يعرض 1 - 14 نتائج من 14 نتيجة بحث عن '"E. Yu. Avdeeva"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المساهمون: The investigation was supported by the Siberian State Medical University development program Priority 2030., Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет-2030» Сибирского государственного медицинского университета.

    المصدر: Drug development & registration; Принято в печать ; Разработка и регистрация лекарственных средств; Принято в печать ; 2658-5049 ; 2305-2066

    وصف الملف: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1974/1341; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1974/2595; Zhao Z., Ukidve A., Kim J., Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell. 2020;181(1):151–167. DOI:10.1016/j.cell.2020.02.001.; Banskota S., Yousefpour P., Chilkoti A. Cell-Based Biohybrid Drug Delivery Systems: The Best of the Synthetic and Natural Worlds. Macromolecular Bioscience. 2017;17(1). DOI:10.1002/mabi.201600361.; Lu Q., Liu T., Han Z., Zhao J., Fan X., Wang H., Song J., Ye H., Sun J. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. Journal of Controlled Release. 2023;361:604–620. DOI:10.1016/j.jconrel.2023.08.023.; Соснов А. В., Иванов Р. В., Балакин К. В., Шоболов Д. Л., Федотов Ю. А., Калмыков Ю. М. Разработка систем доставки лекарственных средств с применением микро- и наночастиц. Качественная клиническая практика. 2008;(2):4–12.; Zhao Z., Ukidve A., Krishnan V., Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Advanced Drug Delivery Reviews. 2019;143:3–21. DOI:10.1016/j.addr.2019.01.002.; Cheng X., Xie Q., Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Frontiers in Bioengineering and Biotechnology. 2023;11. DOI:10.3389/fbioe.2023.1177151.; Hosseinalizadeh H., Mahmoodpour M., Razaghi Bahabadi Z., Hamblin M. R., Mirzaei H. Neutrophil mediated drug delivery for targeted glioblastoma therapy: A comprehensive review. Biomedicine & Pharmacotherapy. 2022;156:113841. DOI:10.1016/j.biopha.2022.113841 20,94.; Khlusov I., Yurova K., Shupletsova V., Khaziakhmatova O., Malashchenko V., Kudryavtseva V., Khlusova M., Sukhorukov G., Litvinova L. Microcapsule-Based Dose-Dependent Regulation of the Lifespan and Behavior of Adipose-Derived MSCs as a Cell-Mediated Delivery System: In Vitro Study. International Journal of Molecular Sciences. 2023;24(1):292. DOI:10.3390/ijms24010292.; Taiarol L., Formicola B., Magro R. D., Sesana S., Re F., An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy. Nanomedicine. 2020;15(19):1861–1871. DOI:10.2217/nnm-2020-0132.; Timin A. S., Litvak M. M., Gorin D. A., Atochina-Vasserman E. N., Atochin D. N., Sukhorukov G. B. Cell-Based Drug Delivery and Use of Nano- and Microcarriers for Cell Functionalization. Advanced Healthcare Materials. 2018;7(3):1700818. DOI:10.1002/adhm.201700818.; Попова Е. В., Бельтюков П. П., Радилов А. С. Современные тенденции в разработке и производстве наноразмерных систем для доставки лекарственных соединений. Научно-технический вестник информационных технологий, механики и оптики. 2020;20(2):206–222. DOI:10.17586/2226-1494-2020-20-2-206-222.; Xiao Q., Li X., Li Y., Wu Z., Xu C., Chen Z., He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharmaceutica Sinica B. 2021;11(4):941–960. DOI:10.1016/j.apsb.2020.12.018.; Litvinova L. S., Shupletsova V. V., Khaziakhmatova O. G., Daminova A. G., Kudryavtseva V. L., Yurova K. A., Malashchenko V. V., Todosenko N. M., Popova V., Litvinov R. I., Korotkova E. I., Sukhorukov G. B., Gow A.J., Weissman D., Atochina-Vasserman E.N., Khlusov I. A. Human Mesenchymal Stem Cells as a Carrier for a Cell-Mediated Drug Delivery. Frontiers in Bioengineering and Biotechnology. 