يعرض 1 - 12 نتائج من 12 نتيجة بحث عن '"Elastic properties of rocks"', وقت الاستعلام: 0.52s تنقيح النتائج
  1. 1
    Report
  2. 2
    Dissertation/ Thesis

    المساهمون: Alzate Buitrago, Alejandro

    جغرافية الموضوع: Pereira

    وصف الملف: PDF

    Relation: Berthelot, J. M., & Robert, J. L. (n.d.). Damage evaluation of concrete test specimens related to failure analysis.; Birch, F. (1960). The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 11. In Journal of Geophysical Research (Vol. 65, Issue 4).; Botter, C., Cardozo, N., Hardy, S., Lecomte, I., Paton, G., & Escalona, A. (2016). Seismic characterisation of fault damage in 3D using mechanical and seismic modelling. Marine and Petroleum Geology, 77, 973–990. https://doi.org/10.1016/j.marpetgeo.2016.08.002; Czarny, R., Malinowski, M., Chamarczuk, M., Ćwiękała, M., Olechowski, S., Isakow, Z., & Sierodzki, P. (2021). Dispersive seismic waves in a coal seam around the roadway in the presence of excavation damaged zone. International Journal of Rock Mechanics and Mining Sciences, 148. https://doi.org/10.1016/j.ijrmms.2021.104937; David, E. C., & Zimmerman, R. W. (2012). Pore structure model for elastic wave velocities in fluid-saturated sandstones. Journal of Geophysical Research: Solid Earth, 117(7). https://doi.org/10.1029/2012JB009195; Evans, J. P., Forster, C. B., & Goddard, J. V. (1997). of fault-related rocks, and implications for hydraulic structure of fault zones. In Journal of Structural Geology (Vol. 19, Issue 11).; Feng, X. T., Pan, P. Z., & Zhou, H. (2006). Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton. International Journal of Rock Mechanics and Mining Sciences, 43(7), 1091–1108. https://doi.org/10.1016/j.ijrmms.2006.02.006; Glubokovskikh, S., Gurevich, B., & Saxena, N. (2016). A dual-porosity scheme for fluid/solid substitution. Geophysical Prospecting, 64(4), 1112–1121. https://doi.org/10.1111/1365-2478.12389; Gómez Barreiro, J., Wenk, H. R., & Vogel, S. (2015). Texture and elastic anisotropy of a mylonitic anorthosite from the Morin Shear Zone (Quebec, Canada). Journal of Structural Geology, 71, 100–111. https://doi.org/10.1016/j.jsg.2014.07.021; Gong, F., Di, B., Zeng, L., Wei, J., Cheng, J., & Gao, L. (2021). The elastic properties and anisotropy of artificial compacted clay samples. Geophysics, 86(1), MR1–MR15. https://doi.org/10.1190/geo2019-0608.1; Guo, J., Han, T., Fu, L. Y., Xu, D., & Fang, X. (2019). Effective Elastic Properties of Rocks With Transversely Isotropic Background Permeated by Aligned Penny-Shaped Cracks. Journal of Geophysical Research: Solid Earth, 124(1), 400–424. https://doi.org/10.1029/2018JB016412; Hamiel, Y., Lyakhovsky, V., Stanchits, S., Dresen, G., & Ben-Zion, Y. (2009). Brittle deformation and damage-induced seismic wave anisotropy in rocks. Geophysical Journal International, 178(2), 901–909. https://doi.org/10.1111/j.1365-246X.2009.04200.x; Hill H H, B. R. (1932). 138,330; 1932 b. In Dokl., Akad. Nauk, SSSR (Vol. 129).; Hossain, M. M., Arns, J. Y., Liang, Z., Chen, Z., & Arns, C. H. (2019). Humidity Effects on Effective Elastic Properties of Rock: An Integrated Experimental and Numerical Study. Journal of Geophysical Research: Solid Earth, 124(8), 7771–7791. https://doi.org/10.1029/2019JB017672; Jésus, J., Sobrinho, S., De Figueiredo, J. J. S., Lima, R. L., Santos, L. K., & Nascimento, M. J. (2018). STUDY OF ELASTIC PROPERTIES AS FUNCTION OF TEMPERATURE IN ANISOTROPIC CRACKED MEDIA: AN ULTRASONIC APPROACH 326 ELASTIC PROPERTIES AS FUNCTION OF TEMPERATURE. In Revista Brasileira de Geofísica (Vol. 36, Issue 3). www.scielo.br/rbg; Kenigsberg, A. R., Rivière, J., Marone, C., & Saffer, D. M. (2020). A method for determining absolute ultrasonic velocities and elastic properties of experimental shear zones. International Journal of Rock Mechanics and Mining Sciences, 130. https://doi.org/10.1016/j.ijrmms.2020.104306; Khajehpour Tadavani, S., Poduska, K. M., Malcolm, A. E., & Melnikov, A. (2020). A non-linear elastic approach to study the effect of ambient humidity on sandstone. Journal of Applied Physics, 128(24). https://doi.org/10.1063/5.0025936; Lebedev, T. S., Korchin, V. A., & Burtny, P. A. (1992). Geophysical applications of the results of a pt-study of elastic properties of rocks. In J. Geodynaraics (Vol. 15, Issue 