-
1Academic Journal
المؤلفون: Mattos, Rodrigo J., Bradley, Walter L.
المصدر: DYNA; No. 96 (1978): Septiembre; 13 - 31 ; DYNA; Núm. 96 (1978): Septiembre; 13 - 31 ; 2346-2183 ; 0012-7353
مصطلحات موضوعية: Templado del acero, Acero, Tratamiento térmico de metales, Tratamiento térmico del acero, Endurecimiento superficial
وصف الملف: application/pdf
-
2
المؤلفون: Basto Urbina, Diego Fernando
المساهمون: Colmenares Montañez, Julio Esteban, Geotechnical Engineering Knowledge and Innovation Genki
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Cementación, triaxial compression test, Case hardening, Suelos cementados artificialmente, modelo C-CASM, Endurecimiento superficial, C-CASM model, Artificially cemented soils, cementation, 624 - Ingeniería civil [620 - Ingeniería y operaciones afines], ensayo de compresión triaxial
وصف الملف: xx, 140 páginas; application/pdf
-
3Dissertation/ Thesis
المؤلفون: Basto Urbina, Diego Fernando
المساهمون: Colmenares Montañez, Julio Esteban, Geotechnical Engineering Knowledge and Innovation Genki
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines::624 - Ingeniería civil, Cementación, Endurecimiento superficial, Cementation, Case hardening, Suelos cementados artificialmente, ensayo de compresión triaxial, modelo C-CASM, Artificially cemented soils, triaxial compression test, C-CASM model
جغرافية الموضوع: Orinoquía - Colombia
وصف الملف: xx, 140 páginas; application/pdf
Relation: AFCAP. (2014). Review of specification for the use of laterite in road pavements.; Arroyo, M., Ciantia, M., Castellanza, R., Gens, A., & Nova, R. (2012). Simulation of cement-improved clay structures with a bonded elasto-plastic model: A practical approach. Computers and Geotechnics, 45, 140–150. https://doi.org/10.1016/j.compgeo.2012.05.008; Atkinson, J. H., & Bransby, P. L. (1978). The Mechanics of Soils. McGRAW-HILL Book Company (UK) Limited.; Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Géotechnique, 35(2), 99–112. https://doi.org/10.1680/geot.1985.35.2.99; Bergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in Lowland and other environments. ASCE PRESS.; Bergado, D. T., Taechakumthorn, C., Lorenzo, G. A., & Abuel-Naga, H. M. (2006). Stress-Deformation Behavior Under Anisotropic Drained Triaxial Consolidation of Cement-Treated Soft Bangkok Clay. Soils and Foundations, 46(5), 629–637. https://doi.org/10.3208/SANDF.46.629; Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotechnique, 40(3), 329–378. https://doi.org/10.1680/geot.1990.40.3.329; Chai, J., & Carter, J. P. (2011). Deformation Analysis in Soft Ground Improvement (Vol. 18). Springer Netherlands. https://doi.org/10.1007/978-94-007-1721-3; COLLINS, I. F., & YU, H. S. (1996). UNDRAINED CAVITY EXPANSIONS IN CRITICAL STATE SOILS. International Journal for Numerical and Analytical Methods in Geomechanics, 20(7), 489–516. https://doi.org/10.1002/(SICI)1096-9853(199607)20:73.0.CO;2-V; De Medina, J. (1964). Laterite and their Application to Highway Construction.; Elliott, G. M., & Brown, E. T. (1985). Yield of a soft, high porosity rock. Géotechnique, 35(4), 413–423. https://doi.org/10.1680/geot.1985.35.4.413; Endo, M. (1976). Recent development in dredged material stabilization and deep chemical mixing in Japan.; Estabragh, A. R., Beytolahpour, I., & Javadi, A. A. (2011). Effect of Resin on the Strength of Soil-Cement Mixture. Journal of Materials in Civil Engineering, 23(7), 969–976. https://doi.org/10.1061/(asce)mt.1943-5533.0000252; Fernández París, J. (1975). La pasta hidratada de cemento portland. Materiales de Construcción, 157, 17–26.; Fredlund, D. G., Rahadjo, H., & Fredlund, M. G. (2012). Unsaturated Soil Mechanics in Engineering Practice (Inc. John Wiley & Sons, Ed.). https://doi.org/10.1002/9781118280492; García Toro, J. R. (2019). Estudio de la técnica de suelo-cemento para la estabilización de vías terciarias en Colombia que posean un alto