-
1Academic Journal
المؤلفون: N. Babyshkina N., T. Dronova A., E. Zambalova A., M. Zavyalova V., E. Slonimskaya M., N. Cherdyntseva V., Н. Бабышкина Н., Т. Дронова А., Е. Замбалова А., М. Завьялова В., Е. Слонимская М., Н. Чердынцева В.
المساهمون: The research was conducted under financial support from the Russian Science Foundation (RSF), Grant No. 19-75-30016 “New strategy for the prediction and prevention of distant metastasis based on the detection of circulating metastasis-initiating and niche-forming cells and their specific targets”., Работа выполнена при финансовой поддержке гранта РНФ № 19-75- 30016 «Новая технология прогнозирования и профилактики отдаленного метастазирования на основе детекции циркулирующих метастаз-инициирующих и нишеобразующих клеток и их специфических мишеней».
المصدر: Bulletin of Siberian Medicine; Том 19, № 1 (2020); 13-20 ; Бюллетень сибирской медицины; Том 19, № 1 (2020); 13-20 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-1
مصطلحات موضوعية: triple-negative breast cancer, neoadjuvant chemotherapy, epidermal growth factor receptor (EGFR), gene polymorphisms, тройной негативный рак молочной железы, неоадъювантная химиотерапия, рецептор эпидермального фактора роста EGFR, полиморфизм генов
وصف الملف: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/2675/1687; https://bulletin.tomsk.ru/jour/article/view/2675/1711; De Ruijter T.C., Veeck J., de Hoon J.P., van Engeland M., Tjan-Heijnen V.C. Characteristics of triple-negative breast cancer. Clin. Oncol. 2011; 137 (2): 183–192. DOI:10.1007/s00432-010-0957-x.; Wahba H.A., El-Hadaad H.A. Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med. 2015; 12 (2): 106–116. DOI:10.7497/j.issn.2095-3941.2015.0030.; Oualla K., El-Zawahry H.M., Arun B., Reuben J.M., Woodward W.A., Gamal El-Din H., Lim B., Mellas N., Ueno N.T., Fouad T.M. Novel therapeutic strategies in the treatment of triple-negative breast cancer. Ther. Adv. Med. Oncol. 2017; 9 (7): 493–511. DOI:10.1177/1758834017711380.; Voduc K.D., Cheang M.C., Tyldesley S., Gelmon K., Nielsen T.O., Kennecke H. Breast cancer subtypes and the risk of local and regional relapse. Journal of Clinical Oncology. 2010; 28 (10): 1684–1691. DOI:10.1200/JCO.2009.24.9284.; Cortazar P., Zhang L., Untch M., Mehta K., Costantino J.P., Wolmark N., Bonnefoi H., Cameron D., Gianni L., Valagussa P., Swain S.M., Prowell T., Loibl S., Wickerham D.L., Bogaerts J., Baselga J., Perou C., Blumenthal G., Blohmer J., Mamounas E.P., Bergh J., Semiglazov V., Justice R., Eidtmann H., Paik S., Piccart M., Sridhara R., Fasching P.A., Slaets L., Tang S., Gerber B., Geyer C.E. Jr., Pazdur R., Ditsch N., Rastogi P., Eiermann W., von Minckwitz G. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014; 384 (9938): 164–172. DOI:10.1016/S0140-6736(13)62422-8.; Osborne C.K., Schiff R. Mechanisms of endocrine resistance in breast cancer. Ann. Rev. Med. 2011; 62: 233–247. DOI:10.1146/annurev-med-070909-182917.; Chong K., Subramanian A., Sharma A., Mokbel K. Measuring IGF-1, ER-α and EGFR expression can predict tamoxifen-resistance in ER-positive breast cancer. Anticancer Res. 2011; 31 (1):23–32.; Дронова Т.А., Бабышкина Н.Н., Завьялова М.В., Паталяк С.В., Слонимская Е.М., Чердынцева Н.В., Кжышковска Ю.Г. Взаимосвязь компонентов EGFR/PI3K/AKT-сигнального пути с эффективностью терапии тамоксифеном у больных эстрогензависимым раком молочной железы. Успехи молекулярной онкологии. 2018; 5 (3): 40–50. DOI:10.17650/2313-805X-2018-5-3-40-50.; Tischkowitz M., Brunet J.S., Begin L.R., Huntsman D.G., Cheang M.C., Akslen L.A., Nielsen T.O., Foulkes W.D. Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer. 2007; 7: 134. DOI:10.1186/1471-2407-7-134.; Park H.S., Jang M.H., Kim E.J., Kim H.J., Lee H.J., Kim Y.J., Kim J.H., Kang E., Kim S.W., Kim I.A., Park S.Y. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod. Pathol. 2014; 27 (9): 1212–1222. DOI:10.1038/modpathol.2013.251.; Zhang M., Zhang X., Zhao S., Wang Y., Di W., Zhao G., Yang M., Zhang Q. Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients. Target Oncol. 2014; 9 (4): 349–357. DOI:10.1007/s11523-013-0300-y.; Yue Y., Astvatsaturyan K., Cui X., Zhang X., Fraass B., Bose S. Stratification of prognosis of triple-negative breast cancer patients using combinatorial biomarkers. PLoS One. 2016; 11 (3): e0149661. DOI:10.1371/journal.pone.0149661.; Abdelrahman A.E., Rashed H.E., Abdelgawad M., Abdelhamid M. Prognostic impact of EGFR and cytokeratin 5/6 immunohistochemical expression in triple-negative breast cancer. Ann. Diagn. Pathol. 2017; 28: 43–53. DOI:10.1016/j.anndiagpath.2017.01.009.; Foidart P., Yip C., Radermacher J., Blacher S., Lienard M., Montero-Ruiz L., Maquoi E., Montaudon E., Château-Joubert S., Collignon J., Coibion M., Jossa V., Marangoni E., Noël A., Sounni N.E., Jerusalem G. Expression of MT4-MMP, EGFR, and RB in triple-negative breast cancer strongly sensitizes tumors to erlotinib and palbociclib combination therapy. Clin. Cancer Res. 2019; 25 (6): 1838–1850. DOI:10.1158/1078-0432.CCR-18-1880.; Лушников Е.Ф. Лучевой патоморфоз опухолей человека. M.: Медицина, 1977: 327.; Van Reesema L.L.S., Zheleva V., Winston J.S., Jansen R.J., O’Connor C.F., Isbell A.J., Bian M., Qin R., Bassett P.T., Hinson V.J., Dorsch K.A., Kirby B.W., van Sciver R.E., Tang-Tan A.M., Harden E.A., Chang D.Z., Allen C.A., Perry R.R., Hoefer R.A., Tang A.H. SIAH and EGFR, two RAS pathway biomarkers, are highly prognostic in locally advanced and metastatic breast cancer. EBioMedicine. 2016; 11: 183–198. DOI:10.1016/j.ebiom.2016.08.014.; Tang Y., Zhu L., Li Y., Ji J., Li J., Yuan F., Wang D., Chen W., Huang O., Chen X., Wu J., Shen K., Loo W.T., Chow L.W. Overexpression of epithelial growth factor receptor (EGFR) predicts better response to neo-adjuvant chemotherapy in patients with triple-negative breast cancer. J. Transl. Med. 2012; 10 (1): S4. DOI:10.1186/1479-5876-10-S1-S4.; Li B., Zhao W., Li J., Yan M., Xie Z., Zhu Y., Chen C., Jin T. Effect of epidermal growth factor receptor gene polymorphisms on prognosis inglioma patients. Oncotarget. 2016; 7(39): 63054–63064. DOI:10.18632/oncotarget.10666.; Wang X., Zhang H., Wang D., Li X. Association of genetic polymorphisms of EGFR with glioma in a Chinese population. Genet. Test Mol. Biomarkers. 2015; 19 (1): 59–62. DOI:10.1089/gtmb.2014.0228.; https://bulletin.tomsk.ru/jour/article/view/2675
-
2Academic Journal
المؤلفون: M. Ibragimova K., M. Tsyganov M., E. Slonimskaya M., N. Litviakov V., М. Ибрагимова К., М. Цыганов М., Е. Слонимская М., Н. Литвяков В.