2022;10. DOI:10.3389/fbioe.2022.796111.; Постнов В. Н., Наумышева Е. Б., Королев Д. В., Галагудза М. М. Наноразмерные носители для доставки лекарственных препаратов. Биотехносфера. 2013;6(30):16–27.; Гулий О. И., Староверов С. А., Фомин А. С., Жничкова Е. Г., Козлов С. В., Ловцова Л. Г., Дыкман Л. А. Полимерные мицеллы для адресной доставки лекарств (Обзор). Прикладная биохимия и микробиология. 2022;58(6):578–591.; Алексеев К. В., Кедик С. А. Фармацевтическая технология. М.: АОИФТ; 2019. 570 с.; Villa C.H., Anselmo A.C., Mitragotri S., Muzykantov V. Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Advanced Drug Delivery Reviews. 2016;106:88–103. DOI:10.1016/j.addr.2016.02.007.; Zhang Y., Gao W., Chen Y., Escajadillo T., Ungerleider J., Fang R. H., Christman K., Nizet V., Zhang L. Self-assembled colloidal gel using cell membrane-coated nanosponges as building blocks. ACS Nano. 2017;11(12):11923–11930. DOI:10.1021/acsnano.7b06968.; Тринеева О. В., Халахакун А. Д., Сливкин А. И. Клеточные носители как системы доставки противоопухолевых лекарственных средств (обзор). Разработка и регистрация лекарственных средств. 2019;8(1):43–57. DOI:10.33380/2305-2066-2019-8-1-43-57.; Alapan Y., Yasa O., Schauer O., Giltinan J., Tabak A. F., Sourjik V., Sitti M. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Science Robotics. 2018;3(17): aar4423. DOI:10.1126/scirobotics.aar4423.; Wang H., Liu Y., He R., Xu D., Zang J., Weeranoppanant N., Dong H., Li Y. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomaterials Science. 2020;8(2):552–568. DOI:10.1039/c9bm01392j.; Xia Q., Zhang Y., Li Z., Hou X., Feng N. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharmaceutica Sinica B. 2019;9(4):675–689. DOI:10.1016/j.apsb.2019.01.011.; Wang Y., Zhang K., Qin X., Li T., Qiu J., Yin T., Huang J., McGinty S., Pontrelli G., Ren J., Wang Q., Wu W., Wang G. Biomimetic nanotherapies: Red blood cell based coreshell structured nanocomplexes for atherosclerosis management. Advanced Science. 2019;6(12):1900172. DOI:10.1002/advs.201900172.; Ben-Akiva E., Meyer R. A., Yu H., Smith J. T., Pardoll D. M., Green J. J. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Science Advances. 2020;6(16):aay9035. DOI:10.1126/sciadv.aay9035.; Zhao Y., Xie R., Yodsanit N., Ye M., Wang Y., Gong S. Biomimetic fibrin-targeted and H 2 O 2 -responsive nanocarriers for thrombus therapy. Nano Today. 2020;35:100986. DOI:10.1016/j.nantod.2020.100986.; Liang X., Li H., Zhang A., Tian X., Guo H., Zhang H., Yang J., Zeng Y. Red blood cell biomimetic nanoparticle with anti-inflammatory, anti-oxidative and hypolipidemia effect ameliorated atherosclerosis therapy. Nanomedicine: Nanotechnology, Biology and Medicine. 2022;41:102519. DOI:10.1016/j.nano.2022.102519.; Jiang Y., Yuan Y., Peng F., Deng Y., Ren C., Liu C., Dong H., Tu T. Erythrocyte-based Drug Delivery: How Far from Clinical Application? Current Drug Delivery. 2024;21(1):52–64. DOI:10.2174/1567201820666230320103529.; Zhu Y., Xu L., Kang Y., Cheng Q., He Y., Ji X. Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials. 2024;306:122478. DOI:10.1016/j.biomaterials.2024.122478.; Wu M., Shi Y., Zhao J., Kong M. Engineering unactivated platelets for targeted drug delivery. Biomaterials Science. 2024;12(9):2244–2258. DOI:10.1039/d4bm00029c.; Li Z., Hu S., Cheng K. Platelets and their biomimetics for regenerative medicine and cancer therapies. Journal of Materials Chemistry B. 2018;6(45):7354–7365. DOI:10.1039/C8TB02301H.; He Y., Li R., Liang J., Zhu Y., Zhang S., Zheng Z., Qin J., Pang Z., Wang J. Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis. Nano Research. 2018;11:6086–6101. DOI:10.1007/s12274-018-2126-5.; Guo J., Cui B., Zheng J., Yu C., Zheng X., Yi L., Zhang S., Wang K. Platelet-derived microparticles and their cargos: The past, present and future. Asian Journal of Pharmaceutical Sciences. 2024;19(2):100907. DOI:10.1016/j.ajps.2024.100907.; Li S., Lu Z., Wu S., Chu T., Li B., Qi F., Zhao Y., Nie G. The dynamic role of platelets in cancer progression and their therapeutic implications. Nature Reviews Cancer. 2024;24(1):72–87. DOI:10.1038/s41568-023-00639-6.; Chu D., Dong X., Shi X., Zhang C., Wang Z. Neutrophil-Based Drug Delivery Systems. Advanced Materials. 2018;30(22):e1706245. DOI:10.1002/adma.201706245.; Pan J., Wang Z., Huang X., Xue J., Zhang S., Guo X., Zhou S. Bacteria-Derived Outer-Membrane Vesicles Hitchhike Neutrophils to Enhance Ischemic Stroke Therapy. Advanced Materials. 2023;35(38):e2301779. DOI:10.1002/adma.202301779.; Garanina A. S., Vishnevskiy D. A., Chernysheva A. A., Valikhov M. P., Malinovskaya J. A., Lazareva P. A., Semkina A. S., Abakumov M. A., Naumenko V. A. Neutrophil as a Carrier for Cancer Nanotherapeutics: A Comparative Study of Liposome, PLGA, and Magnetic Nanoparticles Delivery to Tumors. Pharmaceuticals. 2023;16(11):1564. DOI:10.3390/ph16111564.; Kolaczkowska E., Kubes P. Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology. 2013;13(3):159–175. DOI:10.1038/nri3399.; Chow M. T., Luster A. D. Chemokines in cancer. Cancer Immunology Research. 2014;2(12):1125–1131. DOI:10.1158/2326-6066.CIR-14-0160.; Han Y., Zhao R., Xu F. Neutrophil-Based Delivery Systems for Nanotherapeutics. Small. 2018;14(42):e1801674. DOI:10.1002/smll.201801674.; Combes F., Meyer E., Sanders N. N. Immune cells as tumor drug delivery vehicles. Journal of Controlled Release. 2020;327:70–87. DOI:10.1016/j.jconrel.2020.07.043.; Chu D., Gao J., Wang Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano. 2015;9(12):11800–11811. DOI:10.1021/acsnano.5b05583.; Xue J., Zhao Z., Zhang L., Xue L., Shen S., Wen Y., Wei Z., Wang L., Kong L., Sun H., Ping Q., Mo R., Zhang C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nature Nanotechnology. 2017;12(7):692–700. DOI:10.1038/nnano.2017.54.; Wu M., Zhang H., Tie C., Yan C., Deng Z., Wan Q., Liu X., Yan F., Zheng H. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nature Communications. 2018;9(1):4777. DOI:10.1038/s41467-018-07250-6.; Lee C., Hwang H. S., Lee S., Kim B., Kim J. O., Oh K. T., Lee E. S., Choi H.-G., Youn Y. S. Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Advanced Materials. 2017;29(13). DOI:10.1002/adma.201605563.; Iturrioz-Rodríguez N., Bertorelli R., Ciofani G., Lipid-based nanocarriers for the treatment of glioblastoma. Advanced NanoBiomed Research. 2021;1(2):2000054. DOI:10.1002/anbr.202000054.; De Filippo K., Dudeck A., Hasenberg M., Nye E., van Rooijen N., Hartmann K., Gunzer M., Roers A., Hogg N. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood. 2013:121(24):4930–4937. DOI:10.1182/blood-2013-02-486217.; Mitchell M. J., Wayne E., Rana K., Schaffer C. B., King M. R. TRAIL-coated leukocytes that kill cancer cells in the circulation. Proceedings of the National Academy of Sciences. 2014;111(3):930–935. DOI:10.1073/pnas.1316312111.; Schneider J. R., Kwan K., Boockvar J. A. Neutrophil-guided drug delivery for targeting residual glioma cells. Neurosurgery. 