contenido de caolín. Universidad Católica de Colombia.; Gens, A., & Nova, R. (1993). Conceptual bases for a constitutive model for bonded soil and weak rocks. International Conference on Hard Soils-Soft Rocks, 483–494.; González, N. (2011). Development of a family of constitutive models for geotechnical applications (Issue May). Universidad Politécnica de Catalunya.; González, N. A., Arroyo, M., & Gens, A. (2009). Identification of Bonded Clay Parameters in SBPM Tests: A Numerical Study. Soils and Foundations, 49(3), 329–340. https://doi.org/10.3208/sandf.49.329; Horpibulsuk, S., Miura, N., & Bergado, D. T. (2004). Undrained Shear Behavior of Cement Admixed Clay at High Water Content. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1096–1105. https://doi.org/10.1061/(asce)1090-0241(2004)130:10(1096); Huang, J. T., & Airey, D. W. (1998). Properties of Artificially Cemented Carbonate Sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), 492–499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492); Ingeominas, & UIS. (2010). Geología del Piedemonte llanero en la cordillera oriental, departamentos de Arauca y Casanare. Memoria Explicativa. Convenio UIS-INGEOMINAS.; Jaky, J. (1948). Pressure in soils. 2nd International Conference on Soil Mechanics and Foundation Engineering, 103–107.; Kamruzzaman, A. H., Chew, S. H., & Lee, F. H. (2009). Structuration and Destructuration Behavior of Cement-Treated Singapore Marine Clay. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 573–589. https://doi.org/10.1061/(asce)1090-0241(2009)135:4(573); Kolovos, K. G., Asteris, P. G., Cotsovos, D. M., Badogiannis, E., & Tsivilis, S. (2013). Mechanical properties of soilcrete mixtures modified with metakaolin. Construction and Building Materials, 47, 1026–1036. https://doi.org/10.1016/j.conbuildmat.2013.06.008; Lefebvre, G. (1970). Contribution à l’étude de la stabilité des pentes dans les argiles cimenteés [PhD thesis]. Université Laval.; Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488. https://doi.org/10.1680/geot.1990.40.3.467; Lorenzo, G. A., & Bergado, D. T. (2004). Fundamental Parameters of Cement-Admixed Clay—New Approach. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1042–1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042); Lorenzo, G. A., & Bergado, D. T. (2006). Fundamental Characteristics of Cement-Admixed Clay in Deep Mixing. Journal of Materials in Civil Engineering, 18(2), 161–174. https://doi.org/10.1061/(asce)0899-1561(2006)18:2(161); Maher, M., & Ho, Y. (1993). Behavior of Fiber-Reinforced Cemented Sand Under Static and Cyclic Loads. Geotechnical Testing Journal, 16(3), 330. https://doi.org/10.1520/GTJ10054J; Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (Inc. John Wiley & Sons, Ed.; 3rd ed.).; Muhunthan, B., & Sariosseiri, F. (2008). Interpretation of Geotechnical Properties of Cement Treated Soils.; Nguyen, L. (2016). Developing constitutive model to simulate behaviour of cement treated clay composite capturing effect of cementation degradation. University of Technology Sydney.; Panda, A. P., & Narasimha Rao, S. (1998). Undrained strength characteristics of an artificially cemented marine clay. Marine Georesources and Geotechnology, 16(4), 335–353. https://doi.org/10.1080/10641199809379976; Porbaha, A. (1998). State of the art in deep mixing technology: part I. Basic concepts and overview. Ground Improvement, 2(2), 81–92. https://doi.org/10.1680/gi.1998.020204; Porbaha, A., Shibuya, S., & Kishida, T. (2000). State of the art in deep mixing technology. Part III:geomaterial characterization. Proceedings of the Institution of Civil Engineers - Ground Improvement, 4(3), 91–110. https://doi.org/10.1680/grim.2000.4.3.91; Prusinski, J. R., & Bhattacharja, S. (1999). Effectiveness of portland cement and lime in stabilizing clay soils. Transportation Research Record, 1(1652), 