المساهمون: Исследование выполнено при финансовой поддержке Российского научного фонда, проект № 17-15-01203
المصدر: Bulletin of Siberian Medicine; Том 19, № 3 (2020); 22-28 ; Бюллетень сибирской медицины; Том 19, № 3 (2020); 22-28 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-3
مصطلحات موضوعية: breast cancer, microarray analysis, deletions, amplifications, neoadjuvant chemotherapy, рак молочной железы, микроматричный анализ, делеции, амплификации, неоадъювантная химиотерапия
وصف الملف: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/2973/1785; https://bulletin.tomsk.ru/jour/article/view/2973/2223; Garraway L.A., Lander E.S. Lessons from the cancer genome. Cell. 2013; 153 (1): 17–37. DOI:10.1016/j.cell.2013.03.002.; Abbas T., Keaton M.A., Dutta A. Genomic instability in cancer. Cold Spring Harb. Perspect. Biol. 2013; 5 (3): a012914. DOI:10.1101/cshperspect.a012914.; Xu Y., Duan Mu H., Chang Z., Zhang S., Li Z., Li Z., Liu Y., Li K., Qiu F., Li X. The application of gene co-expression network reconstruction based on CNVs and gene expression microarray data in breast cancer. Molecular Biology Reports. 2012; 39 (2): 1627–1637. DOI:10.1007/s11033-011-0902-3.; Kaveh F., Baumbusch L.O., Nebdal D., Borresen-Dale A.-L., Lingjærde O.C., Edvardsen H., Kristensen V.N., Solvang H.K. A systematic comparison of copy number alterations in four types of female cancer. BMC Cancer. 2016; 16 (1): 913. DOI:10.1186/s12885-016-2899-4.; Iddawela M., Rueda O., Eremin J., Eremin O., Cowley J., Earl H.M., Caldas C. Integrative analysis of copy number and gene expression in breast cancer using formalin-fixed paraffin-embedded core biopsy tissue: a feasibility study. BMC Genomics. 2017; 18 (1): 526. DOI:10.1186/s12864-017-3867-3.; Grade M., Difilippantonio M.J., Camps J. Patterns of chromosomal aberrations in solid tumors. Chromosomal Instability in Cancer Cells. 2015; 200: 115–142. DOI:10.1007/978-3-319-20291-4_6.; Goh J.Y., Feng M., Wang W., Oguz G., Yatim S.M.J.M., Lee P.L.,Bao Y., Lim T.H., Wang P., Tam W.L., Kodahl A.R., Lyng M.B., Sarma S., Lin S.Y., Lezhava A., Yap Y.S., Lim A.S.T., Hoon D.S.B., Ditzel H.J., Lee S.C., Tan E.Y., Yu Q. Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence. Nature Medicine. 2017; 23: 1319–1330. DOI:10.1038/nm.4405.; Gao R., Davis A., McDonald T.O., Sei E., Shi X., Wang Y., Tsai P.-C., Casasent A., Waters J., Zhang H., Meric-Bernstam F., Michor F., Navin N.E. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nature Genetics. 2016; 48: 1119–1130. DOI:10.1038/ng.3641.; Burstein M.D., Tsimelzon A., Poage G.M., Covington K.R., Contreras A., Fuqua S.A.W., Savage M.I., Osborne C.K., Hilsenbeck S.G., Chang J.C., Mills G.B., Lau C.C., Brown P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clinical Cancer Research. 2015; 21 (7): 1688–1699. DOI:10.1158/1078-0432.CCR-14-0432.; Казанцева П.В., Цыганов М.М., Слонимская Е.М., Литвяков Н.В., Чердынцева Н.В., Ибрагимова М.К., Дорошенко А.В., Тарабановская Н.А., Паталяк С.В. Молекулярно-генетические маркеры эффективности неоадъювантной химиотерапии с применением антрациклинов у больных раком молочной железы. Сибирский онкологический журнал. 2016; 15 (2): 29–35. DOI:10.21294/1814-4861-2016-15-2-29-35.; https://bulletin.tomsk.ru/jour/article/view/2973
-
3Academic Journal
المؤلفون: M. Tsyganov M., M. Ibragimova K., A. Pevzner M., E. Garbukov Yu., E. Slonimskaya M., N. Litviakov V., М. Цыганов М., М. Ибрагимова К., А. Певзнер М., Е. Гарбуков Ю., Е. Слонимская М., Н. Литвяков В.
المساهمون: Работа поддержана грантом Российского фонда фундаментальных исследований 18-29-09131 мк «Феномен «замирания» опухоли в процессе химиотерапии».
المصدر: Advances in Molecular Oncology; Том 6, № 2 (2019); 55-60 ; Успехи молекулярной онкологии; Том 6, № 2 (2019); 55-60 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2019-6-2
مصطلحات موضوعية: breast cancer, BRCA1, expression, non-metastatic survival, forecast, lack of homologous recombination, рак молочной железы, ген BRCA1, экспрессия, безметастатическая выживаемость, прогноз, дефицит гомологичной рекомбинации
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/219/182; Имянитов Е.Н. Молекулярная диагностика в онкологии. Вопросы онкологии 2012;58:153–63.; Zhong Q., Peng H.L., Zhao X. et al. Effects of BRCA1- and BRCA2-related mutations on ovarian and breast cancer survival: a meta-analysis. Clin Cancer Res 2015;21:211–20. DOI:10.1158/1078-0432.CCR-14-1816.; Afghahi A., Timms K.M., Vinayak S. et al. Tumor BRCA1 reversion mutation arising during neoadjuvant platinum-based chemotherapy in triple-negative breast cancer is associated with therapy resistance. Clin Cancer Res 2017;1:1–26. DOI:10.1158/1078-0432.CCR-16-2174.; Gerratana L., Fanotto V., Pelizzari G. et al. Do platinum salts fit all triple negative breast cancers? Cancer Treat Rev 2016;48:34–41. DOI:10.1016/j.ctrv.2016.06.004.; Mccabe N., Turner N.C., Lord C.J. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly (ADP-ribose) polymerase inhibition. Cancer Res 2006;66(16):8109–15. DOI:10.1158/0008-5472. CAN-06-0140.; Schwartz G.F., Hortobagyi G.N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Breast J 2004;10:273–94. DOI:10.1111/j.1075-122X.2004.21594.x.; Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 2001;29:45. DOI: 1093/nar/29.9.e45.; Гафтон И.Г., Имянитов Е.Н., Семиглазов В.В. и др. Экспрессия гена BRCA1 при нейроэндокринных опухолях желудочно-кишечного тракта. Сибирский онкологический журнал 2014;16:11–5.; Imyanitov E.N., Moiseyenko V.M. Drug therapy for hereditary cancers. Hereditary Cancer Clin Pract 2011;9:1–16. DOI:10.1186/1897-4287-9-5.; Kurebayashi J., Yamamoto Y., Kurosumi M. et al. Loss of BRCA1 expression may predict shorter time-to-progression in metastatic breast cancer patients treated with taxanes. Anticancer Res 2006;26(1B):695–701.; Tsibulak I., Shivalingaiah G., Wenzel S. et al. Clinical impact of BRCA1 and BRCA2 mRNA expression in ovarian cancer. Am Society Clin Oncol 2018;36:e17533. DOI:10.1200/JCO.2018.36.15_suppl. e17533.; Nomura H., Kataoka F., Aoki D. et al. Expression of potential biomarkers associated with homologous recombination repair in patients with ovarian or triple-negative breast cancer. Cancer Biomark 2016;16(1):145–52. DOI:10.3233/CBM-150550.; https://umo.abvpress.ru/jour/article/view/219
-
4Academic Journal
المؤلفون: Z. Yurmazov A., N. Lushnikova A., L. Spirina V., E. Usynin A., E. Slonimskaya M., I. Anisenya I., A. Bogoutdinova V., З. Юрмазов А., Надежда Лушникова Андреевна, Л. Спирина В., Е. Усынин А., Е. Слонимская М., И. Анисеня И., А. Богоутдинова В.