2018;82(1):N7–N9. DOI:10.1093/neuros/nyx531.; Wu R., Hu X., a Wang J. Concise review: optimized strategies for stem cell-based therapy in myocardial repair: clinical translatability and potential limitation. Stem cells. 2018;36(4):482–500. DOI:10.1002/stem.2778.; Li M., Li S., Zhou H., Tang X., Wu Y., Jiang W., Tian Z., Zhou X., Yang X., Wang Y. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nature Communications. 2020;11(1):1126. DOI:10.1038/s41467-020-14963-0.; Chu D., Dong X., Zhao Q., Gu J., Wang Z., Photosensitization priming of tumor microenvironments improves delivery of nanotherapeutics via neutrophil infiltration. Advanced Materials. 2017;29(27). DOI:10.1002/adma.201701021.; Jin K., Luo Z., Zhang B., Pang Z. Biomimetic nanoparticles for inflammation targeting. Acta Pharmaceutica Sinica B. 2018;8(1):23–33. DOI:10.1016/j.apsb.2017.12.002.; Tan S., Wu T., Zhang D., Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics. 2015;5(8):863–681. DOI:10.7150/thno.11852.; Hosseinalizadeh H., Mahmoodpour M., Ebrahimi A. The role of cell-free circulating DNA in the diagnosis and prognosis of breast cancer. Annals of Cancer Research and Therapy. 2021;29(2):169–177.; Gao J., Wang S., Wang Z. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials. 2017;135:62–73. DOI:10.1016/j.biomaterials.2017.05.003.; Hu C.-M. J., Zhang L., Aryal S., Cheung C., Fang R. H., Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences. 2011;108(27):10980–10985. DOI:10.1073/pnas.1106634108.; Kim J. S., Shin D. H., Kim J.-S. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. Journal of Controlled Release. 2018;269:245–257. DOI:10.1016/j.jconrel.2017.11.026.; Wang J., Ouyang Y., Chu L., Xu M., Wang K., Tong X. Engineering of Neutrophil Membrane Camouflaging Nanoparticles Realizes Targeted Drug Delivery for Amplified Antitumor Therapy. International Journal of Nanomedicine. 2021;16:1175-1187. DOI:10.2147/IJN.S288636.; Song Y., Huang Z., Liu X., Pang Z., Chen J., Yang H., Zhang N., Cao Z., Liu M., Cao J., Li C., Yang X., Gong H., Qian J., Ge J. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE(-/-)) mice. Nanomedicine: Nanotechnology, Biology and Medicine. 2019;15(1):13–24. DOI:10.1016/j.nano.2018.08.002.; Boada C., Zinger A., Tsao C., Zhao P., Martinez J. O., Hartman K., Naoi T., Sukhoveshin R., Sushnitha M., Molinaro R., Trachtenberg B., Cokke J. P., Tasciotti E. Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circulation Research. 2020;126(1):25–37. DOI:10.1161/circresaha.119.315185.; Molinaro R., Evangelopoulos M., Hoffman J. R., Corbo C., Taraballi F., Martinez J. O., Hartman K. A., Cosco D., Costa G., Romeo I., Sherman M., Paolino D., Alcaro S., Tasciotti E. Design and development of biomimetic nanovesicles using a microfluidic approach. Advanced Materials. 2018;30(15):e1702749. DOI:10.1002/adma.201702749.; Zinger A., Sushnitha M., Naoi T., Baudo G., De Rosa E., Chang J., Tasciotti E., Taraballi F. Enhancing inflammation targeting using tunable leukocyte-based biomimetic nanoparticles. ACS Nano. 2021;15(4):6326–6339. DOI:10.1021/acsnano.0c05792.; Riley R. S., June C. H., Langer R., Mitchell M. J. Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery. 2019;18(3):175–196. DOI:10.1038/s41573-018-0006-z.; Han B., Song Y., Park J., Doh J. Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells. Journal of Controlled Release. 2022;343:379–391. DOI:10.1016/j.jconrel.2022.01.049.; Shin M. H., Oh E., Kim Y., Nam D.-H., Jeon S. Y., Yu J. H., Minn D. Recent Advances in CAR-Based Solid Tumor Immunotherapy. Cells. 