-
1Report
المؤلفون: Голубев Ф. М., Анциферов В. А., Крижановская Л. Н.
مصطلحات موضوعية: упругие свойства горных пород, граничные углы, углы полных сдвижений, скорость распространения упругих волн, горная выработка, зона влияния горных работ., elastic properties of rocks, boundary angles, angles of total displacement, velocity of propagation of elastic waves, mining, zone of influence rock works.
-
2Dissertation/ Thesis
المؤلفون: Cardenas Torres, Mauricio Andrés
المساهمون: Alzate Buitrago, Alejandro
مصطلحات موضوعية: Deformación de las rocas, Fracturas, Geología, Geotecnia, Grietas, Ingeniería civil, Propiedades elástica de las rocas, Tree of Science (ToS), Web of Science, Rock deformation, Fractures, Geology, Geotechnics, Cracks, Civil engineering, Elastic properties of rocks
جغرافية الموضوع: Pereira
وصف الملف: PDF
Relation: Berthelot, J. M., & Robert, J. L. (n.d.). Damage evaluation of concrete test specimens related to failure analysis.; Birch, F. (1960). The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 11. In Journal of Geophysical Research (Vol. 65, Issue 4).; Botter, C., Cardozo, N., Hardy, S., Lecomte, I., Paton, G., & Escalona, A. (2016). Seismic characterisation of fault damage in 3D using mechanical and seismic modelling. Marine and Petroleum Geology, 77, 973–990. https://doi.org/10.1016/j.marpetgeo.2016.08.002; Czarny, R., Malinowski, M., Chamarczuk, M., Ćwiękała, M., Olechowski, S., Isakow, Z., & Sierodzki, P. (2021). Dispersive seismic waves in a coal seam around the roadway in the presence of excavation damaged zone. International Journal of Rock Mechanics and Mining Sciences, 148. https://doi.org/10.1016/j.ijrmms.2021.104937; David, E. C., & Zimmerman, R. W. (2012). Pore structure model for elastic wave velocities in fluid-saturated sandstones. Journal of Geophysical Research: Solid Earth, 117(7). https://doi.org/10.1029/2012JB009195; Evans, J. P., Forster, C. B., & Goddard, J. V. (1997). of fault-related rocks, and implications for hydraulic structure of fault zones. In Journal of Structural Geology (Vol. 19, Issue 11).; Feng, X. T., Pan, P. Z., & Zhou, H. (2006). Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton. International Journal of Rock Mechanics and Mining Sciences, 43(7), 1091–1108. https://doi.org/10.1016/j.ijrmms.2006.02.006; Glubokovskikh, S., Gurevich, B., & Saxena, N. (2016). A dual-porosity scheme for fluid/solid substitution. Geophysical Prospecting, 64(4), 1112–1121. https://doi.org/10.1111/1365-2478.12389; Gómez Barreiro, J., Wenk, H. R., & Vogel, S. (2015). Texture and elastic anisotropy of a mylonitic anorthosite from the Morin Shear Zone (Quebec, Canada). Journal of Structural Geology, 71, 100–111. https://doi.org/10.1016/j.jsg.2014.07.021; Gong, F., Di, B., Zeng, L., Wei, J., Cheng, J., & Gao, L. (2021). The elastic properties and anisotropy of artificial compacted clay samples. Geophysics, 86(1), MR1–MR15. https://doi.org/10.1190/geo2019-0608.1; Guo, J., Han, T., Fu, L. Y., Xu, D., & Fang, X. (2019). Effective Elastic Properties of Rocks With Transversely Isotropic Background Permeated by Aligned Penny-Shaped Cracks. Journal of Geophysical Research: Solid Earth, 124(1), 400–424. https://doi.org/10.1029/2018JB016412; Hamiel, Y., Lyakhovsky, V., Stanchits, S., Dresen, G., & Ben-Zion, Y. (2009). Brittle deformation and damage-induced seismic wave anisotropy in rocks. Geophysical Journal International, 178(2), 901–909. https://doi.org/10.1111/j.1365-246X.2009.04200.x; Hill H H, B. R. (1932). 