلفون: Tandava, Venkata Siva Rama Krishna
Thesis Advisors: Morante i Lleonart, Joan Ramon, Arbiol i Cobos, Jordi, Arbiol Cobos, Jordi
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Materials, Materiales, Energies renovables, Renewable energy, Energía renovable, Electroconversió de CO2, CO2 electroconversion, Electroconversión de CO2, Ciències Experimentals
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/692947
-
2Dissertation/ Thesis
المؤلفون: Martin, Nicholas
Thesis Advisors: Talens Peiró, Laura, Madrid, Cristina (Madrid López), Villalba Méndez, Gara
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Modelització energètica, Modelado de energía, Energy modelling, Matèries primeres, Materias primas, Raw materials, Energia renovable, Energía renovable, Renewable energy, Tecnologies
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/688614
-
3Dissertation/ Thesis
المؤلفون: Vilà Miró, Roger
المساهمون: University/Department: Universitat de Lleida. Departament d'Informàtica i Enginyeria Industrial
Thesis Advisors: Castell, Albert, Medrano Martorell, Marc
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Refredament Radiatiu, Captació Solar Tèrmica, Energia renovable, Enfriamiento Radiativo, Captación Solar Térmica, Energía renovable, Radiative Cooling, Solar Thermal Collection, Renewable energy, Màquines i Motors Tèrmics
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/687533
-
4Dissertation/ Thesis
المؤلفون: Coronas Herrero, Sergio
المساهمون: University/Department: Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica
Thesis Advisors: Hoz Casas, Jordi de la, Martín Cañadas, María Elena
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Renewable energy, Concentrating solar power, Photovoltaic, Energy management, Probabilistic assessment, Uncertainty, Energia renovable, Termosolar, Fotovoltaica, Gestió energètica, Àrees temàtiques de la UPC::Enginyeria elèctrica
Time: 621.3
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/687341
-
5Dissertation/ Thesis
المؤلفون: Vall Aubets, Sergi
المساهمون: University/Department: Universitat de Lleida. Departament d'Informàtica i Enginyeria Industrial
Thesis Advisors: Castell, Albert
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Refredament Radiatiu, Captació Solar Tèrmica, Energia renovable, Enfriamiento Radiativo, Captación Solar Térmica, Energía renovable, Radiative Cooling, Solar Thermal Collection, Renewable energy, Màquines i Motors Tèrmics
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/675491
-
6Dissertation/ Thesis
المؤلفون: Ghaderian, Abolfazl
المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Física i Inorgànica
Thesis Advisors: Gimbert Suriñach, Carolina, Llobet Dalmases, Antoni
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: oxidació de l'aigua, energia renovable, catàlisi, oxidación del agua, energía renovable, catálisis, water oxidation, renewable energy, catalysis, Ciències
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/670197
-
7Dissertation/ Thesis
المؤلفون: Gimeno Furió, Alexandra
المساهمون: University/Department: Universitat Jaume I. Escola de Doctorat
Thesis Advisors: Hernández López, Leonor
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Energía renovable, Solar térmica, Nanofluidos, Propiedades ópticas, Estabilidad, Solar nanofluids, Renewable energy, Solar thermal, Enginyeria, indústria i construcció
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/666638
-
8Dissertation/ Thesis
المؤلفون: Ciupek, Aneta
المساهمون: University/Department: Universitat Autònoma de Barcelona. Departament de Dret Públic i de Ciències Historicojurídiques
Thesis Advisors: Zapater Duque, Esther
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Energia renovable, Energía renovable, Renovable energy, Canvi climàtic, Cambio climático, Climate change, Polónia, Alemanya, Polonia, Alemania, Poland, Germany, Ciències Socials
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/457749
-
9Dissertation/ Thesis
المؤلفون: Zolfaghari Ejlal Manesh, Seyed Meysam
المساهمون: University/Department: Universitat Autònoma de Barcelona. Departament d'Economia de l'Empresa
Thesis Advisors: Rialp, Alex, Vergés, Joaquim