2023;12(12):1606. DOI:10.3390/cells12121606.; Liang T., Zhang R., Liu X., Ding Q., Wu S., Li C., Lin Y., Ye Y., Zhong Z., Zhou M. Recent Advances in Macrophage-Mediated Drug Delivery Systems. International Journal of Nanomedicine. 2021;16:2703–2714. DOI:10.2147/IJN.S298159.; Xu W.-J., Cai J. X., Li Y.-J., Wu J.-Y., Xiang D. Recent progress of macrophage vesicle-based drug delivery systems. Drug Delivery and Translational Research. 2022;12(10):2287–2302. DOI:10.1007/s13346-021-01110-5.; Wu Y., Wan S., Yang S., Hu H., Zhang C., Lai J., Zhou J., Chen W., Tang X., Luo J., Zhou X., Yu L., Wang L., Wu A., Fan Q., Wu J. Macrophage cell membrane-based nanoparticles: a new promising biomimetic platform for targeted delivery and treatment. Journal of Nanobiotechnology. 2022;20(1):542. DOI:10.1186/s12951-022-01746-6.; Liu H., Lv H., Duan X., Du Y., Tang Y., Xu W. Advancements in Macrophage-Targeted Drug Delivery for Effective Disease Management. International Journal of Nanomedicine. 2023;18:6915–6940. DOI:10.2147/IJN.S430877.; Lepik K. V., Muslimov A. R., Timin A. S., Sergeev V. S., Romanyuk D. S., Moiseev I. S., Popova E. V., Radchenko I. L., Vilesov A. D., Galibin O. V., Sukhorukov G. B., Afanasyev B. V. Mesenchymal Stem Cell Magnetization: Magnetic Multilayer Microcapsule Uptake, Toxicity, Impact on Functional Properties, and Perspectives for Magnetic Delivery. Advanced Healthcare Materials. 2016;5(24):3182-3190. DOI:10.1002/adhm.201600843.; Park J. S., Suryaprakash S., Lao Y.-H., Leong K. W. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods. 2015;84:3–16. DOI:10.1016/j.ymeth.2015.03.002.; Sherman L. S., Shaker M., Mariotti V., Rameshwar P. Mesenchymal stromal/stem cells in drug therapy: New perspective. Cytotherapy. 2017;19(1):19–27. DOI:10.1016/j.jcyt.2016.09.007.; Krueger T. E. G., Thorek D. L. J., Denmeade S. R., Isaacs J. T., Brennen W. N. Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Translational Medicine. 2018;7(9):651–663. DOI:10.1002/sctm.18-0024.; Jiang W., Xu J. Immune modulation by mesenchymal stem cells. Cell Proliferation. 2020;53(1):e12712. DOI:10.1111/cpr.12712.; Cheng S., Nethi S. K., Rathi S., Layek B., Prabha S. Engineered Mesenchymal Stem Cells for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy. Journal of Pharmacology and Experimental Therapeutics. 2019;370(2):231–241. DOI:10.1124/jpet.119.259796.; Lang T., Yin Q., Li Y. Progress of Cell-Derived Biomimetic Drug Delivery Systems for Cancer Therapy. Advanced Therapeutics. 2018;1:1800053. DOI:10.1002/adtp.201800053.; Li L., Guan Y., Liu H., Hao N., Liu T., Meng X., Fu C., Li Y., Qu Q., Zhang Y., Ji S., Chen L., Chen D., Tang F. Silica Nanorattle–Doxorubicin-Anchored Mesenchymal Stem Cells for Tumor-Tropic Therapy. ACS Nano. 2011;5(9):7462–7470. DOI:10.1021/nn202399w.; Kooreman N. G., Wu J. C. Tumorigenicity of pluripotent stem cells: Biological insights from molecular imaging. Journal of The Royal Society Interface. 2010;7:S753-S763. DOI:10.1098/rsif.2010.0353.focus.; Dai L.-J., Moniri M. R., Zeng Z.-R., Zhou J. X., Rayat J., Warnock G. L. Potential implications of mesenchymal stem cells in cancer therapy. Cancer Letters. 2011;305(1):8–20. DOI:10.1016/j.canlet.2011.02.012.; Toma C., Wagner W.R., Bowry S., Schwartz A., Villanueva F. Fate Of Culture-Expanded Mesenchymal Stem Cells in The Microvasculature: In vivo observations of cell kinetics. Circulation Research. 2009;104(3):398–402. DOI:10.1161/CIRCRESAHA.108.187724.; Kim H., Shin K., Park O. K., Choi D., Kim H. D., Baik S., Lee S. H., Kwon S.