138,330; 1932 b. In Dokl., Akad. Nauk, SSSR (Vol. 129).; Hossain, M. M., Arns, J. Y., Liang, Z., Chen, Z., & Arns, C. H. (2019). Humidity Effects on Effective Elastic Properties of Rock: An Integrated Experimental and Numerical Study. Journal of Geophysical Research: Solid Earth, 124(8), 7771–7791. https://doi.org/10.1029/2019JB017672; Jésus, J., Sobrinho, S., De Figueiredo, J. J. S., Lima, R. L., Santos, L. K., & Nascimento, M. J. (2018). STUDY OF ELASTIC PROPERTIES AS FUNCTION OF TEMPERATURE IN ANISOTROPIC CRACKED MEDIA: AN ULTRASONIC APPROACH 326 ELASTIC PROPERTIES AS FUNCTION OF TEMPERATURE. In Revista Brasileira de Geofísica (Vol. 36, Issue 3). www.scielo.br/rbg; Kenigsberg, A. R., Rivière, J., Marone, C., & Saffer, D. M. (2020). A method for determining absolute ultrasonic velocities and elastic properties of experimental shear zones. International Journal of Rock Mechanics and Mining Sciences, 130. https://doi.org/10.1016/j.ijrmms.2020.104306; Khajehpour Tadavani, S., Poduska, K. M., Malcolm, A. E., & Melnikov, A. (2020). A non-linear elastic approach to study the effect of ambient humidity on sandstone. Journal of Applied Physics, 128(24). https://doi.org/10.1063/5.0025936; Lebedev, T. S., Korchin, V. A., & Burtny, P. A. (1992). Geophysical applications of the results of a pt-study of elastic properties of rocks. In J. Geodynaraics (Vol. 15, Issue 3•4).; Lee, A. L., Walker, A. M., Lloyd, G. E., & Torvela, T. (2017). Modeling the impact of melt on seismic properties during mountain building. Geochemistry, Geophysics, Geosystems, 18(3), 1090–1110. https://doi.org/10.1002/2016GC006705; Levykin, A. I., & Parfenov, V. D. (1975). Plastic deformations and longitudinal wave velocities in barite at high pressures. International Geology Review, 17(3), 368–372. https://doi.org/10.1080/00206817509471706; Li, H., Lai, B., & Liu, H. (2019). Determination of Tensile Elastic Parameters from Brazilian Tensile Test: Theory and Experiments. Rock Mechanics and Rock Engineering, 52(8), 2551–2568. https://doi.org/10.1007/s00603-019-1738-8; Li, S., Wang, W., Su, Y., & Guo, J. (2023). Effective elastic properties and S-wave anisotropy for rocks containing any oriented penny-shaped cracks in transversely isotropic background. Geophysics, 88(3), MR65–MR81. https://doi.org/10.1190/geo2022-0388.1; Li, T., Wang, R., Wang, Z., & Wang, Y. (2016). Experimental study on the effects of fractures on elastic wave propagation in synthetic layered rocks. Geophysics, 81(4), D441–D451. https://doi.org/10.1190/GEO2015-0661.1; Li, W., Rezakhani, R., Jin, C., Zhou, X., & Cusatis, G. (2017). A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. International Journal for Numerical and Analytical Methods in Geomechanics, 41(14), 1494–1522. https://doi.org/10.1002/nag.2684; Liu, C., Pollard, D. D., & Shi, B. (2013). Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. Journal of Geophysical Research: Solid Earth, 118(1), 71–82. https://doi.org/10.1029/2012JB009615; Liu, E. (2005). Effects of fracture aperture and roughness on hydraulic and mechanical properties of rocks: Implication of seismic characterization of fractured reservoirs. Journal of Geophysics and Engineering, 2(1), 38–47. https://doi.org/10.1088/1742-2132/2/1/006; Lyakhovsky, V., & Ben-zion, Y. (2008). Scaling relations of earthquakes and aseismic deformation in a damage rheology model. Geophysical Journal International, 172(2), 