3•4).; Lee, A. L., Walker, A. M., Lloyd, G. E., & Torvela, T. (2017). Modeling the impact of melt on seismic properties during mountain building. Geochemistry, Geophysics, Geosystems, 18(3), 1090–1110. https://doi.org/10.1002/2016GC006705; Levykin, A. I., & Parfenov, V. D. (1975). Plastic deformations and longitudinal wave velocities in barite at high pressures. International Geology Review, 17(3), 368–372. https://doi.org/10.1080/00206817509471706; Li, H., Lai, B., & Liu, H. (2019). Determination of Tensile Elastic Parameters from Brazilian Tensile Test: Theory and Experiments. Rock Mechanics and Rock Engineering, 52(8), 2551–2568. https://doi.org/10.1007/s00603-019-1738-8; Li, S., Wang, W., Su, Y., & Guo, J. (2023). Effective elastic properties and S-wave anisotropy for rocks containing any oriented penny-shaped cracks in transversely isotropic background. Geophysics, 88(3), MR65–MR81. https://doi.org/10.1190/geo2022-0388.1; Li, T., Wang, R., Wang, Z., & Wang, Y. (2016). Experimental study on the effects of fractures on elastic wave propagation in synthetic layered rocks. Geophysics, 81(4), D441–D451. https://doi.org/10.1190/GEO2015-0661.1; Li, W., Rezakhani, R., Jin, C., Zhou, X., & Cusatis, G. (2017). A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. International Journal for Numerical and Analytical Methods in Geomechanics, 41(14), 1494–1522. https://doi.org/10.1002/nag.2684; Liu, C., Pollard, D. D., & Shi, B. (2013). Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. Journal of Geophysical Research: Solid Earth, 118(1), 71–82. https://doi.org/10.1029/2012JB009615; Liu, E. (2005). Effects of fracture aperture and roughness on hydraulic and mechanical properties of rocks: Implication of seismic characterization of fractured reservoirs. Journal of Geophysics and Engineering, 2(1), 38–47. https://doi.org/10.1088/1742-2132/2/1/006; Lyakhovsky, V., & Ben-zion, Y. (2008). Scaling relations of earthquakes and aseismic deformation in a damage rheology model. Geophysical Journal International, 172(2), 651–662. https://doi.org/10.1111/j.1365-246X.2007.03652.x; Markov, A., Ronquillo Jarillo, G., & Markov, M. (2014). Elastic properties of rocks containing oriented systems of ellipsoidal inclusions. Journal of Applied Geophysics, 103, 114–120. https://doi.org/10.1016/j.jappgeo.2014.01.010; Mavko, G. (1990). Introduction to Rock Physics.; O’Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 79(35), 5412–5426. https://doi.org/10.1029/JB079i035p05412; Ostrovsky, L., Lebedev, A., Riviere, J., Shokouhi, P., Wu, C., Stuber Geesey, M. A., & Johnson, P. A. (2019). Long-Time Relaxation Induced by Dynamic Forcing in Geomaterials. Journal of Geophysical Research: Solid Earth, 124(5), 5003–5013. https://doi.org/10.1029/2018JB017076; Pan, P., Feng, X., & Zhou, H. (2008). Research on the effect of loading conditions on the strength and deformation behaviors of rocks. In International Journal of Modern Physics B (Vol. 22). www.worldscientific.com; Pimienta, L., Fortin, J., & Guéguen, Y. (2017). New method for measuring compressibility and poroelasticity coefficients in porous and permeable rocks. Journal of Geophysical Research: Solid Earth, 122(4), 2670–2689. https://doi.org/10.1002/2016JB013791; Pouragha, M., Eghbalian, M., & Wan, R. (2020). Micromechanical correlation between elasticity and strength characteristics of anisotropic rocks. International Journal of Rock Mechanics and Mining Sciences, 125. https://doi.org/10.1016/j.ijrmms.2019.104154; Prada, M., Galvez, P., Ampuero, J. P., Sallarès, V., Sánchez-Linares, C., Macías, J., & Peter, D. (2021). The Influence of Depth-Varying Elastic Properties of the Upper Plate on Megathrust Earthquake Rupture Dynamics and Tsunamigenesis. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021JB022328; Rivière, J., Pimienta, L., Scuderi, M., Candela, T., Shokouhi, P., Fortin, J., Schubnel, A., Marone, C., & Johnson, P. A. (2016). Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone. Geophysical Research Letters, 43(7), 3226–3236. https://doi.org/10.1002/2016GL068061; Roche, V., Homberg, C., David, C., & Rocher, M. (2014). Normal faults, layering and elastic properties of rocks. Tectonophysics, 622, 96–109. https://doi.org/10.1016/j.tecto.2014.03.006; Rozhko, A. Y. (2020). Effects of pore fluids on quasi-static shear modulus caused by pore-scale interfacial phenomena. Geophysical Prospecting, 68(2), 631–656. https://doi.org/10.1111/1365-2478.12864; Rudnicki, J. W. (n.d.). Conditions for compaction and shear bands in a transversely isotropic material q. www.elsevier.com/locate/ijsolstr; Sayers, C. M. (2012). The effect of kerogen on the elastic anisotropy of organic-rich shales. Geophysics, 78(2), D65–D74. https://doi.org/10.1190/GEO2012-0309.1; Sayers, C. M., & den Boer, L. D. (2018). The Elastic Properties of Clay in Shales. Journal of Geophysical Research: Solid Earth, 123(7), 5965–5974. https://doi.org/10.1029/2018JB015600; Sayers, C. M., & Kachanov, M. (1995). Microcrack-induced elastic wave anisotropy of brittle rocks. In Journal Of Geophysical Research: Vol. tOO (Issue B3).; Segall, P., & Fitzgerald, S. D. (1998). A note on induced stress changes in hydrocarbon and geothermal reservoirs. In Tectonophysics (Vol. 289).; Shen, L. W., & Playter, T. (2021). Determining the transverse isotropic rocks’ static elastic moduli with cylindrical plugs: Shortfalls, challenges, and expected outcomes. Geophysics, 86(3), W31–W46. https://doi.org/10.1190/geo2020-0439.1; Singh, R., Rai, C., & Sondergeld, C. (n.d.). Pressure dependence of elastic wave velocities in sandstones. http://library.seg.org/; Sirdesai, N. N., Gupta, T., Singh, T. N., & Ranjith, P. G. (2018). Studying the acoustic emission response of an Indian monumental sandstone under varying temperatures and strains. Construction and Building Materials, 168, 346–361. https://doi.org/10.1016/j.conbuildmat.2018.02.180; Suleymanov, V., El-Husseiny, A., Glatz, G., & Dvorkin, J. (2023). Rock physics and machine learning comparison: elastic properties prediction and scale dependency. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1095252; The determination of the elastic field of an ellipsoidal inclusion, and related problems. (n.d.). http://rspa.royalsocietypublishing.org/; Wals, J. B. (1965). The Effect of Cracks on the Uniaxial Elastic Compression of Rocks. In •ANUA•Y (Vol. 70, Issue 2).; Wang, M., Yu, Z., Jin, Y., & Shao, J. (2020). Modeling of damage and cracking in heterogeneous rock-like materials by phase-field method. https://www.sciencedirect.com/science/article/pii/S0093641320301403; Wang, Y., Zhao, L., Han, D. H., Mitra, A., Li, H., & Aldin, S. (2021). Anisotropic dynamic and static mechanical properties of organic-rich shale: The influence of stress. Geophysics, 86(2), C51–C63. https://doi.org/10.1190/geo2020-0010.1; Wang, Z., & Gelius, L. J. (2010). Electric and elastic properties of rock samples: A unified measurement approach. Petroleum Geoscience, 16(2), 171–183. https://doi.org/10.1144/1354-079309-013; Xu, D., Han, T., Liu, S., & Fu, L. Y. (2020). Effects of randomly orienting penny-shaped cracks on the elastic properties of transversely isotropic rocks. Geophysics, 85(6), MR325–MR340. https://doi.org/10.1190/geo2019-0678.1; Xu, S., Ben-Zion, Y., Ampuero, J. P., & Lyakhovsky, V. (2015). Dynamic Ruptures on a Frictional Interface with Off-Fault Brittle Damage: Feedback Mechanisms and Effects on Slip and Near-Fault Motion. Pure and Applied Geophysics, 172(5), 1243–1267. https://doi.org/10.1007/s00024-014-0923-7; Yan, F., & Han, D. H. (2018). Application of the power mean to modeling the elastic properties of reservoir rocks. Journal of Geophysics and Engineering, 15(6), 2686–2694. https://doi.org/10.1088/1742-2140/aae3be; Yu, D., Liu, E., Xiang, B., He, Y., Luo, F., & He, C. (2023). A micro–macro constitutive model for rock considering breakage effects. International Journal of Mining Science and Technology, 33(2), 173–184. https://doi.org/10.1016/j.ijmst.2022.09.027; Zamiran, S., Rafieepour, S., & Ostadhassan, M. (2018). A geomechanical study of Bakken Formation considering the anisotropic behavior of shale layers. Journal of Petroleum Science and Engineering, 165, 567–574. https://doi.org/10.1016/j.petrol.2018.02.059; Zhao, J., Qin, X., Wang, J., & He, M. (2020). Effect of mg(Ii) and na(i) doping on the electronic structure and mechanical properties of kaolinite. Minerals, 10(4). https://doi.org/10.3390/min10040368; https://hdl.handle.net/10901/30484

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Periodical
  11. 11
    Periodical
  12. 12