المصدر: Cancer Urology; Том 15, № 2 (2019); 35-41 ; Онкоурология; Том 15, № 2 (2019); 35-41 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2019-15-2
مصطلحات موضوعية: renal cell carcinoma, bone metastases, targeted therapy, pazopanib, quality of life, почечно-клеточный рак, костные метастазы, таргетная терапия, пазопаниб, качество жизни
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/956/864; Heng D.Y., Xie W., Regan M.M. et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population based study. Lancet Oncology 2013;14(2):141–8. DOI:10.1016/S1470-2045(12)70559-4.; Состояние онкологической помощи населению России в 2017 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018. 236 с.; Chandrasekar T., Klaassen Z., Goldberg H. et al. Metastatic renal cell carcinoma: Patterns and predictors of metastases – a contemporary population-based series. Urol Oncol 2017;35(11):661.e7–14. DOI:10.1016/j.urolonc.2017.06.060.; Широкорад В.И., Кострицкий С.В., Заборовский Н.С., Пташников Д.А. Комбинированное лечение метастазов почечно-клеточного рака в позвоночник. Онкоурология 2017;13(2):43–8. DOI:10.17650/1726-9776-2017-13-2-4348.; Kumar R., Crouthamel M.C., Rominger D.H. et al. Myelosuppression and kinase selectivity of multikinase angiogenesis inhibitors. Br J Cancer 2009;101(10): 1717–23. DOI:10.1038/sj.bjc.6605366.; Алексеев Б.Я., Нюшко К.М., Калпинский А.С. Неоадъювантная таргетная терапия у больных почечно-клеточным раком. Онкоурология 2015;11(2):23–33. DOI:10.17650/1726-9776-2015-11-2-2333.; Subbiah V., Chuang H.H., Gambhire D., Kairemo K. Defining clinical response criteria and early response criteria for precision oncology: current state-of-the-art and future perspectives. Diagnostics (Basel) 2017;7(1):10. DOI:10.3390/diagnostics7010010.; Hamaoka T., Madewell J.E., Podoloff D.A. et al. Bone imaging in metastatic breast cancer. J Clin Oncol 2004;22(14):2942–53. DOI:10.1200/JCO.2004.08.181.; Costelloe C.M., Chuang H.H., Madewell J.E., Ueno N.T. Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J Cancer 2010;1:80–92. DOI:10.7150/jca.1.80.; Kalra S., Verma J., Atkinson B.J. et al. Outcomes of patients with metastatic renal cell carcinoma and bone metastases in the targeted therapy era. Clin Genitourin Cancer 2017;15(3):363–70. DOI: https://doi.org/10.1016/j.clgc.2017.01.010.; Chen S.C., Kuo P.L. Bone metastasis from renal cell carcinoma. Int J Mol Sci 2016;17(6). DOI:10.3390/ijms17060987.; de Groot A.F., Appelman-Dijkstra N.M., van der Burg S.H., Kroep J.R. The antitumor effect of RANKL inhibition in malignant solid tumors – a systematic review. Cancer Treat Rev 2018;62:18–28. DOI:10.1016/j.ctrv.2017.10.010.; Spirina L.V., Usynin E.A., Yurmazov Z.A. et al. Effect of targeted therapy with pazopanib on expression levels of transcription, growth factors and components of AKT/ m-TOR signaling pathway in patients with renal cell carcinoma. Asian Pac J Cancer Prev 2017;18(11):2977–83. DOI:10.22034/APJCP.2017.18.11.2977.; Спирина Л.В., Усынин Е.А., Кондакова И.В. и др. Влияние таргетной терапии на содержание транскрипционных, ростовых факторов, протеинкиназы TOR и активности внутриклеточных протеиназ у больных диссеминированным раком почки. Бюллетень экспериментальной биологии и медицины 2015;(12):768–72.; Lucchesi M., Lanzetta G., Antonuzzo A. et al. Developing drugs in cancer-related bone pain. Crit Rev Oncol Hematol 2017;119:66–74. DOI:10.1016/j.critrevonc.2017.08.005.; https://oncourology.abvpress.ru/oncur/article/view/956
-
5Academic Journal
المؤلفون: M. Patysheva R., M. Stakheeva N., I. Larionova V., N. Tarabanovskaya A., E. Grigorieva S., E. Slonimskaya M., J. Kzhyshkowska G., N. Cherdyntseva V., М. Патышева Р., М. Стахеева Н., И. Ларионова В., Н. Тарабановская А., Е. Григорьева С., Е. Слонимская М., Ю. Кжышковска Г., Н. Чердынцева В.
المساهمون: Grants No. 17-29-06037, RNF No. 14-15-00350, Грантами РФФИ № 17-29-06037, РНФ № 14-15-00350
المصدر: Bulletin of Siberian Medicine; Том 18, № 1 (2019); 60-75 ; Бюллетень сибирской медицины; Том 18, № 1 (2019); 60-75 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2019-18-1
مصطلحات موضوعية: immuno-oncology, monocyte subpopulations, prognosis, cancer immunotherapy, иммуноонкология, субпопуляции моноцитов, диагностика, прогноз, иммунотерапия рака
وصف الملف: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/2171/1538; Williams M.J. Drosophila hemopoiesis and cellular immunity. J. Immunol. 2007; 178 (8): 4711–4716. DOI:10.4049/jimmunol.178.8.4711.; Ziegler-Heitbrock L. Blood monocytes and their subsets: established features and open questions. Frontiers in Immunology. 2015; 6: 423. DOI:10.3389/fimmu.2015.00423.; Wynn T.A., Chawla A., Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature. 2013; 496 (7446): 445–455. DOI:10.1038/nature12034.; Kzhyshkowska J., Gudima A., Moganti K., Gratchev A., Orekhov A. Perspectives for monocyte/macrophage-based diagnostics of chronic inflammation. Transfus. Med. Hemother. 2016; 43 (2): 66–77. DOI:10.1159/000444943.; Mosig S., Rennert K., Krause S., Kzhyshkowska J., Neunü- bel K., Heller R., Funke H. Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+ CD16+ monocytes in detoxification of oxidized LDL. Fasber J. 2009; 23 (3): 866–874. DOI:10.1096/fj.08-118240.; Hristov M. Weber C. Differential role of monocyte subsets in atherosclerosis. Thromb. Haemost. 2011; 106 (5): 757–762. DOI:10.1160/TH11-07-0500.; Grivennikov S. and Karin M. Inflammation and oncogenesis: a vicious connection. Curr. Opin. Genet. Dev. 2010; February; 20 (1): 65. DOI:10.1016/j.gde.2009.11.004.; Zitvogel L., Kepp O., Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol. 2011; 8 (3): 151–160. DOI:10.1038/nrclinonc.2010.223.; Таширева Л.А., Перельмутер В.М., Манских В.Н., Денисов Е.В., Савельева О.Е., Кайгородова Е.В., Завьялова М.В. Типы иммуновоспалительных реакций как алгоритмы взаимодействия клеток в условиях репаративной регенерации и опухолевого роста. Биохимия. 2017; 82 (5): 542–555. DOI:10.1134/s0006297917050029.; Stakheyeva M., Riabov V., Mitrofanova I., Litviakov N., Choynzonov E., Cherdyntseva N., Kzhyshkowska J. Role of the immune component of tumor microenvironment in the efficiency of cancer treatment: perspectives for the personalized therapy. Curr. Pharm. Des. 2017; 23: 32. DOI:10.2174/1381612823666170714161703.; Buldakov M., Zavyalova M., Krakhmal N., Telegina N., Vtorushin S., Mitrofanova I., Riabov V., Yin S., Song B., Cherdyntseva N., Kzhyshkowska J. CD68+, but not stabilin-1+ tumor associated macrophages in gaps of ductal tumor structures negatively correlate with the lymphatic metastasis in human breast cancer. Immunobiology. 