651–662. https://doi.org/10.1111/j.1365-246X.2007.03652.x; Markov, A., Ronquillo Jarillo, G., & Markov, M. (2014). Elastic properties of rocks containing oriented systems of ellipsoidal inclusions. Journal of Applied Geophysics, 103, 114–120. https://doi.org/10.1016/j.jappgeo.2014.01.010; Mavko, G. (1990). Introduction to Rock Physics.; O’Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 79(35), 5412–5426. https://doi.org/10.1029/JB079i035p05412; Ostrovsky, L., Lebedev, A., Riviere, J., Shokouhi, P., Wu, C., Stuber Geesey, M. A., & Johnson, P. A. (2019). Long-Time Relaxation Induced by Dynamic Forcing in Geomaterials. Journal of Geophysical Research: Solid Earth, 124(5), 5003–5013. https://doi.org/10.1029/2018JB017076; Pan, P., Feng, X., & Zhou, H. (2008). Research on the effect of loading conditions on the strength and deformation behaviors of rocks. In International Journal of Modern Physics B (Vol. 22). www.worldscientific.com; Pimienta, L., Fortin, J., & Guéguen, Y. (2017). New method for measuring compressibility and poroelasticity coefficients in porous and permeable rocks. Journal of Geophysical Research: Solid Earth, 122(4), 2670–2689. https://doi.org/10.1002/2016JB013791; Pouragha, M., Eghbalian, M., & Wan, R. (2020). Micromechanical correlation between elasticity and strength characteristics of anisotropic rocks. International Journal of Rock Mechanics and Mining Sciences, 125. https://doi.org/10.1016/j.ijrmms.2019.104154; Prada, M., Galvez, P., Ampuero, J. P., Sallarès, V., Sánchez-Linares, C., Macías, J., & Peter, D. (2021). The Influence of Depth-Varying Elastic Properties of the Upper Plate on Megathrust Earthquake Rupture Dynamics and Tsunamigenesis. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021JB022328; Rivière, J., Pimienta, L., Scuderi, M., Candela, T., Shokouhi, P., Fortin, J., Schubnel, A., Marone, C., & Johnson, P. A. (2016). Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone. Geophysical Research Letters, 43(7), 3226–3236. https://doi.org/10.1002/2016GL068061; Roche, V., Homberg, C., David, C., & Rocher, M. (2014). Normal faults, layering and elastic properties of rocks. Tectonophysics, 622, 96–109. https://doi.org/10.1016/j.tecto.2014.03.006; Rozhko, A. Y. (2020). Effects of pore fluids on quasi-static shear modulus caused by pore-scale interfacial phenomena. Geophysical Prospecting, 68(2), 631–656. https://doi.org/10.1111/1365-2478.12864; Rudnicki, J. W. (n.d.). Conditions for compaction and shear bands in a transversely isotropic material q. www.elsevier.com/locate/ijsolstr; Sayers, C. M. (2012). The effect of kerogen on the elastic anisotropy of organic-rich shales. Geophysics, 78(2), D65–D74. https://doi.org/10.1190/GEO2012-0309.1; Sayers, C. M., & den Boer, L. D. (2018). The Elastic Properties of Clay in Shales. Journal of Geophysical Research: Solid Earth, 123(7), 5965–5974. https://doi.org/10.1029/2018JB015600; Sayers, C. M., & Kachanov, M. (1995). Microcrack-induced elastic wave anisotropy of brittle rocks. In Journal Of Geophysical Research: Vol. tOO (Issue B3).; Segall, P., & Fitzgerald, S. D. (1998). A note on induced stress changes in hydrocarbon and geothermal reservoirs. In Tectonophysics (Vol. 289).; Shen, L. W., & Playter, T. (2021). Determining the transverse isotropic rocks’ static elastic moduli with cylindrical plugs: Shortfalls, challenges, and expected outcomes. Geophysics, 86(3), W31–W46. https://doi.org/10.1190/geo2020-0439.1; Singh, R., Rai, C., & Sondergeld, C. (n.d.). Pressure