-H., Yarema K. J., Hong J., Hyeon T., Hwang N. S. General and Facile Coating of Single Cells via Mild Reduction. Journal of the American Chemical Society. 2018;140(4):1199–1202. DOI:10.1021/jacs.7b08440.; Furman N. E. T., Lupu-Haber Y., Bronshtein T., Kaneti L., Letko N., Weinstein E., Baruch L., Machluf M. Reconstructed Stem Cell Nanoghosts: A Natural Tumor Targeting Platform. Nano Letters. 2013;13(7):3248–3255. DOI:10.1021/nl401376w.; Carrillo-Carrion C., Bocanegra A. I., Arnaiz B., Feliu N., Zhu D., Parak W. J. Triple-Labeling of Polymer-Coated Quantum Dots and Adsorbed Proteins for Tracing their Fate in Cell Cultures. ACS Nano. 2019;13(4):4631–4639. DOI:10.1021/acsnano.9b00728.; Cocce V., Balducci L., Falchetti M. L., Pascucci L., Ciusani E., Brini A. T., Sisto F., Piovani G., Alessandri G., Parati E., Cabeza L., Pessina A. Fluorescent Immortalized Human Adipose Derived Stromal Cells (hASCs-TS/GFP+) for Studying Cell Drug Delivery Mediated by Microvesicles. Anti-Cancer Agents in Medicinal Chemistry. 2017;17(11):1578–1585. DOI:10.2174/1871520617666170327113932.; Madni A., Sarfraz M., Rehman M., Ahmad M., Akhtar N., Ahmad S., Tahir N., Ijaz S., Al-Kassas R., Löbenberg R. Liposomal drug delivery: A versatile platform for challenging clinical applications. Journal of Pharmacy and Pharmaceutical Sciences. 2014;17(3):401–426. DOI:10.18433/J3CP55.; Muller L., Hong C.-S., Stolz D. B., Watkins S. C., Whiteside T. L. Isolation of biologically-active exosomes from human plasma. Journal of Immunological Methods. 2014;411:55–65. DOI:10.1016/j.jim.2014.06.007.; Zeringer E., Barta T., Li M., Vlasov A. V. Strategies for isolation of exosomes. Cold Spring Harbor Protocols. 2015;4:319–323. DOI:10.1101/pdb.top074476.; Yang T., Martin P., Fogarty B., Brown A., Schurman K., Phipps R., Yin V.P., Lockman P., Bai S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio Rerio. Pharmaceutical Research. 2015;32(6):2003–2014. DOI:10.1007/s11095-014-1593-y.; Munagala R., Aqil F., Jeyabalan J., Gupta R. C. Bovine milk-derived exosomes for drug delivery. Cancer Letters. 2016;371(1):48–61. DOI:10.1016/j.canlet.2015.10.020.; Fatima F., Nawaz M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chinese Journal of Cancer. 2015;34(12):46. DOI:10.1186/s40880-015-0051-5.; Choi A., Javius-Jones K., Hong S., Park H. Cell-Based Drug Delivery Systems with Innate Homing Capability as a Novel Nanocarrier Platform. International Journal of Nanomedicine. 2023;18:509–525. DOI:10.2147/IJN.S394389.; Fan X., Wang K., Lu Q., Lu Y., Sun J. Cell-Based Drug Delivery Systems Participate in the Cancer Immunity Cycle for Improved Cancer Immunotherapy. Small. 2023;19(4):e2205166. DOI:10.1002/smll.202205166.; Guo Q., Qian Z.-M. Macrophage based drug delivery: Key challenges and strategies. Bioactive Materials. 2024;38:55–72. DOI:10.1016/j.bioactmat.2024.04.004.; Danhier F., Ansorena E., Silva J. M., Coco R., Le Breton A., Préat V. PLGA-based nanoparticles: an overview of biomedical applications. Journal of Controlled Release. 2012;161(2):505–522. DOI:10.1016/j.jconrel.2012.01.043.; Тринеева О. В., Халахакун А. Д., Сливкин А. И. Клеточные носители как системы доставки противоопухолевых лекарственных средств. Разработка и регистрация лекарственных средств. 2019;8(1):43–57. DOI:10.33380/2305-2066-2019-8-1-43-57.; Yang L., Yang Y., Chen Y., Xu Y., Peng J. Cell-based drug delivery systems and their in vivo fate. Advanced Drug Delivery Reviews. 2022;187:114394. DOI:10.1016/j.addr.2022.114394.; https://www.pharmjournal.ru/jour/article/view/1974

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14