-
1Academic Journal
المؤلفون: Ju-Hyung Kim, Young Hak Lee, Jang-Woon Baek, Dae-Jin Kim
المصدر: Developments in the Built Environment, Vol 21, Iss , Pp 100598- (2025)
مصطلحات موضوعية: Earthquake ground motion, spectrum matching, Physics-informed neural networks, Seismic design, Data-driven engineering, Engineering (General). Civil engineering (General), TA1-2040, Building construction, TH1-9745
Relation: http://www.sciencedirect.com/science/article/pii/S2666165924002795; https://doaj.org/toc/2666-1659; https://doaj.org/article/c5347509ecb848398a624cbda4c3c1fc
-
2Academic Journal
المؤلفون: Behrouz Badrkhani Ajaei, Mohamed Hesham El Naggar
المصدر: Applied Sciences, Vol 15, Iss 1, p 457 (2025)
مصطلحات موضوعية: soil–structure interaction, earthquake ground motion, clay, foundation, wind turbines, constitutive model, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Relation: https://www.mdpi.com/2076-3417/15/1/457; https://doaj.org/toc/2076-3417; https://doaj.org/article/b3f68617b36e4a34ba07db545f9c56ce
-
3Academic Journal
المؤلفون: Yanqiong Ding, Yazhou Xu, Huiquan Miao
المصدر: Buildings, Vol 14, Iss 7, p 2048 (2024)
مصطلحات موضوعية: phase derivative, discrete Fourier transform, envelope delay, duration, simulation of earthquake ground motion, Building construction, TH1-9745
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Yanqiong Ding, Minggang Nie, Yazhou Xu, Huiquan Miao
المصدر: Buildings, Vol 14, Iss 6, p 1831 (2024)
مصطلحات موضوعية: earthquake ground motion records, classification, cluster analysis, spectral characteristics, Building construction, TH1-9745
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: Kris Vanneste, Neefs, Ben, Thierry Camelbeeck
المساهمون: Royal Observatory of Belgium - Seismology and Gravimetry, UCL - SST/IMMC/GCE - Civil and environmental engineering
المصدر: Bulletin of Earthquake Engineering, Vol. 22, no.10, p. 5321-5345 (2024)
مصطلحات موضوعية: Earthquake ground motion, macroseismic intensity, goodness of fit, induced seismicity
Relation: boreal:289952; http://hdl.handle.net/2078.1/289952; urn:ISSN:1570-761X; urn:EISSN:1573-1456
-
6Academic Journal
المؤلفون: Morgan P Moschetti, Brad T Aagaard, Sean K Ahdi, Jason Altekruse, Oliver S Boyd, Arthur D Frankel, Julie Herrick, Mark D Petersen, Peter M Powers, Sanaz Rezaeian, Allison M Shumway, James A Smith, William J Stephenson, Eric M Thompson, Kyle B Withers
مصطلحات موضوعية: Engineering not elsewhere classified, Conterminous United States, earthquake ground motion, PSHA, seismic hazard
-
7Academic Journal
المؤلفون: Paweł Boroń, Izabela Drygała, Joanna Maria Dulińska, Szymon Burdak
المصدر: Materials, Vol 17, Iss 2, p 512 (2024)
مصطلحات موضوعية: reinforced concrete bridges, bridge dynamics, beam bridge, rigid-frame bridge, spatially varying earthquake ground motion, mining-induced seismicity, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, QC120-168.85
Relation: https://www.mdpi.com/1996-1944/17/2/512; https://doaj.org/toc/1996-1944; https://doaj.org/article/c95e63e5f93141a986abe94383f3aa3a
-
8Academic Journal
المؤلفون: Zimmaro, P, Stewart, JP, Scasserra, G, Kishida, T, Tropeano, G
مصطلحات موضوعية: earthquake ground motion, directivity, reconnaissance
وصف الملف: application/pdf
-
9Academic Journal
المؤلفون: Frontiers Production Office
المصدر: Frontiers in Earth Science, Vol 11 (2023)
مصطلحات موضوعية: seismic site effects, seismic hazard, urban areas, microzonation, ambient vibration, earthquake ground motion, Science
وصف الملف: electronic resource
-
10Academic Journal
المؤلفون: Daiki SATO, Makoto KANDA, Narumi OUGIYA, Sadamitsu TAKEUCHI, Takahiro MORI, Tetsushi INUBUSHI, 佐藤 大樹, 扇谷 匠己, 森 隆浩, 犬伏 徹志, 神田 亮, 竹内 貞光
المصدر: 日本建築学会構造系論文集 / Journal of Structural and Construction Engineering (Transactions of AIJ). 2023, 88(809):1124
-
11Academic Journal
المؤلفون: Chen, Yu, Patelli, Edoardo, Edwards, Benjamin, Beer, Michael
المصدر: Earthquake Engineering and Structural Dynamics 52 (2023), Nr. 7 ; Earthquake Engineering and Structural Dynamics
مصطلحات موضوعية: Bayesian model updating, earthquake ground motion, evolutionary power spectra, missing data, stochastic variational inference, uncertainty quantification, ddc:550