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Emprenedoria internacional, Emprendimiento internacional, International entrepreneurship, Indústria d'energia renovable, Industria de energía renovable, Renewable energy industry, Mètodes mixos, Métodos mixtos, Mixed-method, Ciències Socials
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/400755
-
10Dissertation/ Thesis
المؤلفون: Mohamed Abdelkarim, Reham Haroun
المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica
Thesis Advisors: Cid-Pastor, Ángel, El Aroudi, Abdelali
المصدر: T 1668-2014
TDX (Tesis Doctorals en Xarxa)مصطلحات موضوعية: Energia renovable, Electrònica de potència, Adaptació d'impedància, Connexió en cascada, Energía renovable, Electrónica de potencia, Adaptación de impedancia, Renewable energy, Power electronics, Impedance matching
Time: 621.3
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/284039
-
11Academic Journal
المؤلفون: Víctor Alfonso Martínez Falcones, Angel José Cedeño Moreira, Ramón Alejandro Zambrano Intriago
المصدر: Serie Científica de la Universidad de las Ciencias Informáticas, Vol 17, Iss 11, Pp 151-162 (2024)
مصطلحات موضوعية: internet de las cosas, sensores eléctricos, energía renovable, monitoreo de producción solar, Computer engineering. Computer hardware, TK7885-7895
وصف الملف: electronic resource
-
12Dissertation/ Thesis
المؤلفون: Solorio Sandoval, Israel
المساهمون: University/Department: Universitat Autònoma de Barcelona. Departament de Dret Públic i de Ciències Historicojurídiques
Thesis Advisors: Costa Fernández, Oriol
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Unión europea, Energía renovable, Europerización, Ciències Socials
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/117262
-
13Academic Journal
المؤلفون: Tryson Yangailo
المصدر: Revista Tiempo & Economía, Vol 12, Iss 1 (2025)
مصطلحات موضوعية: energía renovable, desempeño económico, implicaciones de las políticas, Business, HF5001-6182, Economic history and conditions, HC10-1085, Economics as a science, HB71-74
وصف الملف: electronic resource
-
14Academic Journal
المؤلفون: Kowal, Sławomir, Zdunek-Wielgołaska, Justyna
المصدر: On the w@terfront; 2019: Núm.: 61/4 Polaritats Urbanes (1); p. 17-33
مصطلحات موضوعية: entorn informatiu, energia renovable, afores, estètica de la tecnologia, protecció del paisatge, information environment, renewable energy, suburbs, aesthetics of technology, landscape protection, entorno de información, energía renovable, afueras, estética de la tecnología, protección del paisaje
وصف الملف: text/html
-
15Academic Journal
المؤلفون: Agostina L. Quicchi, Santiago Cézar, Gerardo D. Szwarc, Diego M. Ferreyra, Mariana Bernard, Hugo A. Pipino
المصدر: Ingenio Tecnológico, Vol 6 (2024)
مصطلحات موضوعية: biomasa, energía térmica, pélets, calefacción, energía renovable, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
16Academic Journal
المصدر: Minería y Geología, Vol 39, Iss 4, Pp 252-266 (2024)
مصطلحات موضوعية: biogas, digestion anaerobia, vinaza, cachaza, energía renovable, diseño, Mining engineering. Metallurgy, TN1-997, Geology, QE1-996.5, Mineralogy, QE351-399.2
وصف الملف: electronic resource
-
17Book
المؤلفون: Caicedo-Bravo, Eduardo, Mora-Flórez, Juan José, Orozco-Henao, César Augusto, Salazar-Isaza, Harold, Tibaquirá-Giraldo, Juan Esteban
مصطلحات موضوعية: 370 - Educación, Centrales hidroeléctricas, Energía hidráulica, Combustibles fósiles, Energía hidroeléctrica, Colombia, Energía renovable - Costos, Costos, Energía renovable - Biodiversidad, Energía renovable
وصف الملف: 108 páginas; application/pdf
Relation: [1] T. Adefarati, R. C. Bansal, M. Bettayeb, and R. Naidoo, “Technical, economic, and environmental assessment of the distribution power system with the application of renewable energy technologies,” Renewable Energy, vol. 199, pp. 278–297, 2022.; [2] S. L. Lemos and M. C. C. Rubiano, “Plan nacional de desarrollo 2022-2026: Colombia, potencia mundial de la vida,” Revista Fasecolda, no. 189, pp. 64–69, 2023.; [3] Q. Hassan, P. Viktor, T. J. Al-Musawi, B. M. Ali, S. Algburi, H. M. Alzoubi, A. K. Al-Jiboory, A. Z. Sameen, H. M. Salman, and M. Jaszczur, “The renewable energy role in the global energy transformations,” Renewable Energy Focus, vol. 48, p. 100545, 2024.; [4] H. Ritchie, P. Rosado, and M. Roser, “Energy production and consumption,” Our