dependence of elastic wave velocities in sandstones. http://library.seg.org/; Sirdesai, N. N., Gupta, T., Singh, T. N., & Ranjith, P. G. (2018). Studying the acoustic emission response of an Indian monumental sandstone under varying temperatures and strains. Construction and Building Materials, 168, 346–361. https://doi.org/10.1016/j.conbuildmat.2018.02.180; Suleymanov, V., El-Husseiny, A., Glatz, G., & Dvorkin, J. (2023). Rock physics and machine learning comparison: elastic properties prediction and scale dependency. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1095252; The determination of the elastic field of an ellipsoidal inclusion, and related problems. (n.d.). http://rspa.royalsocietypublishing.org/; Wals, J. B. (1965). The Effect of Cracks on the Uniaxial Elastic Compression of Rocks. In •ANUA•Y (Vol. 70, Issue 2).; Wang, M., Yu, Z., Jin, Y., & Shao, J. (2020). Modeling of damage and cracking in heterogeneous rock-like materials by phase-field method. https://www.sciencedirect.com/science/article/pii/S0093641320301403; Wang, Y., Zhao, L., Han, D. H., Mitra, A., Li, H., & Aldin, S. (2021). Anisotropic dynamic and static mechanical properties of organic-rich shale: The influence of stress. Geophysics, 86(2), C51–C63. https://doi.org/10.1190/geo2020-0010.1; Wang, Z., & Gelius, L. J. (2010). Electric and elastic properties of rock samples: A unified measurement approach. Petroleum Geoscience, 16(2), 171–183. https://doi.org/10.1144/1354-079309-013; Xu, D., Han, T., Liu, S., & Fu, L. Y. (2020). Effects of randomly orienting penny-shaped cracks on the elastic properties of transversely isotropic rocks. Geophysics, 85(6), MR325–MR340. https://doi.org/10.1190/geo2019-0678.1; Xu, S., Ben-Zion, Y., Ampuero, J. P., & Lyakhovsky, V. (2015). Dynamic Ruptures on a Frictional Interface with Off-Fault Brittle Damage: Feedback Mechanisms and Effects on Slip and Near-Fault Motion. Pure and Applied Geophysics, 172(5), 1243–1267. https://doi.org/10.1007/s00024-014-0923-7; Yan, F., & Han, D. H. (2018). Application of the power mean to modeling the elastic properties of reservoir rocks. Journal of Geophysics and Engineering, 15(6), 2686–2694. https://doi.org/10.1088/1742-2140/aae3be; Yu, D., Liu, E., Xiang, B., He, Y., Luo, F., & He, C. (2023). A micro–macro constitutive model for rock considering breakage effects. International Journal of Mining Science and Technology, 33(2), 173–184. https://doi.org/10.1016/j.ijmst.2022.09.027; Zamiran, S., Rafieepour, S., & Ostadhassan, M. (2018). A geomechanical study of Bakken Formation considering the anisotropic behavior of shale layers. Journal of Petroleum Science and Engineering, 165, 567–574. https://doi.org/10.1016/j.petrol.2018.02.059; Zhao, J., Qin, X., Wang, J., & He, M. (2020). Effect of mg(Ii) and na(i) doping on the electronic structure and mechanical properties of kaolinite. Minerals, 10(4). https://doi.org/10.3390/min10040368; https://hdl.handle.net/10901/30484
الاتاحة: https://hdl.handle.net/10901/30484
-
3Academic Journal
المؤلفون: E.A. Yachmeneva, D.I. Khassanov, E.G. Grunis
المصدر: Учёные записки Казанского университета: Серия Естественные науки, Vol 163, Iss 3, Pp 477-489 (2021)
مصطلحات موضوعية: elastic properties of rocks, x-ray phase analysis, bitumen-saturated sandstone, well logging, modeling of elastic properties, Science
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Жуковский, А. М., Гутман, Р. Е., Порошин, В. Д.