2017; 222 (1): 31–38. DOI:10.1016/j.imbio.2015.09.011.; Little M.C., Hurst R.J., Else K.J. Dynamic changes in macrophage activation and proliferation during the development and resolution of intestinal inflammation. J. Immunol. 2014; 193 (9): 4684–4695. DOI:10.4049/jimmunol.1400502.; Waskow C., Liu K., Darrasse-Jeze G., Guermonprez P., Ginhoux F. The receptor tyrosine kinase Flt3 is re quired for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 2008; 9 (6): 676–683. DOI:10.1038/ni.1615.; Kabashima K., Banks T.A., Ansel K.M., Lu T.T., Ware C.F., Cyster J.G. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity. 2005; 22 (4): 439–450. DOI:10.1016/j.immuni.2005.02.007.; Iwasaki H., Akashi K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity. 2007; 26 (6): 726–740. DOI:10.1016/j.immuni.2007.06.004.; Lawrence T., Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Reviews Immunology. 2011; 11 (11): 750–761. DOI:10.1038/nri3088.; Cortez-Retamozo V., Etzrodt M., Newton A., Rauch P.J., Chudnovskiy A., Berger C., Ryan R.J., Iwamoto Y., Marinelli B., Gorbatov R., Forghani R., Novobrantseva T.I., Koteliansky V., Figueiredo J.L., Chen J.W., Anderson D.G., Nahrendorf M., Swirski F.K., Weissleder R., Pittet M.J. Origins of tumor-associated macrophages and neutrophils. Proceedings of the National Academy of Sciences. 2012; 109 (7): 2491–2496. DOI:10.1073/pnas.1113744109.; Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010; 141 (1): 39–51. DOI:10.1016/j.cell.2010.03.014.; Aharinejad S., Paulus P., Sioud M., Hofmann M., Zins K., Schäfer R., Stanley E.R., Abraham D. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 2004; 64 (15): 5378–5384. DOI:10.1158/0008-5472.; Paulus P., Stanley E.R., Schafer R., Abraham D., Aharinejad S. Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 2006; 66 (8): 4349–4356. DOI:10.1158/0008-5472.CAN-05-3523.; De Nardo D.G., Brennan D.J., Rexhepaj E., Ruffell B., Shiao S.L., Madden S.F., Gallagher W.M., Wadhwani N., Keil S.D., Junaid S.A., Rugo H.S., Hwang E.S., Jirstrom K., West B.L., Coussens L.M. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011; 1 (1): 54–67. DOI:10.1158/2159-8274.CD-10-0028.; Schmeler K.M., Vadhan-Raj S., Ramirez P.T., Apte S.M., Cohen L., Bassett R.L., Iyer R.B., Wolf J.K., Levenback C.L., Gershenson D.M., Freedman R.S. A phase II study of GM-CSF and rIFN-gamma1b plus carboplatin for the treatment of recurrent, platinum-sensitive ovarian, fallopian tube and primary peritoneal cancer. Gynecol Oncol. 2009; 113 (2): 210–215. DOI:10.1016/j.ygyno.2009.02.007.; Spitler L.E., Grossbard M.L., Ernstoff M.S., Silver G., Jacobs M., Hayes F.A., Soong S.J. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J. Clin. Oncol. 2000; 18 (8): 1614–1621. DOI:10.1200/JCO.2000.18.8.1614.; Pinedo H.M., Buter J., Luykx de Bakker S.A., Pohlmann P.R., van Hensbergen Y., Heideman D.A., van Diest P.J., de Gruijl T.D., van der Wall E. Extended neoadjuvant chemotherapy in locally advanced breast cancer combined with GM-CSF: effect on tumour-draining lymph node dendritic cells. Eur. J. Cancer. 2003; 39 (8): 1061– 1067. DOI:10.1016/s0959-8049(03)00131-x.; Jaipersad A.S., Lip G.Y., Silverman S., Shantsila E. The Role of Monocytes in Angiogenesis and Atherosclerosis. Journal of the American College of Cardiology. 2014; 63 (1): 1–11. DOI:10.1016/j.jacc.2013.09.019.; Srivastava M., Jung S., Wilhelm J., Fink L., Bьhling F., Welte T., Bohle R.M., Seeger W., Lohmeyer J., Maus U.A. The inflammatory versus constitutive trafficking of mononuclear phagocytes into the alveolar space of mice is associated with drastic changes in their gene expression profiles. J. Immunol. 2005; 175 (3): 1884–1893. DOI:10.4049/jimmunol.175.3.1884.; Thomas-Ecker S., Lindecke A., Hatzmann W., Kaltschmidt C., Zänker K.S., Dittmar T. Alteration in the gene expression pattern of primary monocytes after adhesion to endothelial cells. Proceedings of the National Academy of Sciences. 2007; 104 (13): 5539–5544. DOI:10.1073/pnas.0700732104.; Gerhardt T., Ley K. Monocyte trafficking across the vessel wall. Cardiovasc. Res. 2015; 107 (3): 321–330. DOI:10.1093/cvr/cvv147.; Ueno T., Toi M., Saji H., Muta M., Bando H., Kuroi K., Koike M., Inadera H., Matsushima K. Significance of macrophage chemoattractant protein 1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 2000; 6 (8): 3282–3289.; Lebrecht A., Grimm C., Lantzsch T., Ludwig E., Hefler L., Ulbrich E. Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biol. 2004; 25 (1–2): 14–17. DOI:10.1159/000077718.; Qian B.Z., Li J., Zhang H., Kitamura T., Zhang J., Campion L.R. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011; 475 (7355): 222–225. DOI:10.1038/nature10138.; Groblewska M., Mroczko B., Wereszczyńska-Siemiatkowska U., Myśliwiec P., Kedra B., Szmitkowski M. Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clin. Chem. Lab. Med. 2007; 45 (1): 30–34. DOI:10.1515/CCLM.2007.025.; Mroczko B., Groblewska M., Wereszczyńska-Siemiatkowska U., Okulczyk B., Kedra B., Łaszewicz W., Dabrowski A., Szmitkowski M. Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin. Chim. Acta. 2007; 380 (1–2): 208–212. DOI:10.1016/j.cca.2007.02.037.; Zhu X.D., Zhang J.B., Zhuang P.Y., Zhu H.G., Zhang W., Xiong Y.Q., Wu W.Z., Wang L., Tang Z.Y., Sun H.C. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J. Clin. Oncol. 2008; 26 (16): 2707–2716. DOI:10.1200/JCO.2007.15.6521.; Smith H.O., Anderson P.S., Kuo D.Y., Goldberg G.L., DeVictoria C.L., Boocock C.A., Jones J.G., Runowicz C.D., Stanley E.R., Pollard J.W. The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin. Cancer Res. 1995; 1 (3): 313–325.; Steiner J.L., Murphy E.A. Importance of chemokine (CC-motif) ligand 2 in breast cancer. The International Journal of Biological Markers. 2012; 27 (3): 179–185. DOI:10.5301/JBM.2012.9345.; Pienta K.J., Machiels J.P., Schrijvers D., Alekseev B., Shkolnik M., Crabb S.J., Li S., Seetharam S., Puchalski T.A., Takimoto C., Elsayed Y., Dawkins F., de Bono J.S. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs. 2013; 31 (3): 760–768. DOI:10.1007/s10637-012-9869-8.; Sandhu S.K., Papadopoulos K., Fong P.C., Patnaik A., Messiou C., Olmos D., Wang G., Tromp B.J., Puchalski T.A., Balkwill F., Berns B., Seetharam S., de Bono J.S., Tolcher A.W. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother. Pharmacol. 2013; 71 (4): 1041–1050. DOI:10.1007/s00280-013-2099-8.; Brana I., Calles A., Lo Russo P.M., Yee L.K., Puchalski T.A., Seetharam S., Zhong B., de Boer C.J., Tabernero J., Calvo E. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol. 2015; 10 (1): 111–123. DOI:10.1007/s11523-014-0320-2.; Bonapace L., Coissieux M.M., Wyckoff J., Mertz K.D., Varga Z., Junt T., Bentires-Alj M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014; 515 (7525): 130–133. DOI:10.1038/nature13862.; Feng A.L., Zhu J.K., Sun J.T., Yang M.X., Neckenig M.R., Wang X.W., Shao Q.Q., Song B.F., Yang Q.F., Kong B.H., Qu X. CD16+ monocytes in breast cancer patients: expanded by monocyte chemoattractant protein-1 and may be useful for early diagnosis. Clin. Exp. Immunol. 2011; 164 (1): 57– 65. DOI:10.1111/j.1365-2249.2011.04321.; Jiang L., Jiang S., Situ D., Lin Y., Yang H., Li Y., Long H., Zhou Z. Prognostic value of monocyte and neutrophils to lymphocytes ratio in patients with metastatic soft tissue sarcoma. Oncotarget. 2015; 6 (11): 9542– 9550. DOI:10.18632/oncotarget.3283.; Huang S.H., Waldron J.N., Milosevic M., Shen X., Ringash J., Su J., Tong L., Perez-Ordonez B., Weinreb I., Bayley A.J., Kim J., Hope A., Cho B.C., Giuliani M., Razak A., Goldstein D., Shi W., Liu F.F., Xu W., O’Sullivan B. Prognostic value of pretreatment circulating neutrophils, monocytes, and lymphocytes in oropharyngeal cancer stratified by human papillomavirus status. Cancer. 2015; 121 (4): 545–555. DOI:10.1002/cncr.29100.; Passlick B., Ziegler-Heitbrock L. Identification and Characterization of a Novel Monocyte Subpopulation in Human peripheral blood. Blood. 1989; 74 (7): 2527–2534.; Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116 (16): 74–80. DOI:10.1182/blood-2010-02-258558.; Fingerle G., Pforte A., Passlick B., Blumenstein M., Strö- bel M., Ziegler-Heitbrock L. The novel subset of CD14+/ CD16+ blood monocytesis expanded in sepsis patients. Blood. 1993; 82 (10): 3170–3176.; Fingerle-Rowso G., Auers J., Kreuzer E., Fraunberger P., Blumenstein M., Ziegler-Heitbrock L. Expansion of CD14+CD16+monocytes in critically ill cardiac surgery patients. Inflammation. 1998; 22 (8): 367–379. DOI:10.1023/A:1022316815196.; Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell Immunol. 2014; 289 (1–2): 135–139. DOI:10.1016/j.cellimm.2014.03.019.; Gordon S. and Taylor P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005; 5 (12): 953– 964. DOI:10.1038/nri1733.; Ginhoux F. and Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014; 14 (6): 392–404. DOI:10.1038/nri3671.; Cross J. Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors. Immunity. 2010; 33 (3): 375–386. DOI:10.1016/j.immuni.2010.08.012.; Zawada A.M., Rogacev K.S., Rotter B., Winter P., Marell R.R., Fliser D., Heine G.H. SuperSAGE evidence for CD14+CD16+ monocytes as a third monocyte subset. Blood. 2011; 118 (12): 50–61. DOI:10.1182/blood-2011-01-326827.; Gratchev A., Ovsiy I., Manousaridis I., Riabov V., Orekhov A., Kzhyshkowska J. Novel monocyte biomarkers of atherogenic conditions. Curr. Pharm. Des. 2013; 19 (33): 5859–5864. DOI:10.2174/1381612811319330004.; Wong K.L., Tai J.J., Wong W.C., Han H., Sem X., Yeap W.H., Kourilsky P., Wong S.C. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011; 118 (5): 16–31. DOI:10.1182/blood-2010-12-326355.; Saleh M.N., Goldman S.J., Lo Buglio A.F., Beall A.C., Sabio H., McCord M.C., Minasian L., Alpaugh R.K., Weiner L.M., Munn D.H. CD16 + monocytes in patients with cancer: spontaneous elevation and pharmacologic induction by recombinant human macrophage colony-stimulating factor. Blood. 1995; 85 (10): 2910–2917.; Schauer D., Starlinger P., Reiter C., Jahn N., Zajc P., Buchberger E., Bachleitner-Hofmann T., Bergmann M., Stift A., Gruenberger T., Brostjan C. Intermediate monocytes but not TIE2- expressing monocytes are a sensitive diagnostic indicator for colorectal cancer. PLoS One. 2012; 7 (9): e44450. DOI:10.1371/journal.pone.0044450.; Subimerb C., Pinlaor S., Lulitanond V., Khuntikeo N., Okada S., McGrath M.S., Wongkham S. Circulating CD14(+) CD16(+) monocyte levels predict tissue invasive character of cholangiocarcinoma. Clin. Exp. Immunol. 2010; 161 (3): 471–479. DOI:10.1111/j.1365- 2249.2010.04200.; Hamm A., Prenen H., Van Delm W., Di Matteo M., Wenes M., Delamarre E., Schmidt T., Weitz J., Sarmiento R., Dezi A., Gasparini G., Rothé F., Schmitz R., D’Hoore A., Iserentant H., Hendlisz A., Mazzone M. Tumour-educated circulating monocytes are powerful candidate biomarkers for diagnosis and disease follow-up of colorectal cancer. Gut. 2016; 65 (6): 990–1000. DOI:10.1136/gutjnl-2014-308988.; Grage-Griebenow E., Zawatzky R., Kahlert H., Brade L., Flad H., Ernst M. Identification of a novel dendritic cell-like subset of CD64+/CD16+ blood monocytes. Eur. J. Immunol. 2001; 31 (1): 48–56. DOI:10.1002/1521-4141(200101)31:13.0.CO;2-5; Turrini R., Pabois A., Xenarios I., Coukos G., Delaloye J.F., Doucey M.A. TIE-2 expressing monocytes in human cancers. Oncoimmunology. 2017; 6 (4): e1303585. DOI:10.1080/2162402X.2017.1303585.; Welford A.F., Biziato D., Coffelt S.B., Nucera S., Fisher M., Pucci F., Di Serio C., Naldini L., De Palma M., Tozer G.M., Lewis C.E. TIE2-expressing macrophages limit the therapeutic efficacy of the vasculardisrupting agent combretastatin A4 phosphate in mice. J. Clin. Invest. 2011; 121 (5): 1969–1973. DOI:10.1172/JCI44562.; Guex N., Crespo I., Bron S., Ifticene-Treboux A., FaesVan’t Hull E., Kharoubi S., Liechti R., Werffeli P., Ibberson M., Majo F., Nicolas M., Laurent J., Garg A., Zaman K., Lehr H.A., Stevenson B.J., Rüegg C., Coukos G., Delaloye J.F., Xenarios I., Doucey M.A. Angiogenic activity of breast cancer patients’ monocytes reverted by combined use of systems modeling and experimental approaches. PLoS Comput Biol. 2015; Mar. 13; 11 (3): e1004050. DOI:10.1371/journal.pcbi.1004050.; Forget M.A., Voorhees J.L., Cole S.L., Dakhlallah D., Patterson I.L., Gross A.C., Moldovan L., Mo X., Evans R., Marsh C.B. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLoS One. 2014; 9 (6): e98623. DOI:10.1371/journal.pone.0098623.; Ibberson M., Bron S., Guex N., Faes-van’t Hull E., Ifticene-Treboux A., Henry L., Lehr H.A., Delaloye J.F., Coukos G., Xenarios I. TIE-2 and VEGFR kinase activities drive immunosuppressive function of TIE-2-expressing monocytes in human breast tumors. Clin. Cancer. Res. 2013; 19 (13): 3439–3449. DOI:10.1158/1078-0432.CCR-12-3181.; Pulaski H.L., Spahlinger G., Silva I.A., McLean K., Kueck A.S., Reynolds R.K., Coukos G., Conejo-Garcia J.R., Buckanovich R.J. Identifying alemtuzumab as an anti-myeloid cell antiangiogenic therapy for the treatment of ovarian cancer. J. Transl. Med. 2009; Jun. 19; 7 (1): 49. DOI:10.1186/1479-5876-7-49.; Bron S., Henry L., Faes-van’t Hull E., Turrini R., Vanhecke D., Guex N., Ifticene-Treboux A., Iancu E.M., Semilietof A., Rufer N., Lehr H.-A., Xenarios I., Coukos G., Delaloye J.F., Doucey M.A. TIE-2-expressing monocytes are lymphangiogenic and associate specifically with lymphatics of human breast cancer. Oncoimmunology. 2016; 5 (2): e1073882. DOI:10.1080/2162402X.2015.1073882.; Tsutsui S., Inoue H., Yasuda K., Suzuki K., Takeuchi H., Nishizaki T., Higashi H., Era S., Mori M. Angiopoietin-2 expression in invasive ductal carcinoma of the breast: its relationship to the VEGF expression and microvessel density. Breast Cancer Res. Treat. 2006; 98 (3): 261–266. DOI:10.1007/s10549-005-9157-9.; Ji J., Zhang G., Sun B., Yuan H., Huang Y., Zhang J, Wei X., Zhang X., Hou J. The frequency of tumor-infiltrating Tie-2-expressing monocytes in renal cell carcinoma: its relationship to angiogenesis and progression. Urology. 2013; 82 (4): e9–13. DOI:10.1016/j.urology.2013.05.026.; Schauer D., Starlinger P., Reiter C., Jahn N., Zajc P., Buchberger E., Bachleitner-Hofmann T., Bergmann M., Stift A., Gruenberger T., Brostjan C. Intermediate Monocytes but Not TIE2-Expressing Monocytes Are a Sensitive Diagnostic Indicator for Colorectal Cancer. PLoS One. 2012; 7 (9): e44450. DOI:10.1371/journal.pone.0044450.; Gabrusiewicz K., Liu D., Cortes-Santiago N., Hossain M.B., Conrad C.A., Aldape K.D., Fuller G.N., Marini F.C., Alonso M.M., Idoate M.A., Gilbert M.R., Fueyo J., Gomez-Manzano C. Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes. Oncotarget. 2014; 5 (8): 2208–2220. DOI:10.18632/oncotarget.1893.; Venneri M.A., De Palma M., Ponzoni M., Pucci F., Scielzo C., Zonari E., Mazzieri R., Doglioni C., Naldini L. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood. 2007; 109 (12): 5276–5285. DOI:10.1182/blood-2006-10-053504.; Goede V., Coutelle O., Shimabukuro-Vornhagen A., Holtick U., Neuneier J., Koslowsky T.C., Weihrauch M.R., von Bergwelt-Baildon M., Hacker U.T. Analysis of Tie2-expressing monocytes (TEM) in patients with colorectal cancer. Cancer Invest. 2012; 30 (3): 225–230. DOI:10.3109/07357907.2011.636114.; De Palma M., Murdoch C., Venneri M.A., Naldini L., Lewis C.E. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 2007; 28 (12): 519–524. DOI:10.1016/j.it.2007.09.004.; Sainz B.J., Carron E., Vallespinуs M., Machado H.L. Cancer stem cells and macrophages: implications in tumor biology and therapeutic strategies. Mediators Inflamm. 2016; 2016: 1–15. DOI:10.1155/2016/9012369.; Gasteiger G., D’Osualdo A., Schubert D.A., Weber A., Bruscia E.M., Hartl D. Cellular Innate Immunity: An old game with new players. J. Innate Immun. 2017; 9 (2): 111–125. DOI:10.1159/000453397.; Saeed S., Quintin J., Kerstens H.H., Rao N.A., Aghajanirefah A., Matarese F., Cheng S.C., Ratter J., Berentsen K., van der Ent M.A., Sharifi N., Janssen-Megens E.M., Ter Huurne M., Mandoli A., van Schaik T., Ng A., Burden F., Downes K., Frontini M., Kumar V., Giamarellos-Bourboulis E.J., Ouwehand W.H., van der Meer J.W., Joosten L.A., Wijmenga C., Martens J.H., Xavier R.J., Logie C., Netea M.G., Stunnenberg H.G. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014; 345 (6204): 1251086. DOI:10.1126/science.1251086.; Hoeksema M.A., de Winther M.P. Epigenetic regulation of monocyte and macrophage function. Antioxid Redox Signal. 2016; 25 (14): 758–774. DOI:10.1089/ars.2016.6695.; Netea M.G., Joosten L.A., Latz E., Mills K.H., Natoli G., Stunnenberg H.G., O’Neill L.A., Xavier R.J. Trained immunity: A program of innate immune memory in health and disease. Science. 2016; 352 (6284): aaf1098. DOI:10.1126/science.aaf1098.; Bekkering S., Joosten L.A., van der Meer J.W., Netea M.G., Riksen N.P. The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin. Ther. 2015; 37 (4): 914–923. DOI:10.1016/j.clinthera.2015.01.008.; van Diepen J.A., Thiem K., Stienstra R., Riksen N.P., Tack C.J., Netea M.G. Diabetes propels the risk for cardiovascular disease: sweet monocytes becoming aggressive? Cell Mol. Life Sci. 2016; 73 (24): 4675–4684. DOI:10.1007/s00018-016-2316-9.; Almatroodi S.A., McDonald C.F., Collins A.L., Darby I.A., Pouniotis D.S. Blood classical monocytes phenotype is not altered in primary non-small cell lung cancer. World J. Clin. Oncol. 2014; 5 (5): 1078–1087. DOI:10.5306/wjco.v5.i5.1078.; Hanna R.N., Cekic C., Sag D., Tacke R., Thomas G.D., Nowyhed H., Herrley E., Rasquinha N., McArdle S., Wu R., Peluso E., Metzger D., Ichinose H., Shaked I., Chodaczek G., Biswas S.K., Hedrick C.C. Patrolling monocytes control tumor metastasis to the lung. Science. 2015; 350 (6263): 985–990. DOI:10.1126/science.aac9407.; Zhang B., Cao M., He Y., Liu Y., Zhang G., Yang C., Du Y., Xu J., Hu J., Gao F. Increased circulating M2- like monocytes in patients with breast cancer. Tumour Biol. 2017; 39 (6): 1010428317711571. DOI:10.1177/1010428317711571.; Adams D.L., Martin S.S., Alpaugh R.K., Charpentier M., Tsai S., Bergan R.C., Ogden I.M., Catalona W., Chumsri S., Tang C.M., Cristofanilli M. Circulating giant macrophages as a potential biomarker of solid tumors. Proceedings of the National Academy of Sciences. 2014; 111 (9): 3514–3519. DOI:10.1073/pnas.1320198111.; Adams D.L., Adams D.K., Alpaugh R.K., Cristofanilli M., Martin S.S., Chumsri S., Tang C.M., Marks J.R. Circulating cancer-associated macrophage-like cells differentiate malignant breast cancer and benign breast conditions. Cancer Epidemiol. Biomarkers Prev. 2016; 25 (7): 1037– 1042. DOI:10.1158/1055-9965.; Biswas S.K., Mantovani A. Macrophages: biology and role in the pathology of diseases. New York: Springer, 2014: 7–11. DOI:10.1007/978-1-4939-1311-4.; Zhao L., Shao Q., Zhang Y., Zhang L., He Y., Wang L., Kong B., Qu X. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts. Sci. Rep. 2016; 6 (1): 20409. DOI:10.1038/srep20409.; Baj-Krzyworzeka M., Baran J., Szatanek R., Mytar B., Siedlar M., Zembala M. Interactions of human monocytes with TMVs (tumour-derived microvesicles). Biochem. Soc. Trans. 