World in Data, 2024.; [5] A. Aghahosseini, A. Solomon, C. Breyer, T. Pregger, S. Simon, P. Strachan, and A. Jäger-Waldau, “Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness,” Applied energy, vol. 331, p. 120401, 2023.; [6] A. M. López-Grajales, J. W. González-Sanchez, H. A. Cardona-Restrepo, I. A. Isaac-Millan, G. J. López-Jiménez, and O. H. Vasco-Echeverri, “Economy, financial, and regulatory method for the integration of electrical energy storage in a power network,” Journal of Energy Storage, vol. 58, p. 106433, 2023.; [7] L. Z. Velimirović, A. Janjić, and J. D. Velimirović, “Renewable energy integration in smart grids,” in Multi-criteria Decision Making for Smart Grid Design and Operation: A Society 5.0 Perspective, pp. 61–80, Springer, 2023.; [8] M. Shafiullah, S. D. Ahmed, and F. A. Al-Sulaiman, “Grid integration challenges and solution strategies for solar pv systems: a review,” IEEE Access, vol. 10, pp. 52233–52257, 2022.; [9] R. Štefko, M. Šárpataky, L. Šárpataky, V. Kohan, P. Havran, and M. Kolcun, “Modeling of protection relays and renewable energy sources for microgrid systems,” Acta Electrotechnica et Informatica, vol. 22, no. 3, pp. 9–17, 2022.; [10] A. Hooshyar and R. Iravani, “Microgrid protection,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1332–1353, 2017.; [11] P. H. A. Barra, D. V. Coury, and R. A. S. Fernandes, “A survey on adaptive protection of microgrids and distribution systems with distributed generators,” Renewable and Sustainable Energy Reviews, vol. 118, p. 109524, 2020.; [12] B. Patnaik, M. Mishra, R. C. Bansal, and R. K. Jena, “Ac microgrid protection – a review: Current and future prospective,” Applied Energy, vol. 271, p. 115210, 2020.; [13] C. García-Ceballos, S. Pérez-Londoño, and J. Mora-Flórez, “Compensated fault impedance estimation for distance-based protection in active distribution networks,” International Journal of Electrical Power & Energy Systems, vol. 151, p. 109114, 2023.; [14] U. Bhattarai, T. Maraseni, and A. Apan, “Assay of renewable energy transition: A systematic literature review,” Science of The Total Environment, vol. 833, p. 155159, 2022.; [15] A. A. Memon and K. Kauhaniemi, “A critical review of ac microgrid protection issues and available solutions,” Electric Power Systems Research, vol. 129, pp. 23–31, 2015.; [16] C. García-Ceballos, S. Pérez-Londoño, and J. Mora-Flórez, “Integration of distributed energy resource models in the VSC control for microgrid applications,” Electric Power Systems Research, vol. 196, p. 107278, 2021.; [17] S. Velasco-Gómez, S. Pérez-Londoño, and J. Mora-Floréz, “Unbalance compensated distance relay for active distribution networks,” Energy Reports, vol. 9, pp. 438–446, 2023.; [18] H. Xie, S. Zheng, and M. Ni, “Microgrid development in china: A method for renewable energy and energy storage capacity configuration in a megawatt-level isolated microgrid,” IEEE Electrification Magazine, vol. 5, no. 2, pp. 28–35, 2017.; [19] M. Liu and K. Lo, “Multi-actor perspective, socio-technical barriers, and microgrid development in China,” The Electricity Journal, vol. 35, no. 7, p. 107158, 2022.; [20] W. Feng, M. Jin, X. Liu, Y. Bao, C. Marnay, C. Yao, and J. Yu, “A review of microgrid development in the United States – a decade of progress on policies, demonstrations, controls, and software tools,” Applied Energy, vol. 228, pp. 1656–1668, 2018.; [21] T. M. Guibentif and F. Vuille, “Prospects and barriers for microgrids in Switzerland,” Energy Strategy Reviews, vol. 39, p. 100776, 2022.; [22] V. Harish, N. Anwer, and A. Kumar, “Applications, planning and socio-techno-economic analysis of distributed energy systems for rural electrification in india and other countries: A review,” Sustainable Energy Technologies and Assessments, vol. 52, p. 102032, 2022.; [23] E. Gaona, C. Trujillo, and J. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 125–137, 2015.; [24] W. Guerrero Hernandez A., N. Muñoz-Galeano, E. F. Caicedo-Bravo, P. Maya-Duque, and J. M. López-Lezama, “Sizing assessment of islanded microgrids considering total investment cost and tax benefits in Colombia,” Energies, vol. 15, no. 14, p. 5161, 2022.; [25] A. S. Guerrero Hernandez and L. V. R. de Arruda, “Economic viability and optimization of solar microgrids with hybrid storage in a non-interconnected zone in colombia,” Environment, Development and Sustainability, vol. 23, no. 9, pp. 12842–12866, 2021.; [26] L. Che, M. E. Khodayar, and M. Shahidehpour, “Adaptive protection system for microgrids: Protection practices of a functional microgrid system.,” IEEE Electrification Magazine, vol. 2, no. 1, pp. 66–80, 2014.; [27] G. Muñoz-Arango, J. Mora-Flórez, and S. Pérez-Londoño, “Optimal data-driven adaptive overcurrent relay coordination for active distribution networks,” Electric Power Systems Research, vol. 228, p. 110078, 2024.; [28] C. Battistelli and A. Monti, “Chapter 5 - dynamics of modern power systems,” in Converter-Based Dynamics and Control of Modern Power Systems (A. Monti, F. Milano, E. Bompard, and X. Guillaud, eds.), pp. 91–124, Academic Press, 2021.; [29] J. W. Stevens, R. H. Bonn, J. W. Ginn, S. Gonzalez, and G. A. Kern, “Development and testing of an approach to anti-islanding in utility-interconnected photovoltaic systems,” tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2000.; [30] “IEEE standard conformance test procedures for equipment interconnecting distributed energy resources with electric power systems and associated interfaces,” IEEE Std 1547.1-2020, pp. 1–282, 2020.; [31] K. Kauhaniemi and L. Kumpulainen, “Impact of distributed generation on the protection of distribution networks,” in 2004 Eighth IEE International Conference on Developments in Power System Protection, vol. 1, pp. 315–318 Vol.1, 2004.; [32] L. Kumpulainen and K. Kauhaniemi, “Distributed generation and reclosing coordination,” in Nordic Distribution and Asset Management Conference, Citeseer, 2004.; [33] B. Amanulla, S. Chakrabarti, and S. N. Singh, “Reconfiguration of power distribution systems considering reliability and power loss,” IEEE Transactions on Power Delivery, vol. 27, no. 2, pp. 918–926, 2012.; [34] L.-H. Tsai, “Network reconfiguration to enhance reliability of electric distribution systems,” Electric Power Systems Research, vol. 27, no. 2, pp. 135–140, 1993.; [35] B. Sultana, M. Mustafa, U. Sultana, and A. R. Bhatti, “Review on reliability improvement and power loss reduction in distribution system via network reconfiguration,” Renewable and Sustainable Energy Reviews, vol. 66, pp. 297–310, 2016.; [36] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014.; [37] Y. Yoldaş, A. Önen, S. Muyeen, A. V. Vasilakos, and İrfan Alan, “Enhancing smart grid with microgrids: Challenges and opportunities,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 205–214, 2017.; [38] R. A. Spalding, L. H. L. Rosa, C. F. M. Almeida, R. F. Morais, M. R. Gouvea, N. Kagan, D. Mollica, A. Dominice, L. Zamboni, G. H. Batista, J. P. Silva, L. A. Costa, and M. A. P. Fredes, “Fault location, isolation and service restoration (flisr) functionalities tests in a smart grids laboratory for evaluation of the quality of service,” in 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), pp. 879–884, 2016.; [39] N. D. Hatziargyriou, Microgrids: Architectures and Control. Wiley - IEEE, Wiley, 2014.; [40] S. Beheshtaein, M. Savaghebi, J. M. Guerrero, R. Cuzner, and J. C. Vasquez, “A secondary-control based fault current limiter for four-wire three phase inverter-interfaced dgs,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2363–2368, 2017.; [41] S. AG, “Overcurrent and feeder protection – SIPROTEC 7SJ82,” 2024. [Online; accessed 2024-04-14].; [42] A. Barranco-Carlos, C. Orozco-Henao, J. Marín-Quintero, J. Mora-Flórez, and A. Herrera-Orozco, “Adaptive protection for active distribution networks: An approach based on fuses and relays with multiple setting groups,” IEEE Access, vol. 11, pp. 31075–31091, 2023.; [43] S. A. Gopalan, V. Sreeram, and H. H. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 222–228, 2014.; [44] B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 988–997, 2017.; [45] B. Grisales-Soto, S. Pérez-Londoño, and J. Mora-Flórez, “Low computational burden adaptive overcurrent protection for active distribution networks,” International Transactions on Electrical Energy Systems, vol. 2023, 2023.; [46] S. Kar, S. R. Samantaray, and M. D. Zadeh, “Data-mining model based intelligent differential microgrid protection scheme,” IEEE Systems Journal, vol. 11, no. 2, pp. 1161–1169, 2017.; [47] W.