215–227. https://doi.org/10.3141/1652-28; Rios, S., Ciantia, M., González, N., Arroyo, M., & da Fonseca, A. V. (2016). Simplifying calibration of bonded elasto-plastic models. Computers and Geotechnics, 73, 100–108. https://doi.org/10.1016/j.compgeo.2015.11.019; Roscoe, K. H., & Burland, J. B. (1968). On the generalized stress-strain behaviour of ‘wet’ clay. In J. Heyman & F. Leckie (Eds.), Engineering Plasticity (pp. 535–609). Cambridge University Press.; Roscoe, K. H., & Schofield, A. N. (1963). Mechanical behaviour of an idealized ’wet’ clay. In Proc. 2nd Eur. Conf. Soil Mech., 1963 (pp. 47–54).; Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the Yielding of Soils. Géotechnique, 8(1), 22–53. https://doi.org/10.1680/geot.1958.8.1.22; Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339), 500–527. https://doi.org/10.1098/rspa.1962.0193; Sasanian, S. (2011). The Behaviour of Cement Stabilized Clay At High Water Contents (Issue April). University of Western Ontario.; Schofield, A. N., & Wroth, C. P. (1968). Critical state soil mechanics. In Lecturers in Engineering at Cambridge University.; Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2010). Modified Structured Cam Clay: A generalized critical state model for destructured, naturally structured and artificially structured clays. Computers and Geotechnics, 37(7–8), 956–968. https://doi.org/10.1016/j.compgeo.2010.08.002; Tan, T. S., Goh, T. L., & Yong, K. Y. (2002). Properties of Singapore marine clays improved by cement mixing. Geotechnical Testing Journal, 25(4), 422–433. https://doi.org/10.1520/gtj11295j; Tejedor Bonilla, C. A. (2022). Efecto de la cementación en la el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana. Universidad Nacional de Colombia.; Uddin, K., Balasubramaniam, A. S., & Bergado, D. T. (1997). Engineering behavior of cement-treated Bangkok soft clay. In Geotechnical Engineering (Vol. 28, Issue 1, pp. 89–119).; UNAL. (2021). Estudio para el desarrollo de un laboratorio virtual de Ingeniería Geotécnica.; Wild, K. M., Barla, M., Turinetti, G., & Amann, F. (2017). A multi-stage triaxial testing procedure for low permeable geomaterials applied to Opalinus Clay. Journal of Rock Mechanics and Geotechnical Engineering, 9(3), 519–530. https://doi.org/10.1016/j.jrmge.2017.04.003; Wood, D. M. (1991). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press. https://doi.org/10.1017/CBO9781139878272; Yu, H. S. (1998). CASM: a unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22(8), 621–653. https://doi.org/10.1002/(SICI)1096-9853(199808)22:83.0.CO;2-8; Yu, H.-S. (2006). Plasticity and geotechnics. In Choice Reviews Online (Vol. 44, Issue 07). https://doi.org/10.5860/choice.44-3893; https://repositorio.unal.edu.co/handle/unal/82921; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
4Academic Journal
المصدر: Minería & Geología; Vol. 20, Núm. 3-4 (2004); 99-106 ; 1993-8012
مصطلحات موضوعية: acero Hadfield, carga explosiva, elementos finitos, endurecimiento superficial
وصف الملف: application/pdf
Relation: http://revista.ismm.edu.cu/index.php/revistamg/article/view/149/150; http://revista.ismm.edu.cu/index.php/revistamg/article/view/149; http://ninive.ismm.edu.cu/handle/123456789/541
-
5Academic Journal
المؤلفون: Fernández-Columbié, Tomás Hernaldo, Rodríguez-González, Isnel, Alcántara-Borges, Dayanis, Fernández-Guilarte, Esther
المصدر: Minería & Geología; Vol. 26, Núm. 3 (2010): julio-septiembre; 34-47 ; 1993-8012
مصطلحات موضوعية: metalurgia física, acero AISI 1045, acritud, deformación plástica, endurecimiento superficial, microestructura, rodadura
وصف الملف: application/pdf
Relation: http://revista.ismm.edu.cu/index.php/revistamg/article/view/54/60; http://revista.ismm.edu.cu/index.php/revistamg/article/view/54; http://ninive.ismm.edu.cu/handle/123456789/68
-
6Academic Journal
المؤلفون: Esther Fernández-Guilarte, Dayanis Alcántara-Borges, Isnel Rodríguez-González, Tomás Fernández-Columbié