مصطلحات موضوعية: Горизонтальная скважина, Гидравлический разрыв пласта, Геомеханическое моделирование, Проводка скважины, Безопасное окно бурения, Градиент обрушения стенки скважины, Упругие свойства пород, Horizontal well, Hydraulic fracturing, Geomechanical modeling, Well placement, Safe drilling window, Well wall collapse gradient, Elastic properties of rocks
جغرافية الموضوع: Гомель
وصف الملف: application/pdf
Relation: https://elib.gstu.by/handle/220612/38234; 622.24:622.276
-
5Academic Journal
المؤلفون: Rennie B. Kaunda, Brian Asbury
المصدر: Journal of Rock Mechanics and Geotechnical Engineering, Vol 8, Iss 4, Pp 533-540 (2016)
مصطلحات موضوعية: Rock brittleness, Elastic properties of rocks, Mechanical excavation, Rock strength, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, TA703-712
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Wafa M. Al-Kattan
المصدر: Iraqi Journal of Chemical and Petroleum Engineering, Vol 16, Iss 4 (2015)
مصطلحات موضوعية: shear wave velocity, elastic properties of rocks, sonic logs., Chemical technology, TP1-1185
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Yachmeneva E.A., Khassanov D.I., Grunis E.G.
المصدر: SCOPUS2542064X-2021-163-3-SID85122832567
مصطلحات موضوعية: Bitumen-saturated sandstone, Elastic properties of rocks, Modeling of elastic properties, Well logging, X-ray phase analysis
Relation: Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki; 163; 477; http://dspace.kpfu.ru/xmlui/bitstream/net/170481/-1/SCOPUS2542064X-2021-163-3-SID85122832567-a1.pdf; https://dspace.kpfu.ru/xmlui/handle/net/170481
-
8Academic Journal
المؤلفون: Department of Civil Engineering, University of Minnesota Pillsbury Drive S.E., Minneapolis, MN 55455, USA ( host institution ), Mogilevskaya, S.G. ( author ), Wang, J. ( author ), Crouch, S.L. ( author )
مصطلحات موضوعية: Elastic properties of rocks, Representative volume element, Boundary integral method, Fast multipole technique
وصف الملف: Pages 425-436
Relation: International Journal of Rock Mechanics and Mining Sciences; S1365-1609(06)00141-9; http://ufdc.ufl.edu/LS00526114/00001
-
9Academic Journal
المؤلفون: Makarynska, Dina, Gurevich, Boris, Ciz, Radim, Arns, Christoph, Knackstedt, Mark
المصدر: Computers and Geosciences
مصطلحات موضوعية: Keywords: Computer simulation, Elasticity, Finite element method, Porosity, Porous materials, Pressure, Gassmann theory, Partial saturation, Partially saturated rocks, Pore fluids, Poroelasticity, Rocks, Computer simulation, Poros Effective elastic properties of rocks
Relation: http://hdl.handle.net/1885/49586; https://openresearch-repository.anu.edu.au/bitstream/1885/49586/5/Computer_Geoscience.pdf.jpg; https://openresearch-repository.anu.edu.au/bitstream/1885/49586/7/01_Makarynska_Finite_element_modelling_of_2008.pdf.jpg
-
10Periodical
المؤلفون: Wawrzyniak-Guz, K.
مصطلحات موضوعية: seismic attributes, acoustic full waveforms, elastic properties of rocks, upscaling, atrybut sejsmiczny, akustyczne obrazy falowe, sprężyste właściwości skał, skalowanie
-
11Periodical
المؤلفون: Ciechanowska, M., Zalewska, J.
المصدر: Prace Instytutu Nafty i Gazu.
مصطلحات موضوعية: sprężyste właściwości skał, elastic properties of rocks
-
12Electronic Resource
المؤلفون: Makarynska, Dina, Gurevich, Boris, Ciz, Radim, Arns, Christoph, Knackstedt, Mark
المصدر: Computers and Geosciences
مصطلحات الفهرس: Keywords: Computer simulation; Elasticity; Finite element method; Porosity; Porous materials; Pressure; Gassmann theory; Partial saturation; Partially saturated rocks; Pore fluids; Poroelasticity; Rocks; Computer simulation; Elasticity; Finite element method; Poros Effective elastic properties of rocks; Finite element method; Gassmann theory; Partial saturation; Poroelasticity, Journal article