-J. Tang and H.-T. Yang, “Data mining and neural networks based self-adaptive protection strategies for distribution systems with dgs and fcls,” Energies, vol. 11, no. 2, p. 426, 2018.; [48] J. Orozco-Álvarez, A. Herrera-Orozco, and J. Mora-Flórez, “Communication-less adaptive directional overcurrent protection strategy considering islanded mode detection in active distribution networks,” Results in Engineering, vol. 20, p. 101538, 2023.; [49] S. Shen, D. Lin, H. Wang, P. Hu, K. Jiang, D. Lin, and B. He, “An adaptive protection scheme for distribution systems with dgs based on optimized thevenin equivalent parameters estimation,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 411–419, 2017.; [50] P. Anderson, C. Henville, R. Rifaat, B. Johnson, and S. Meliopoulos, Power System Protection. IEEE Press Series on Power and Energy Systems, Wiley, 2022.; [51] M. Y. Shih, A. Conde, C. Ángeles Camacho, E. Fernández, Z. Leonowicz, F. Lezama, and J. Chan, “A two stage fault current limiter and directional overcurrent relay optimization for adaptive protection resetting using differential evolution multi-objective algorithm in presence of distributed generation,” Electric Power Systems Research, vol. 190, p. 106844, 2021.; [52] A. Phadke and J. Thorp, Computer Relaying for Power Systems. Wiley, 2009.; [53] H. Lin, K. Sun, Z.-H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids,” IET generation, transmission & distribution, vol. 13, no. 6, pp. 770–779, 2019.; [54] Q. Yang, J. A. Barria, and T. C. Green, “Communication infrastructures for distributed control of power distribution networks,” IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 316–327, 2011.; [55] I. Serban, S. Céspedes, C. Marinescu, C. A. Azurdia-Meza, J. S. Gómez, and D. S. Hueichapan, “Communication requirements in microgrids: A practical survey,” IEEE Access, vol. 8, pp. 47694–47712, 2020.; [56] M. A. Setiawan, F. Shahnia, S. Rajakaruna, and A. Ghosh, “Zigbee-based communication system for data transfer within future microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2343–2355, 2015.; [57] T. Dragičević, P. Siano, and S. S. Prabaharan, “Future generation 5g wireless networks for smart grid: A comprehensive review,” Energies, vol. 12, no. 11, p. 2140, 2019.; [58] T. Mai, A. Haque, T. Vo, P. Nguyen, and M. Pham, “Development of ict infrastructure for physical lv microgrids,” in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / ICPS Europe), pp. 1–6, 2018.; [59] D. Gutierrez-Rojas, P. H. J. Nardelli, G. Mendes, and P. Popovski, “Review of the state of the art on adaptive protection for microgrids based on communications,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1539–1552, 2021.; [60] D. Martin, P. Sharma, A. Sinclair, and D. Finney, “Distance protection in distribution systems: How it assists with integrating distributed resources,” in 2012 65th Annual Conference for Protective Relay Engineers, pp. 166–177, 2012.; [61] A. M. Tsimtsios and V. C. Nikolaidis, “Setting zero-sequence compensation factor in distance relays protecting distribution systems,” IEEE Transactions on Power Delivery, vol. 33, no. 3, pp. 1236–1246, 2017.; [62] Y. Yin, Y. Fu, Z. Zhang, and A. Zamani, “Protection of microgrid interconnection lines using distance relay with residual voltage compensations,” IEEE Transactions on Power Delivery, vol. 37, no. 1, pp. 486–495, 2021.; [63] A. C. Adewole, A. D. Rajapakse, D. Ouellette, and P. Forsyth, “Protection of active distribution networks incorporating microgrids with multi-technology distributed energy resources,” Electric Power Systems Research, vol. 202, p. 107575, 2022.; [64] J. Ma, J. Liu, Z. Deng, S. Wu, and J. S. Thorp, “An adaptive directional current protection scheme for distribution network with dg integration based on fault steady-state component,” International Journal of Electrical Power & Energy Systems, vol. 102, pp. 223–234, 2018.; [65] J. Andruszkiewicz, J. Lorenc, B. Staszak, A. Weychan, and B. Zięba, “Overcurrent protection against multi-phase faults in mv networks based on negative and zero sequence criteria,” International Journal of Electrical Power & Energy Systems, vol. 134, p. 107449, 2022.; [66] P. Mahat, Z. Chen, B. Bak-Jensen, and C. L. Bak, “A simple adaptive overcurrent protection of distribution systems with distributed generation,” IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 428–437, 2011.; [67] A. Soleimanisardoo and H. Kazemi Karegar, “Alleviating the impact of dgs and network operation modes on the protection system,” IET Generation, Transmission & Distribution, vol. 14, no. 1, pp. 21–28, 2020.; [68] A. J. Pansini, Guide to electrical power distribution systems. River Publishers, 2020.; [69] A. Fazanehrafat, S. Javadian, S. Bathaee, and M.