المصدر: Minería y Geología, Vol 26, Iss 3, Pp 34-47 (2010)
مصطلحات موضوعية: acero AISI 1045, acritud, deformación plástica, endurecimiento superficial, microestructura, rodadura, Mining engineering. Metallurgy, TN1-997, Geology, QE1-996.5, Mineralogy, QE351-399.2
وصف الملف: electronic resource
-
7Academic Journal
المصدر: Ingeniería Mecánica, Vol 12, Iss 02, Pp 49-57 (2009)
مصطلحات موضوعية: pasadores, fricción, rodadura, análisis microestructural, endurecimiento superficial, aolling, analysis microestructural, superficial hardening., Mechanical engineering and machinery, TJ1-1570
وصف الملف: electronic resource
-
8
المؤلفون: Soriano, Carlos
المساهمون: Yáñez, Armando, Yáñez, Armando (Titor), Aranzabe García, Ana
المصدر: RUC. Repositorio da Universidade da Coruña
instnameمصطلحات موضوعية: Revenido superficial, Surface tempering, Retained austenite, Haz oscilante, Feixe oscilante, Endurecemento superficial, 42CrMo4, Láseres-Aplicaciones industriales, Endurecimiento superficial, Láseres en ingeniería, Tempered martensite, Martensita revenida, Martensite, Austenita retenida, Surface hardening, Austenita retida, Martensita, Acero-Tratamiento térmico, Oscillating beam
-
9
المؤلفون: Tejedor Bonilla, Cristian Andres
المساهمون: Colmenares Montañez, Julio Esteban, Geotechnical Engineering Knowledge and Innovation Genki
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Case hardening, Desestructuración, Suelo reconstituido, Structure, Cemented soil, Destructuring, 624 - Ingeniería civil [620 - Ingeniería y operaciones afines], Cementación, Extended generalized compression line (EGCL), Endurecimiento superficial, Estructura, Suelo cementado, Línea de compresión generalizada extendida (EGCL), One-dimensional compression, Compresión unidimensional, Cementation, Reconstitued soil
وصف الملف: xxiii, 152 páginas; application/pdf
-
10Academic Journal
المؤلفون: Tejedor de León, Alexis
المصدر: Tecnología Hoy; Vol. 7, Núm. 1 (2003): Revista Tecnología Hoy; 16-20
مصطلحات موضوعية: Endurecimiento superficial ,metales ferrosos, oxiacetilénica
وصف الملف: application/pdf
Relation: http://revistas.utp.ac.pa/index.php/tecnologia-hoy/article/view/558/pdf; http://revistas.utp.ac.pa/index.php/tecnologia-hoy/article/view/558; http://ridda2.utp.ac.pa/handle/123456789/603
-
11Dissertation/ Thesis
المؤلفون: Tejedor Bonilla, Cristian Andres
المساهمون: Colmenares Montañez, Julio Esteban, Geotechnical Engineering Knowledge and Innovation Genki
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines::624 - Ingeniería civil, Cementación, Endurecimiento superficial, Cementation, Case hardening, Compresión unidimensional, Estructura, Suelo cementado, Desestructuración, Suelo reconstituido, Línea de compresión generalizada extendida (EGCL), One-dimensional compression, Structure, Cemented soil, Destructuring, Reconstitued soil, Extended generalized compression line (EGCL)
وصف الملف: xxiii, 152 páginas; application/pdf
Relation: Al-Rawas, A.A. (2002). Microgabric and mineralogical studies on the stabilization of an expansive soil using cement bypass dust and some types of slags. Can. Geotech. J., 39 (5), 1150-116; Aleva, G. J. J. (1994). LATERITES concepts, geology, morphology and chemistry. Wageningen: ISRIC.; Alpan, I. (1967). The empirical evaluation of the coefficient K0 and K0R. Soils and Foundations Volume 7, Issue 1, 1967, Pages 31-40.; ARGOS (2015). Estabilización de Suelos con Cemento: Alternativa Sostenible. 