2013; 41 (1): 268–272. DOI:10.1042/BST20120244.; Dimitrov S., Shaikh F., Pruitt C., Green M., Wilson K., Beg N., Hong S. Differential TNF production by monocyte subsets under physical stress: blunted mobilization of proinflammatory monocytes in prehypertensive individuals. Brain Behav. Immun. 2013; 27 (1): 101–108. DOI:10.1016/j.bbi.2012.10.003.; van Furth R., Cohn Z.A., Hirsch J.G., Humphrey J.H., Spector W.G., Langevoort H.L. Mononuclear phagocytic system: new classification of macrophages, monocytes and of their cell line. Bull World Health Organ. 1972; 47: 651–658.; Guilliams M., van de Laar L. A hitchhiker’s guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system. Front. Immunol. 2015; 6. DOI:10.3389/fimmu.2015.00406.; Чердынцева Н.В., Митрофанова И.В., Булдаков М.А., Стахеева М.Н., Патышева М.Р., Завьялова М.В., Кжышковска Ю.Г. Макрофаги и опухолевая прогрессия: на пути к макрофаг-специфичной терапии. юллетень сибирской медицины. 2017; 16 (4): 61–74. DOI:10.20538/1682-0363-2017-4-61-74.; Movahedi K., Laoui D., Gysemans C., Baeten M., Stangé G., Van den Bossche J., Mack M., Pipeleers D., In’t Veld P., e Baetselier P. Van Ginderachter J.A. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010; 70 (14): 5728–5739. DOI:10.1158/0008-5472.CAN-09-4672.; Franklin R.A., Liao W., Sarkar A., Kim M.V., Bivona M.R., Liu K., Pamer E.G., Li M.O. The cellular and molecular origin of tumor-associated macrophages. Science. 2014; 344 (6186): 921–925. DOI:10.1126/science.1252510.; Qian B.Z., Li J., Zhang H., Kitamura T., Zhang J., Campion L.R., Kaiser E.A., Snyder L.A., Pollard J.W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011; 475 (7355): 222–225. DOI:10.1038/nature10138.; Shand F.H., Ueha S., Otsuji M., Koid S.S., Shichino S., Tsukui T., Kosugi-Kanaya M., Abe J., Tomura M., Ziogas J., Matsushima K. Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proceedings of the National Academy of Sciences. 2014; 111 (21): 7771–7776. DOI:10.1073/pnas.1402914111.; Harney A.S., Arwert E.N., Entenberg D., Wang Y., Guo P., Qian B.Z., Oktay M.H., Pollard J.W., Jones J.G., Condeelis J.S. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 2015; 5 (9): 932–943. DOI:10.1158/2159-8290.CD-15-0012.; Sawanobori Y., Ueha S., Kurachi M., Shimaoka T., Talmadge J.E., Abe J., Shono Y., Kitabatake M., Kakimi K., Mukaida N., Matsushima K. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 2008; 111 (12): 5457–5466. DOI:10.1182/blood-2008-01-136895.; Bögels M., Braster R., Nijland P.G., Gül N., van de Luijtgaarden W., Fijneman R.J., Meijer G.A., Jimenez C.R., Beelen R.H., van Egmond M. Carcinoma origin dictates differential skewing of monocyte function. OncoImmunology. 2012; 1 (6): 798–809. DOI:10.4161/onci.20427.; Baron S., Finbloom J., Horowitz J., Bekisz J., Morrow A., Zhao T., Fey S., Schmeisser H., Balinsky C., Miyake K., Clark C., Zoon K. Near eradication of clinically relevant concentrations of human tumor cells by interferon-activated monocytes in vitro. J. Interferon. Cytokine Res. 2011; 31 (7): 569–573. DOI:10.1089/jir.2010.0153.; Кжышковска Ю.Г., Митрофанова И.В., Завьялова М.В., Слонимская Е.М., Чердынцева Н.В. Опухолеассоциированные макрофаги. М.: Наука, 2017: 224.; Hettinger J., Richards D.M., Hansson J., Barra M.M., Joschko A.C., Krijgsveld J., Feuerer M. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunl. 2013; 14 (8): 821–830. DOI:10.1038/ni.2638.; Segura E., Amigorena S. Inflammatory dendritic cells in mice and humans. Trends immunol. 2013; 34 (9): 440– 445. DOI:10.1016/j.it.2013.06.001.; Maeng H., Terabe M., Berzofsky J.A. Cancer vaccines: translation from mice to human clinical trials. Curr. Opin Immunol. 2018; 51: 111–122. DOI:10.1016/j.coi.2018.03.001.; Kongsted P., Borch T.H., Ellebaek E., Iversen T.Z., Andersen R., Met Ö., Hansen M., Lindberg H., Sengeløv L., Svane I.M. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: A randomized phase II study. Cytotherapy. 2017; 19 (4): 500–513. DOI:10.1016/j.jcyt.2017.01.007.; Vuk-Pavlović S., Bulur P.A., Lin Y., Qin R., Szumlanski C.L., Zhao X., Dietz A.B. Immunosuppressive CD14+HLA-DRlow/-monocytes in prostate cancer. Prostate. 2010; 70 (4): 443–455. DOI:10.1002/pros.21078.; Laborde R.R., Lin Y., Gustafson M.P., Bulur P.A., Dietz A.B. Cancer vaccines in the world of immune suppressive monocytes (CD14+HLA-DRlo/neg cells): the gateway to improved responses. Frontiers in Immunology. 2014; 5: 147. DOI:10.3389/fimmu.2014.00147.; Yu J., Du W., Yan F., Wang Y., Li H., Cao S, Yu W, Shen C, Liu J, Ren X. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol. 2013; 190 (7): 3783–3797. DOI:10.4049/jimmunol.1201449.; Mougiakakos D., Jitschin R., von Bahr L., Poschke I., Gary R., Sundberg B., Gerbitz A, Ljungman P, Le Blanc K. Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Leukemia. 2013; 27 (2): 377–388. DOI:10.1038/leu.2012.215.; Maeda A., Kawamura T., Ueno T., Usui N., Miyagawa S. Monocytic suppressor cells derived from human peripheral blood suppress xenogenic immune reactions. Xenotransplantation. 2014; 21 (1): 46–56. DOI:10.1111/xen.12067.; Poschke I., Mao Y., Adamson L., Salazar-Onfray F., Masucci G., Kiessling R. Myeloid-derived suppressor cells impair the quality of dendritic cell vaccines. Cancer Immunol. Immunother. 2012; 61 (6): 827–838. DOI:10.1007/s00262-011-1143-y.; Gustafson M.P., Lin Y., New K.C., Bulur P.A., O’Neill B.P., Gastineau D.A., Dietz AB. Systemic immune suppression in glioblastoma: the interplay between CD14+HLADRlo/neg monocytes, tumor factors, and dexamethasone. Neuro Oncol. 2010; 12 (7): 631–644. DOI:10.1093/neuonc/noq001.; Engblom C., Pfirschke C., Pittet M.J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer. 2016; 16 (7): 447–462. DOI:10.1038/nrc.2016.54.; Germano G., Frapolli R., Belgiovine C., Anselmo A., Pesce S., Liguori M., Erba E., Uboldi S., Zucchetti M., Pasqualini F. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013; 23 (2): 249–262. DOI:10.1016/j.ccr.2013.01.008.; https://bulletin.tomsk.ru/jour/article/view/2171
-
6Academic Journal
المؤلفون: M. Tsyganov M., M. Ibragimova K., I. Deryusheva V., P. Kazantseva V., E. Garbukov Yu., E. Slonimskaya M., N. Litviakov V., М. Цыганов М., М. Ибрагимова К., И. Дерюшева В., П. Казанцева В., Е. Гарбуков Ю., Е. Слонимская М., Н. Литвяков В.
المساهمون: Работа выполнена в рамках конкурса 2018–2020 гг. на получение стипендии Президента РФ молодым ученым и аспирантам.