-R. Haghifam, “Maintaining the recloser-fuse coordination in distribution systems in presence of DG by determining DG’s size,” in IET 9th International Conference on Developments in Power Systems Protection (DPSP 2008), pp. 132–137, IET, 2008.; [70] S. Ghobadpour, M. Gandomkar, and J. Nikoukar, “Determining optimal size of superconducting fault current limiters to achieve protection coordination of fuse-recloser in radial distribution networks with synchronous DGs,” Electric Power Systems Research, vol. 185, p. 106357, 2020.; [71] A. Elmitwally, E. Gouda, and S. Eladawy, “Restoring recloser-fuse coordination by optimal fault current limiters planning in dg-integrated distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 77, pp. 9–18, 2016.; [72] M. N. Alam, B. Das, and V. Pant, “Protection scheme for reconfigurable radial distribution networks in presence of distributed generation,” Electric Power Systems Research, vol. 192, p. 106973, 2021.; [73] CREG, “Resolución 121 de 2017,” 2017.; [74] CREG, “Resolución 030 de 2018,” 2018.; [75] CREG, “Resolución 281 de 2015,” 2015.; [76] CREG, “Resolución 174 de 2018,” 2018.; [77] W. Wang, Y. Xu, and M. Khanna, “A survey on the communication architectures in smart grid,” Computer networks, vol. 55, no. 15, pp. 3604–3629, 2011.; [78] H. Salazar Isaza, R. A. Hincapié Isaza, A. Arias Londoño, D. Paredes Cortés, and L. S. Peña, “Apoyo en el estudio y elaboración de las bases para proponer el agente que debe desarrollar la implementación de la infraestructura de medición avanzada,” tech. rep., Universidad Tecnológica de Pereira, 2019.; [79] CREG, “Resolución 002 de 2022,” 2022.; [80] Ministerio de Minas y Energía, “Resolución CREG No.015 De 2018,” tech. rep., 2018.; [81] M. Gottschalk, M. Uslar, and C. Delfs, The Use Case and Smart Grid Architecture Model Approach The IEC 62559-2 Use Case Template and the SGAM Applied in Various Domains. 2017.; [82] Graphic Resources LLC., “Freepik,” 2014.; [83] I. E. A. (IEA), “Global energy review: CO2 emissions in 2020,” 2021. [Online; accessed 2021-08-24].; [84] I. E. A. (IEA), “After steep drop in early 2020, global carbon dioxide emissions have rebounded strongly,” 2021. [Online; accessed 2021-08-25].; [85] R. Turconi, A. Boldrin, and T. Astrup, “Life cycle assessment (lca) of electricity generation technologies: Overview, comparability and limitations,” Renewable and Sustainable Energy Reviews, vol. 28, pp. 555–565, 2013.; [86] I. E. A. (IEA), “Electricity market report – july 2021,” Tech. Rep. July, France, 2021.; [87] E. Nam and T. Jin, “Mitigating carbon emissions by energy transition, energy efficiency, and electrification: Difference between regulation indicators and empirical data,” Journal of Cleaner Production, vol. 300, p. 126962, 2021.; [88] P. Bertoldi and R. Mosconi, “Do energy efficiency policies save energy? a new approach based on energy policy indicators (in the eu member states),” Energy Policy, vol. 139, no. January, p. 111320, 2020.; [89] F. deLlano Paz, P. Martínez Fernandez, and I. Soares, “Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues,” Energy, vol. 115, pp. 1347–1360, 2016.; [90] N. Unidas, “¿qué es el acuerdo de parís?,” 2021. [Online; accessed 2021-08-24].; [91] IEA, “World energy outlook 2020,” 2020. [Online; accessed 2021-06-04].; [92] E. Marrasso, C. Roselli, and M. Sasso, “Electric efficiency indicators and carbon dioxide emission factors for power generation by fossil and renewable energy sources on hourly basis,” Energy Conversion and Management, vol. 196, pp. 1369–1384, 9 2019.; [93] F. Greer, P. Raftery, and A. Horvath, “Considerations