360º en Concreto - Blog Argos. https://www.youtube.com/watch?v=Zpx8TH8upr4; Ballinas (2006). Suelos expansivos. Tesis de maestría. Universidad Nacional Autónoma de México.; Basto (2022). Efecto de la cementación en la resistencia al corte de un suelo de la Orinoquía Colombiana. Trabajo final de maestría. Universidad Nacional de Colombia.; Baudet, B. y Stallebrass, S. (2004). A constitutive model for structured clays. Geotéchnique 54, No. 4, 269–278; Becker, D. E., Crooks, J. H. A., Been, K. y Jefferies, M. G. (1987). Work as a criterion for determining in situ and yield stresses in clays. Canadian Geotechnical Journal 24(4):549-564; Bergado, D.T., Anderson, L.R, Miura, N. y Balasubramaniam, A.S. (1996). Soft Ground Improvement in Lowland and Other Environments. American Society of Civil Engineers (ASCE) Press, New York, U.S.A. (1996); Bergado, D. T. & Lorenzo, G. A. (2001). Recent developments of ground improvement in soft Bangkok clay. Proceedings of the international symposium on lowland technology, Saga, Vol. 1, pp. 17–26.; Biru, A. (2022). Novel theoretical considerations of the coefficient of earth pressure at rest. Norwegian Geotechnical Institute.; Bishop, A. W. (1957). Some factors controlling the pore pressures set up during the construction of earth dams, Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 2, pp. 294–300.; Brooker, E. W. e Ireland, H. O. (1965). Earth pressure at rest related to stress history. Canadian Geotechnical Journal, 2(1), 1-15; Brousseau, P. (1983). Génélalisarion des états limites et de la déstructurartion des argiles naturelles. MS thesis, Laval Univ., Quebec City, Quebec, Canada.; Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotéchnique 40, No. 3, 329-378; Cifuentes, M. (2018). Vía Yopal – Orocué intransitable. Marta Cifuentes Noticias y Contenidos. En línea: https://marthacifuentes.com/portada/2018/07/11/via-yopal-orocue-intransitable/; Coop, M. R., Atkinson, J. H. y Taylor, R. N. (1995). Strength and stiffness of structured and unstructured soils. Proc. 11th Eur.Conf. Soil Mech. Found. Engng, Copenhagen 1, 55–62; Corecchia, F. y Chandler, R. J. (2000). A general framework for mechanical behaviour of clays. Geotécnique 50(4): 431-447.; Coronilla, N. (2015). Estudio de la mejora de terreno mediante columnas suelo-cemento tipo mixpile. Tesis doctoral, Universidad de Málaga, España.; Croft, J. B. (1967). The structures of soils stabilized with cementitious agents. Engineering Geology. Volume 2, Issue 2, August 1967, Pages 63-80; Daniel, D. E. y Benson, C. H. (1990) Water Content-Density Criteria for Compacted Soil Liners, Journal of Geotechnical Engineering, Vol. 116, No. 12, pp. 1811-1830.; De Medina, J. (1964). Laterite and their Application to Highway Construction. Rev. Gén. Routes, 362: 81 – 94.; Diccionario Geotecnia (2020). Curva de compresibilidad. En línea: https://www.diccionario.geotecnia.online/palabra/curva-de-compresibilidad/; Eberemu, A. O. (2015). Compressibility characteristics of compacted lateritic soil treated with bagasse ash. Jordan Journal of Civil Engineering, Volume 9, No. 2, 2015.; Espinel, F. (2019). Efecto de la estructura sobre la contracción volumétrica de suelos sometidos a procesos de desecación. Trabajo Final de Maestría. Universidad Nacional de Colombia.; Fraser, A. M. (1957). The Influence of Stress Ratio on Compressibility and Pore pressure Coefficients in Compacted Soils. Ph. D. Thesis. London University.; Fredlund, D., Rahardjo, G. H., Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. John Wiley & Sons, Inc., Hoboken, New Jersey.; Horpibulsuk, S. (2001). Analysis and assessment of engineering behavior of cement stabilized clays. PhD dissertation, Saga University, Japan.; Horpibulsuk, S., Bergado, D. T., & Lorenzo, G. A. (2004). Compressibility of cement-admixed clays at high water content. Géotechnique, 54(2), 151-154.; Horpibulsuk, S., Shibuya, S., Fuenkajorn, K. y Katkan, W. (2007): Assessment of engineering properties of Bangkok clay, Canadian Geotechnical Journal, 44(2), 173–187.; Horpibulsuk, S., Suebsuk, J., Chinkulkijniwat y A. Liu, M. D. (2009). A study of the compression behaviour of structured clays. In F. Oka, A. Murakami S. Kimoto (Eds.), Prediction and Simulation Methods for Geohazard Mitigation (pp. 269-272). London, UK: CRC Press.; Holm, G. (2003). “State of