Relation: ESSN:1096-9845; http://dx.doi.org/10.15488/15047; https://www.repo.uni-hannover.de/handle/123456789/15166
-
12Academic Journal
المساهمون: Department of Civil and Environmental Engineering
مصطلحات موضوعية: Multi-DOF structures, Earthquake ground motion, Time-domain system identification, Manifold-constrained Gaussian processes, Vibration-based structural health monitoring
Relation: http://hdl.handle.net/10397/99636; 2-s2.0-85134406913; 932765; OA_Scopus/WOS
-
13Academic Journal
المؤلفون: Wenxin Wang, Jing Liu-Zeng, Yanxiu Shao, Zijun Wang, Longfei Han, Xuwen Shen, Kexin Qin, Yunpeng Gao, Wenqian Yao, Guiming Hu, Xianyang Zeng, Xiaoli Liu, Wei Wang, Fengzhen Cui, Zhijun Liu, Jinyang Li, Hongwei Tu
المصدر: Remote Sensing; Volume 15; Issue 4; Pages: 1032
مصطلحات موضوعية: soil liquefaction, Maduo (Madoi) earthquake, earthquake ground motion, sedimentary environment, UAV photogrammetry technology
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Remote Sensing in Geology, Geomorphology and Hydrology; https://dx.doi.org/10.3390/rs15041032
الاتاحة: https://doi.org/10.3390/rs15041032
-
14Academic Journal
المؤلفون: Bloemheuvel, Stefan, van den Hoogen, Jurgen, Jozinović, Dario, Michelini, Alberto, Atzmueller, Martin
المساهمون: Tilburg University, Tilburg, The Netherlands. Jheronimus Academy of Data Science, ’s-Hertogenbosch, The Netherlands, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Semantic Information Systems Group, Osnabrück University, Osnabrück, Germany. German Research Center for Artificial Intelligence (DFKI), Osnabrück, Germany
مصطلحات موضوعية: Graph neural networks, Time series, Sensors, Convolutional neural networks, Regression, Earthquake ground motion, Seismic network, 04.06. Seismology
Relation: International Journal of Data Science and Analytics; /16 (2023); 1. Tilak, S., Abu-Ghazaleh, N.B., Heinzelman, W.: A taxonomy of wireless micro-sensor network models. ACM SIGMOBILE Mob. Comput. Commun. Rev. 6(2), 28–36 (2002) 2. Tubaishat, M., Madria, S.: Sensor networks: an overview. IEEE Potentials 22(2), 20–23 (2003) 3. Aslam, J., Lim, S., Pan, X., Rus, D.: City-scale traffic estimation from a roving sensor network. In: Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, pp. 141–154 (2012) 4. Hatchett, B.J., Cao, Q., Dawson, P.B., Ellis, C.J., Hecht, C.W., Kawzenuk, B., Lancaster, J., Osborne, T., Wilson, A.M., Anderson, M., et al.: Observations of an extreme atmospheric river storm with a diverse sensor network. Earth Space Sci. 7(8), 2020–001129 (2020) 5. van den Ende, M.P., Ampuero, J.-P.: Automated seismic source characterization using deep graph neural networks. Geophys. Res. Lett. 47(17), 2020–088690 (2020) 6. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016) 7. Tan, C.W., Bergmeir, C., Petitjean, F., Webb, G.I.: Time series extrinsic regression. Data Min. Knowl. Discov. 35(3), 1032–1060 (2021) 8. van den Hoogen, J.O.D., Bloemheuvel, S.D., Atzmueller, M.: An improved wide-kernel CNN for classifying multivariate signals in fault diagnosis. In: International Conference on Data Mining Workshops, pp. 275–283 (2020) 9. Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M.: Real-time motor fault detection by 1-d convolutional neural networks. IEEE Trans. Ind. Electron. 63(11), 7067–7075 (2016) 10. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of KDD, pp. 753–763 (2020) 11. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021) 12. Cini, A., Marisca, I., Alippi, C.: Filling the g_ap_s: multivariate time series imputation by graph neural networks. In: International Conference on Learning Representations (2022). https:// openreview.net/forum?id=kOu3-S3wJ7 13. Yano, K., Shiina, T., Kurata, S., Kato, A., Komaki, F., Sakai, S., Hirata, N.: Graph-partitioning based convolutional neural network for earthquake detection using a seismic array. J. Geophys. Res. Solid Earth 126(5), 2020–020269 (2021) 14. Kim, G., Ku, B., Ahn, J.-K., Ko, H.: Graph convolution networks for seismic events classification using raw waveform data from multiple stations. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021) 15. Jozinovi ́ c, D., Lomax, A., Štajduhar, I., Michelini, A.: Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network. Geophys. J. Int. 222(2), 1379–1389 (2020) 16. Jozinovi ́ c, D., Lomax, A., Štajduhar, I., Michelini, A.: Transfer learning: Improving neural network based prediction of earthquake ground shaking for an area with insufficient training data. Geophys. J. Int. 229, 704–718 (2021) 17. Veliˇ ckovi ́ c, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018) 18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986) 19. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016) 20. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE IEEE Trans Neural 8(3), 714–735 (1997) 21. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and deep locally connected networks on graphs. In: 2nd International Conference on Learning Representations, ICLR 2014 (2014) 22. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020) 23. Chen, Z., Chen, F., Zhang, L., Ji, T., Fu, K., Zhao, L., Chen, F., Wu, L., Aggarwal, C., Lu, C.-T.: Bridging the gap between spatial and spectral domains: a survey on graph neural networks. CoRR (2020) 24. Welling, M., Kipf, T.N.: Semi-supervised classification with graph convolutional networks. In: J. International Conference on Learning Representations (ICLR 2017) (2016) 25. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017). arXiv:1706.03762 26. Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang, C., Tong, Y., Xu, B., Bai, J., Tong, J., et al.: Spectral temporal graph neural network for multivariate time-series forecasting. Adv. Neural. Inf. Process. Syst. 33, 17766–17778 (2020) 27. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural. Inf. Process. Syst. 29, 3844–3852 (2016) 28. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: International Conference on Learning Representations (ICLR ’18) (2018) 29. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI) (2018) 30. Ingate, S., Husebye, E.S.: The IRIS Consortium: Community Based Facilities and Data Management for Seismology (2008) 31. Strollo, A., Cambaz, D., Clinton, J., Danecek, P., Evangelidis, C.P., Marmureanu, A., et al.: EIDA: the European integrated data archive and service infrastructure within ORFEUS. Seismol. Res. Lett. 92(3), 1788–1795 (2021) 32. Ochoa, L.H., Niño, L.F., Vargas, C.A.: Fast magnitude determination using a single seismological station record implementing machine learning techniques. Geod. Geodyn. 9(1), 34–41 (2018) 33. Mousavi, S.M., Ellsworth, W.L., Zhu, W., Chuang, L.Y., Beroza, G.C.: Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun. 11(1), 1–12 (2020) 34. Lomax, A., Michelini, A., Jozinovi ́ c, D.: An investigation of rapid earthquake characterization using single-station waveforms and a convolutional neural network. Seismol. Res. Lett. 90(2A), 517–529 (2019) 35. Ross, Z.E., Meier, M.-A., Hauksson, E.: P wave arrival picking and first-motion polarity determination with deep learning. J. Geophys. Res. Solid Earth 123(6), 5120–5129 (2018) 36. Kriegerowski, M., Petersen, G.M., Vasyura-Bathke, H., Ohrnberger, M.: A deep convolutional neural network for localization of clustered earthquakes based on multistation full waveforms. Seismol. Res. Lett. 90(2A), 510–516 (2019) 37. Münchmeyer, J., Bindi, D., Leser, U., Tilmann, F.: The transformer earthquake alerting model: a new versatile approach to earthquake early warning. Geophys. J. Int. 225(1), 646–656 (2021) 38. McBrearty, I.W., Beroza, G.C.: Earthquake location and magnitude estimation with graph neural networks. arXiv preprint arXiv:2203.05144 (accepted at ICIP 2022) (2022) 39. Michelini, A., Margheriti, L., Cattaneo, M., Cecere, G., D’Anna, G., Delladio, A., et al.: The Italian National Seismic Network and the earthquake and tsunami monitoring and surveillance systems. Adv. Geosci. 43, 31–38 (2016). https://doi.org/10.5194/adgeo-4331-2016 40. Danecek, P., Pintore, S., Mazza, S., Mandiello, A., Fares, M., Carluccio, I., Della Bina, E., Franceschi, D., Moretti, M., Lauciani, V., Quintiliani, M., Michelini, A.: The Italian Node of the European Integrated Data Archive. Seismol. Res. Lett. 92(3), 1726–1737 (2021). https://doi.org/10.1785/0220200409 41. van den Hoogen, J., Bloemheuvel, S., Atzmueller, M.: Classifying multivariate signals in rolling bearing fault detection using adaptive wide-kernel CNNs. Appl. Sci. (2021). https://doi.org/10.3390/ app112311429 42. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. Adv. Neural. Inf. Process. Syst. 3, 1 (2018) 43. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of IEEE ICVPR, pp. 3693–3702 (2017) 44. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. Cited on 14(8), 2 (2012) 45. Mazilu, S., Calatroni, A., Gazit, E., Roggen, D., Hausdorff, J.M., Tröster, G.: Feature learning for detection and prediction of freezing of gait in Parkinson’s disease. In: International Workshop on Machine Learning and Data Mining in Pattern Recognition, pp. 144–158. Springer (2013) 46. Masiala, S., Huijbers, W., Atzmueller, M.: Feature-set-engineering for detecting freezing of gait in Parkinson’s disease using deep recurrent neural networks. arXiv preprint arXiv:1909.03428 (2019) 47. Domingos, P.M., Hulten, G.: Catching up with the data: research issues in mining data streams. In: DMKD (2001) 48. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013) 49. Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., Zhang, X.: Parameterized explainer for graph neural network. Adv. Neural. Inf. Process. Syst. 33, 19620–19631 (2020) 50. Schwenke, L., Atzmueller, M.: Constructing global coherence representations: identifying interpretability and coherences of transformer attention in time series data. In: Proceedings of the 8th IEEE International Conference on Data Science and Advanced Analytics, DSAA 2021, Porto, Portugal, October 6–9, 2021, pp. 1–12. IEEE (2021). https://doi.org/10.1109/DSAA53316.2021.9564126 51. Jozinovi ́ c, D., Lomax, A., Štajduhar, I., Michelini, A.: CNNpredIM—dataset for rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network. Zenodo (2020). https://doi.org/10.5281/zenodo. 3669969 52. Jozinovi ́ c, D., Lomax, A., Štajduhar, I., Michelini, A.: Datasetseismic data from central-western Italy used in the paper on rapid prediction of ground motion using a convolutional neural network. Zenodo (2021). https://doi.org/10.5281/zenodo.5541083; http://hdl.handle.net/2122/15996
-
15Academic Journal
المؤلفون: Paola F. Antonietti, Ilario Mazzieri, Laura Melas, Roberto Paolucci, Alfio Quarteroni, Chiara Smerzini, Marco Stupazzini
المصدر: Mathematics in Engineering, Vol 3, Iss 2, Pp 1-31 (2021)
مصطلحات موضوعية: three-dimensional physics-based numerical simulations, earthquake ground motion, discontinuous galerkin spectral element methods, damage scenario, fragility functions, computational seismology, Applied mathematics. Quantitative methods, T57-57.97
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2640-3501
-
16Academic Journal
المؤلفون: J. Lin, C. Smerzini
المصدر: Frontiers in Earth Science, Vol 10 (2022)
مصطلحات موضوعية: earthquake ground motion, 3D physics-based numerical simulation, finite-fault rupture scenarios, spatial correlation, seismic risk, Science
وصف الملف: electronic resource
-
17Academic Journal
المؤلفون: Aybige Akinci, Irene Munafò, Luca Malagnini
المصدر: Frontiers in Earth Science, Vol 10 (2022)
مصطلحات موضوعية: seismic wave attenuation, earthquake ground motion, stochastic ground motion simulations, seismic hazard, central Italy seismic sequence, Science
وصف الملف: electronic resource
-
18Academic Journal
المؤلفون: Meiling Zhang, Lihua Tang, Jianqi Lu
المصدر: 地球与行星物理论评, Vol 52, Iss 1, Pp 106-114 (2021)
مصطلحات موضوعية: total duration of earthquake ground motion, duration of strong ground motion, definition and characteristics of duration, prediction model, Geophysics. Cosmic physics, QC801-809, Astrophysics, QB460-466
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2097-1893
-
19Academic Journal
المؤلفون: Atsuko OANA, Toru ISHII
المصدر: Journal of Japan Association for Earthquake Engineering. 2023, 23(3):3-59
-
20Academic Journal
المؤلفون: Mojtaba Harati, Mohammadreza Mashayekhi, Homayoon Estekanchi
المصدر: Journal of Soft Computing in Civil Engineering, Vol 4, Iss 3, Pp 17-39 (2020)
مصطلحات موضوعية: earthquake ground motion, intensity measure, strong ground motion duration, statistical correlation procedure, Technology
وصف الملف: electronic resource