for estimating operational greenhouse gas emissions in whole building life-cycle assessments,” Building and Environment, p. 111383, 2024.; [94] P. M. De Oliveira-De Jesus, “Effect of generation capacity factors on carbon emission intensity of electricity of latin america amp; the caribbean, a temporal ida-lmdi analysis,” Renewable and Sustainable Energy Reviews, vol. 101, pp. 516–526, 3 2019.; [95] B. Ang and B. Su, “Carbon emission intensity in electricity production: A global analysis,” Energy Policy, vol. 94, pp. 56–63, 7 2016.; [96] I. E. Agency, “Indicadores de eficiencia energética: Fundamentos estadísticos,” IEA Publications, pp. 1–211, 2016.; [97] X. Wang, Y. Lu, C. Chen, X. Yi, and H. Cui, “Total-factor energy efficiency of ten major global energy-consuming countries,” Journal of Environmental Sciences, vol. 137, pp. 41–52, 2024.; [98] UPME, “Balance Energético Colombiano (BECO) - Consulta,” 2020.; [99] UPME, “Plan energetico nacional colombia: Ideario energético 2050,” Unidad de Planeación Minero Energética, Republica de Colombia, p. 184, 2015.; [100] M. G. Patterson, “What is energy efficiency? concepts, indicators and methodological issues,” Energy Policy, vol. 24, no. 5, pp. 377–390, 1996.; [101] M. Wünsch, R. Offermann, K. Weinert, F. Seefeldt, and I. Ziegenhagen, “Benefits of energy efficiency on the german power sector,” Agora Energiewende, no. April, 2014.; [102] T. Jin, “Impact of heat and electricity consumption on energy intensity: A panel data analysis,” Energy, vol. 239, p. 121903, 1 2022.; [103] XM, “Capacidad efectiva por tipo de generación,” 2021. [Online; accessed 2021-07-31].; [104] H. Al Garni, A. Kassem, A. Awasthi, D. Komljenovic, and K. Al-Haddad, “A multicriteria decision making approach for evaluating renewable power generation sources in saudi arabia,” Sustainable Energy Technologies and Assessments, vol. 16, pp. 137–150, 2016.; [105] Y. Soler-Castillo, J. C. Rimada, L. Hernández, and G. Martínez-Criado, “Modelling of the efficiency of the photovoltaic modules: Grid-connected plants to the Cuban national electrical system,” Solar Energy, vol. 223, pp. 150–157, 2021.; [106] H. Dargahi and K. B. Khameneh, “Energy intensity determinants in an energy-exporting developing economy: Case of iran,” Energy, vol. 168, pp. 1031–1044, 2 2019.; [107] U. de Planeación Minero Energética, “Consultoría técnica para el fortalecimiento y mejora de la base de datos de factores de emisión de los combustibles colombianos - fecoc,” tech. rep., 2016.; [108] F. Dong, B. Yu, T. Hadachin, Y. Dai, Y. Wang, S. Zhang, and R. Long, “Drivers of carbon emission intensity change in china,” Resources, Conservation and Recycling, vol. 129, pp. 187–201, 2 2018.; [109] Ministerio de Minas y Energía, “Resolución CREG No.097 de 2008,” tech. rep., 2008.; [110] Comisión de Regulación de Energía y Gas - CREG, “Resolución CREG No. 025 de 1995,” 1995.; [111] F. Lucero García and M. V. Toasa Yujato, Manual de estadísticas energéticas. 2017.; [112] T. Chalá and V. García, “Pérdidas en distribución de energía eléctrica,” Master’s thesis, 2012.; [113] XM, “Liquidación y Administración de Cuentas (LAC),” 2023.; [114] D. J. Romero-López and A. Vargas-Rojas, “Modelo de incentivos para la reducción de pérdidas de energía eléctrica en Colombia,” Revista de la Maestría en Derecho Económico, vol. 6, no. 6, pp. 221–257, 2013.; [115] I. A. E. Agency, Energy indicators for sustainable development: guidelines and methodologies. 2005.; [116] I. E. Agency, “Indicadores de eficiencia energética: Bases esenciales para el establecimiento de políticas,” IEA Publications, p. 182, 2015.; [117] Ministerio de Minas y Energía, “Resolución CREG No.133 de 2013,” tech. rep., 2013.; [118] Ministerio de Minas y Energía, “Resolución CREG No.174 De 2011,” tech. rep., 2011.; [119] ANDI, “Informe encuesta de calidad de la energía. septiembre 2020,” tech. rep., 2020.; [120] CREG, “Resolución 058 de 2008,” 2008.; [121] Ministerio de Minas y Energía, “Resolución CREG No.109 De 2019,” tech. rep., 2019.; [122] A. N. de Industriales, “Informe nacional de competitividad 2019 - 2020,” 2020.; [123] M. de energía and UPME, “Inflación de energía en Colombia,” 9 2020.; [124] E. F. S. Úbeda, J. P. G. A. M. S. Roque, E. Chueca, and