practice in dry deep mixing methods”, Geotechnical Special Publication, n 1201, p 145-163.; Hwang, J. (2006). Effects of cement treatment on the 1-D consolidation behavior of a highly organic soil.; Ingeominas, Universidad Industrial de Santander (2010), Geología del piedemonte llanero en la Cordillera Oriental, Departamentos de Arauca y Casanare: Memoria explicativa del Mapa geológico Plancha 233 – Orocué. Instituto de Investigación e Información Geocientífica, Minero-Ambiental y Nuclear.; Jaky, J. (1944). The coefficient of earth pressure at-rest, Journal of the Society of Hungarian Architects and Engineers, Vol. 78, No. 22, pp. 355–358.; Lambe, T. W. (1958). The permeability of fine-grained soils. Special Technical Pub. 163, ASTM, Philadelphia, Pa., 55-67.; Lavalle, E. d. (2013). Suelo-Cemento. Sus usos, propiedades y aplicaciones. México, D.F.: Instituto Mexicano del Cemento y del Concreto, A. C.; Lea, F.M. (1956). The Chemistry of Cement and Concrete, St. Martin’s press Inc.; Leroueil, S., Tavenas, F., Brucy, F., La Rochelle, P. y Roy, M. (1979). Behaviour of destructured natural clays. Proc. Am. Sot. Ciu. Engrs 105, GT6, 759-778.; Leroueil, S. y Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 40(3), 467–488.; Liu, M.D. y Carter, J.P. (1999). Virgin compression of structured soils. Geotéchnique, 49 (4), 43-57.; Liu, M.D. y Carter, J.P. (2000). Modeling the destructuring of soils during virgin compression. Geotéchnique, 50 (4), 479-483.; Liu, M.D. y Carter, J.P. (2002). A structured Cam Clay model. Can Geotech. J., 39 (6), 1313-1332.; Locat, J. Tremblay, H. y Leroueil, S. (1996). Mechanical and hydraulic behavior of a soft inorganic clay treated with lime, Can Geotech. J., 33 (4), 654-669.; Lorenzo, G. A., and Bergado, D.T. (2004). Fundamental parameters of cement-admixed clay: New approach, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, v. 130, n 10, p 1042-1050.; Maccarini, M. (1987). Laboratory studies of weakly bonded artificial soil. PhD thesis, University of London.; Mayne, P. W. y Kulhawy, F. H. (1982). K0-OCR Relationships in Soil. Journal of the Soil Mechanics and Foundations Division, 108(6), 851–872.; Mesri, G., Rokhsar, A. y Bohor, B. F. (1975). Composition and compressibility of typical samples of Mexico City clay. Geotéchnique 25. No. 3, 527-554.; Mesri, G. and Hayat T.M. (1993). The coefficient of earth pressure at rest. Can. Geotech. J. 30, 647-666 (1993); Ministerio de Minas y Energía. (2013). Explotación de materiales de construcción: Canteras y material de arrastre.; Mitchell, J. K. y Soga, K. (1976). Fundamentals of soil behavior (3rd ed.), John Wiley & Sons, Hoboken, New Jersey; Mitchell, J. K. y Solymar, Z. V. (1984). Time-dependent strength gain in freshly deposited or densified sand. J. Geotech. Div., Am. Soc. Civ. Engrs 110. GT11, 1559-1576.; Nagaraj, T. S. y Srinivasa Murthy, B. R. (1987). A critical reappraisal of compression index equations. Géotechnique, Volume 37, Issue 1, 135–136.; Nagaraj, T.S., Pandian, N.S., Narasimha Raju, P.S.R., (1993). Stress state–permeability relationships for fine-grained soils. Geotechnique 43 (2), 333–336.; Nagaraj, T. S., Pandain, N. S. y Narasimha Raju, P. S. R. (1998). Compressibility behaviour of soft cemented soils. Geótechnique, 48, No. 2, 281–287.; Noble, D.F., Plaster, R.W. (1970). Reactions in Portland Cement–Clay Mixtures. Final report, Virginia Highway Research Council, Charlottesville; Nogami, J. y Villibor, D., (1995) Pavimentação de baixo custo com solos lateríticos. Brasil. Ed. Vilibor, São Paulo, SP.; Noirum, R. N. y Orozco, L. F. (1993). Sistema de cimentación y comportamiento de los suelos de los nuevos edificios de la Embajada de los Estados Unidos. Segundo Encuentro Nacional de Ingenieros de Suelos y Estructuras. Escuela Colombiana de Ingeniería.; Olsen, R. E. y Daniel, D. E. (1981). Measurement of the hydraulic conductivity of