M. Hallack, “Impacto del covid-19 en la demanda de energía eléctrica en latinoamérica y el caribe,” 2021.; [125] A. Damodaran, Investment Valuation Tools and Techniques for Determining the Value of Any Asset, vol. 666. John Wiley & Sons Inc, 2002.; [126] C. Tascheret, G. Rattá, and A. M. Andreoni, “Methodology to determine the optimal electricity distribution tariff using benchmarking techniques,” in 2016 13th International Conference on the European Energy Market (EEM), vol. 2016-July, pp. 1–5, IEEE, IEEE Computer Society, 7 2016.; [127] P. Corredor, U. Helman, D. Jara, and F. A. Wolac, “Misión de transformación energética y modernización de la industria eléctrica: hoja de ruta para la energía del futuro,” 2020.; [128] R. Cruz, H. Torres, M. Montoya, J. Barrientos, L. Pineda, L. Niebles, O. Bedoya, B. Duque, C. Gómez, J. Uribe, and A. Franco, Caracterización del Sector Eléctrico colombiano. SENA, 2013.; [129] S. Chawda, R. Bhakar, and P. Mathuria, “Uncertainty and risk management in electricity market: Challenges and opportunities,” in 2016 national power systems conference (NPSC), pp. 1–6, IEEE, 2016.; [130] J. Cardona, M. Gil, and J. Arbelaéz, “Administración de riesgos financieros en los mercados de energía eléctrica.,” 2019.; [131] CREG, “Circular CREG 037-2006,” 2006.; [132] C. G. Soops, “Sostenibilidad del mercado eléctrico colombiano. implementación de un mercado anónimo y estandarizado de contratos,” 2021.; [133] CREG, “Circular CREG 070-2021,” 2021.; [134] J. Campo and V. Sarmiento, “The relationship between energy consumption and gdp: Evidence from a panel of 10 Latin American countries,” Latin American Journal of Economics, vol. 50, pp. 233–255, 2013.; [135] J. Millán, Entre el mercado y el Estado. Tres décadas de reformas en el sector eléctrico de América Latina. Banco Interamericano de Desarollo, 2006.; [136] M. Santa María, N. Von Der Fehr, J. Millán, J. Benavides, O. Gracia, and E. Schutt, El Mercado de la Energía Eléctrica en Colombia: Características, Evolución e Impacto Sobre Otros Sectores. 2009.; [137] CREG, “Resolución CREG 083-2021,” 2021.; [138] CREG, “Resolución CREG 119-2007,” 2007.; [139] CREG, “Resolución CREG 101-002,” 2022.; [140] I. J. Pérez-Arriaga, Regulation of Power Sector. Springer, 2013.; [141] M. Jonas J, “Ratemaking as climate adaptation governance,” Frontiers in Climate, vol. 3, p. 738972, 2021.; [142] CREG, “Resolución CREG 031-1997,” 1997.; [143] M. Liu, F. F. Wu, and Y. Ni, “A survey on risk management in electricity markets,” in 2006 IEEE Power Engineering Society General Meeting, pp. 1–6, 2006.; [144] C. Guadarrama, A. Viana, J. Gutiérrez, and A. Paz, Renewable energy auctions in Colombia: Context, design and results. IRENA and USAID, 2021.; [145] XM, “Informe de resultados nuevas subasta 2021.” [Online; accessed 2023-09-25].; [146] CREG, “Resolución CREG 114-2018,” 2018.; https://hdl.handle.net/11059/15548; https://doi.org/10.22517/9789587229394; Universidad Tecnológica de Pereira; Repositorio Universidad Tecnológica de Pereira; https://repositorio.utp.edu.co/home
-
18Academic JournalDespacho Económico de Energía de la Microrred en las Islas Galápagos Utilizando la Plataforma SimSEE
المؤلفون: Wilson Sánchez, Diego Echeverría, Santiago Chamba, Andrés Jacho, Carlos Lozada
المصدر: Revista Técnica Energía, Vol 21, Iss 1 (2024)
مصطلحات موضوعية: Sostenibilidad, Despacho económico, Energía Renovable No Convencionales, Microrred, SimSEE, Technology (General), T1-995
وصف الملف: electronic resource
-
19Academic Journal
المصدر: Revista Ingenio, Vol 21, Iss 1, Pp 21-28 (2024)
مصطلحات موضوعية: aguas residuales, análisis de alternativas, biorreactor, emisario, energía renovable, estudio de impacto ambiental, lodo activado, matriz de leopold, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
20Conference
المؤلفون: Decunto, Elias Valentin
المصدر: RII, XVIII Seminario Internacional de la Red Iberoamericana de Investigadores Sobre Territorio y Globalización, Bahía Blanca, Argentina, 13-15 de noviembre 2024
مصطلحات موضوعية: Energía Renovable, Bioenergía, Descentralización, Argentina
Relation: https://zenodo.org/communities/seminariorii; https://doi.org/10.5281/zenodo.14037936; https://doi.org/10.5281/zenodo.14037937; oai:zenodo.org:14037937