fine-grained soils. Permeability and Groundwater Contaminant Transport, ASTM, STP 746, T. F. Zimmie and C.I. Riggs, Eds., ASTM, Philadelphia, pp. 18-64.; Orjuela, A. M. (2021). Influencia de la succión en la compresibilidad de suelos no saturados en trayectorias k0. Trabajo final de maestría. Universidad Nacional de Colombia.; Porbaha, A., Shibuya, S. y Kishida, T. (2000). State of the art in deep mixing technology. Part II: Geomaterial characterization. Ground Improvement 3, 91–100.; Prensa Libre Casanare (2016). En pésimas condiciones vía a Orocué. En línea: https://prensalibrecasanare.com/casanare/21524-en-pysimas-condiciones-vna-a-orocuy.html; Prusinski J. y Bhattacharja, S. (1999) Effectiveness of Portland cement and lime in stabilizing clay soils. Transp Res Rec J Transp Res Board 1652:215–227; Rao, S.N. y Rajasekaran, G. (1996). Reaction products formed in lime-stabilized marine clays, J. Geotech. Engrg., 122 (5), 329-336; Rotta, G. V., Prietto, P. D. M., Coop, M. R., Graham, J., y Consoli, N. C. (2003). Isotropic yielding in an artificially cemented soil cured under stress. Géotechnique, 53(5), 493–501; Ruffing, D. G. y Moran, A. R. (2016). In-situ soil-cement mixtures: Definitions, properties and design considerations. Geo-Solutions.; Sandroni, S. S. (1981). Solos residuals pesquisas realizades na PCC-RJ. Brazilian Symp. Engng Tropical Soils, Rio de Janerio 2, 30-65.; Sariosseiri, F. y Muhunthan, B. (2009). Effect of cement treatment on geotechnical properties of some Washington State soils. Engineering Geology 104, 119–125; Sasanian, S. y Newson, T.A. (2014). Basic parameters governing the behaviour of cement-treated clays. Soils and Foundations; 54(2), 209–224; Schmidt, B. (1966). Earth pressures at rest related to stress history. Discussion. Can. Geo. Journal, 3(4), 239-242.; Seed, H.B. y Chan, C.K. (1959), Structure and strength characteristics of compacted clays, Journal of the Soil Mechanics and Foundations Division, ASCE, pag. 87-128.; Schmertmann, J. H. (1969). Swell sensitivity. Geotéchnique 19, No. 4, 530-533.; Schmertmann, J. H. (1985). Measure and use of the in situ lateral stress.; Servicio Geológico Colombiano (2014), Estudios de Cartografía Geológica a Escala 1:100.000 Bloque 8 en el Vichada: Memoria explicativa de la Plancha 233 – Orocué. Dirección de Geociencias Básicas.; Sharma, H. D. y Lewis, S. P. (1994). Waste containment systems, waste stabilization and landfills: Design and evaluation. John Wiley & Sons, Inc.; Simons, N. (1958). Discussion: Measurements of the pressures of filling materials against walls, Proceedings of Brussels Conference on Earth Pressure Problems, Brussels, Vol. 3, pp. 50–53.; Skempton, A. W. (1953). The colloidal activity of clays. Londres: Universidad de Londres.; Skempton, A. W. (1970). The consolidation of clays by gravitational compaction. Q. J. Geol. Sot. 125, 373-411.; Tan, K. H., y Troth, P. S. (1982). Silica-sesquioxide ratios as aids in characterization of some temperate region and tropical soil clays. Soil Sci. Soc. Am. J. 46:1109-1114.; Taylor, H. F. W. (1997). Cement Chemistry (3rd Rev. ed.). London: Thomas Telford.; Terzaghi, K. (1925). Erdbaumechanik auf bodenphysika lischer Grundlage. Vienna: Deuticke.; Teerachaikulpanich, N., Okumura, S., Matsunaga, K. y Ohtha, H. (2007). Estimation of coefficient of earth pressure at rest using modified oedometer test. Japanese Geotechnical Society. Soils and Foundations Vol. 47, No. 2, 349-360; Terashi, M., Tanaka, H., Mitsumoto, T., Niidome, Y. y Honma, S. (1979). Fundamental properties of lime and cement treated soils (2nd report). Report of Port and Harbour Research Institute 19, No. 1, 33–62 (in Japanese).; Tremblay, H, Leroueil, S. y Locat, J. (2001). Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement. Can Geotech. J., 38, 567-579.; Wesley, L. D. (1974). Discussion of Wallace (1973). Geotéchnique 24, No. 1, 101-105.; Villareal, H., Mendoza, H., Quintero, I., Osorio, D., Castillo, R., Higeria, M., Umaña, A., Alvares, M., Parra, J., Maldonado, J. & Bogotá, J. J. (2007). Caracterización biológica del Parque Nacional Natural El Tuparro (sector noreste), Vichada, Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt.; Zhao, H., Zhoua, K., Zhaob, C., Gongc, B. y Jun Liu, J. (2015). A long-term investigation on microstructure of cement-stabilized handan clay. European Journal of Environmental and Civil Engineering.; https://repositorio.unal.edu.co/handle/unal/82828; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
12Dissertation/ Thesis
المؤلفون: Chávez Salas, Carlos Hernán
المساهمون: Buñay Guamán, Jorge Sebastián, Caicedo Reyes, Jorge Isaías
مصطلحات موضوعية: TECNOLOGÍA Y CIENCIAS DE LA INGENIERÍA, ENDURECIMIENTO SUPERFICIAL, ENGRANAJES, MOTORREDUCTOR, TRATAMIENTO TÉRMICO, BANCO DE PRUEBAS
وصف الملف: application/pdf
Relation: UDCTFM;15T00842; Chávez Salas, Carlos Hernán. (2022). Estudio del efecto a desgaste en los materiales usados para engranajes en un motorreductor por medio de inspección visual. Escuela Superior Politécnica de Chimborazo. Riobamba.; http://dspace.espoch.edu.ec/handle/123456789/18380
-
13Academic Journal
المصدر: Minería y Geología, Vol 20, Iss 3-4, Pp 99-106 (2004)
مصطلحات موضوعية: acero Hadfield, carga explosiva, elementos finitos, endurecimiento superficial, Mining engineering. Metallurgy, TN1-997, Geology, QE1-996.5, Mineralogy, QE351-399.2
وصف الملف: electronic resource
-
14Academic Journal
المؤلفون: G. Muñiz, A. Conde, B. J. Fernández, R. Varela, I. García, J. Damborenea
المصدر: Revista de Metalurgia, Vol 39, Iss 6, Pp 443-451 (2003)
مصطلحات موضوعية: endurecimiento superficial con láser, aceros, dureza, desgaste, corrosión, Mining engineering. Metallurgy, TN1-997
وصف الملف: electronic resource
-
15Academic Journal
المؤلفون: R. Sagaró, H. Carvajal, J. S. Ceballos, R. Cabrera, J. Mascarell
المصدر: Revista de Metalurgia, Vol 37, Iss 5, Pp 607-615 (2001)
مصطلحات موضوعية: endurecimiento superficial por láser, tratamiento térmico por láser, modificación superficial, comportamiento tribológico, Mining engineering. Metallurgy, TN1-997
وصف الملف: electronic resource
-
16Academic Journal
المؤلفون: Rodríguez, D., Manero, J. M., Gil, F. J., Planell, J. A.
المصدر: Boletín de la Sociedad Española de Cerámica y Vidrio, Vol 39, Iss 3, Pp 301-304 (2000)
مصطلحات موضوعية: Titanium, nitriding, surface treatment, surface hardness, titanium nitride, Titanio, nitruración, tratamiento superficial, endurecimiento superficial, nitruro de titanio, Clay industries. Ceramics. Glass, TP785-869
وصف الملف: electronic resource
-
17Academic Journal
المؤلفون: J. S. Ceballos-Ruano, G. Muñiz, R. Sagaró, B. Barja, C. Torres
المصدر: Revista de Metalurgia, Vol 34, Iss 2, Pp 140-143 (1998)
مصطلحات موضوعية: endurecimiento superficial, transformaciones de dureza en estado sólido, tratamiento térmico con láser, Mining engineering. Metallurgy, TN1-997
وصف الملف: electronic resource
-
18Academic Journal
مصطلحات موضوعية: Pasadores, Fricción, Rodadura, Análisis microestructural, Endurecimiento superficial
وصف الملف: application/pdf
Relation: 12;2; http://ninive.ismm.edu.cu/handle/123456789/3538
-
19Academic Journal
مصطلحات موضوعية: Microestructura, Deformación plástica, Rodadura, Deslizamiento, Acritud, Endurecimiento superficial, Acero AISI 1045
وصف الملف: application/pdf
Relation: XIV;4; http://ninive.ismm.edu.cu/handle/123456789/3903
-
20Academic Journal
مصطلحات موضوعية: Dureza, Hardness, Rieles (Ferrocarriles), Railroads - rails, Acero, Steel, Metalografía, Metallography, Endurecimiento superficial, Case hardening, Tratamiento de superficies, Surface preparation, Tratamiento térmico de metales, Metals - Heat treatment, Desgaste ondulatorio
وصف الملف: application/pdf
Relation: Dyna; http://hdl.handle.net/10495/23323
الاتاحة: http://hdl.handle.net/10495/23323