المصدر: Advances in Molecular Oncology; Том 5, № 1 (2018); 53-59 ; Успехи молекулярной онкологии; Том 5, № 1 (2018); 53-59 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2018-5-1
مصطلحات موضوعية: breast cancer, genes expression, BRCA1, neoadjuvant chemotherapy, chemotherapy efficacy, рак молочной железы, экспрессия генов, неоадъювантная химиотерапия, эффективность химиотерапии
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/136/133; Johnson N., Fletcher O., Palles C. et al. Counting potentially functional variants in BRCA1, BRCA2 and ATM predicts breast cancer susceptibility. Hum Mol Genet 2007;16(9):1051–7. DOI:10.1093/hmg/ddm050. PMID: 17341484.; Kadouri L., Hubert A., Rotenberg Y. et al. Cancer risks in carriers of the BRCA1/2 Ashkenazi founder mutations. J Med Genet 2007;44(7):467–71. DOI:10.1136/jmg.2006.048173. PMID: 17307836.; Simard J., Tonin P., Durocher F. et al. Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. Nat Genet 1994;8(4):392–8. DOI:10.1038/ng1294-392. PMID: 7894492.; Palmero E.I., Alemar B., Schüler-Faccini L. et al. Screening for germline BRCA1, BRCA2, TP53 and CHEK2 mutations in families at-risk for hereditary breast cancer identified in a population-based study from Southern Brazil. Genet Mol Biol 2016;39(2):210–22. DOI:10.1590/ 1678-4685-GMB-2014-0363. PMID: 27223485.; Byrski T., Huzarski T., Dent R. et al. Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 2014;147(2):401–5. DOI:10.1007/s10549-014-3100-x. PMID: 25129345.; Byrski T., Gronwald J., Huzarski T. et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 2010;28(3):375–9. DOI:10.1200/JCO.2008.20.7019. PMID: 20008645.; Гафтон И.Г., Имянитов Е.Н., Семиглазов В.В. и др. Экспрессия гена BRCA1 при нейроэндокринных опухолях желудочно-кишечного тракта. Сибирский онкологический журнал 2014;16(4):11–5. [Gafton I.G., Imyanitov E.N., Semiglazov V.V. et al. BRCA1 gene expression in endocrine tumors of the gastrointestinal tract. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology 2014;16(4):11–5. (In Russ.)].; Imyanitov E.N., Moiseyenko V.M. Drug therapy for hereditary cancers. Hered Cancer Clin Pract 2011;9(1):5. DOI:10.1186/1897-4287-9-5. PMID: 21819606.; Schwartz G.F., Hortobagyi G.N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Breast J 2004;10(4):273–94.; Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29(9):e45. PMID: 11328886.; Kurebayashi J., Yamamoto Y., Kurosumi M. et al. Loss of BRCA1 expression may predict shorter time-toprogression in metastatic breast cancer patients treated with taxanes. Anticancer Res 2006;26(1):695–701. PMID: 16739340.; Mahmoud A.M., Macias V., Al-Alem U. et al. BRCA1 protein expression and subcellular localization in primary breast cancer: automated digital microscopy analysis of tissue microarrays. PLoS One 2017;12(9):e0184385. DOI:10.1371/journal.pone.0184385. PMID: 28863181.; Egawa C., Motomura K., Miyoshi Y. et al. Increased expression of BRCA1 mRNA predicts favorable response to anthracycline-containing chemotherapy in breast cancers. Breast Cancer Res Treat 2003;78(1):45–50. PMID: 12611456.; Lafarge S., Sylvain V., Ferrara M., Bignon Y.J. Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene 2001;20(45):6597–606. DOI:10.1038/sj.onc.1204812. PMID: 11641785.; Mullan P.B., Quinn J.E., Gilmore P.M. et al. BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene 2001;20(43):6123–31. DOI:10.1038/sj.onc.1204712. PMID: 11593420.; Quinn J.E., Kennedy R.D., Mullan P.B. et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 2003;63(19):6221–8. PMID: 14559807.; Harte M.T., Gorski J.J., Savage K.I. et al. NF-κB is a critical mediator of BRCA1- induced chemoresistance. Oncogene 2014;33(1):713–23. DOI:10.1038/ onc.2013.10. PMID: 23435429.; Sau A., Lau R., Cabrita M.A. et al. Persistent activation of NF-κB in BRCA1-deficient mammary progenitors drives aberrant proliferation and accumulation of DNA damage. Cell Stem Cell 2016;19(1):52–65. DOI:10.1016/j.stem.2016.05.003. PMID: 27292187.; https://umo.abvpress.ru/jour/article/view/136
-
7Academic Journal
المؤلفون: L. Spirina V., I. Kondakova V., E. Usynin A., E. Slonimskaya M., Z. Yurmazov A., Л. Спирина В., И. Кондакова В., Е. Усынин А., Е. Слонимская М., З. Юрмазов А.
المصدر: Siberian journal of oncology; Том 17, № 4 (2018); 67-74 ; Сибирский онкологический журнал; Том 17, № 4 (2018); 67-74 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2018-17-4
مصطلحات موضوعية: renal cell carcinoma, metastasis, NF-кВ, HIF-1α, VEGF, рак почки, метастазы
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/818/556; Keefe S.M., Nathanson K.L., Rathmell W.K. The molecular biology of renal cell carcinoma. Semin Oncol. 2013 Aug; 40(4): 421‑8. doi:10.1053/j.seminoncol.2013.05.006.; Hartmann A., Schlomm T., Bertz S., Heinzelmann J., Hölters S., Simon R., Stoehr R., Junker K. Prognostic and predictive molecular markers for urologic cancers. Urologe A. 2014 Apr; 53(4): 491‑500. doi:10.1007/s00120-014-3442-3.; Na X., Wu G., Ryan C.K., Schoen S.R., di’Santagnese P.A., Messing E.M. Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J Urol. 2003 Aug; 170(2 Pt 1): 588‑92. doi:10.1097/01.ju.0000074870.54671.98.; Hoffmann A., Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunol Rev. 2006; 210: 171–186. doi:10.1111/j.0105-2896.2006.00375.x.; Zhou J., Köhl R., Herr B., Frank R., Brüne B. Calpain mediates a von Hippel-Lindau protein-independent destruction of hypoxia-inducible factor-1alpha. Mol Biol Cell. 2006 Apr; 17(4): 1549‑58. doi:10.1091/mbc.E05-08-0770.; Klatte T., Seligson D.B., Riggs S.B., Leppert J.T., Berkman M.K., Kleid M.D., Yu H., Kabbinavar F.F., Pantuck A.J., Belldegrun A.S. Hypoxiainducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res. 2007; 13(24): 7388‑93. doi:10.1158/1078- 0432.CCR-07-0411.; Baldwin A.S. The NF-κΒ and I-κΒ proteins: new discoveries and insights. Annu Rev Immunol. 1996; 14: 649–683. doi:10.1146/annurev.immunol.14.1.649.; Goldberg A.L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochemical Society Transactions. 2007; 35: 12–17. doi:10.1042/BST0350012.; Kostadinova R.M., Nawrocki A.R., Frey F.J. Tumor necrosis factor α and phorbol 12- myristate-13-acetate down-regulate human 11betahydroxysteroid dehydrogenase type 2 through p50/p50 NF-κΒ homodimers and Egr-1. FASEB J. 2005; 19(6): 650–2. doi:10.1096/fj.04-2820fje.; Marui N., Medford R.M., Ahmad M. Activation of RelA homodimers by tumor necrosis factor α: a possible transcriptional activator in human vascular endothelial cells. Biochem J. 2005; 390: 317–24. doi:10.1042/BJ20041659.; Juvekar A., Manna S., Ramaswami S., Chang T.P., Vu H.Y., Ghosh C.C., Celiker M.Y., Vancurova I. Bortezomib induces nuclear translocation of IκBα resulting in gene- specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL. Mol Cancer Res. 2011 Feb; 9(2): 183‑94. doi:10.1158/1541-7786.MCR-10-0368.; Conner J.R., Smirnova I.I., Moseman A.P., Poltorak A. IRAK1BP1 inhibits inflammation by promoting nuclear translocation of NF-kappaB p50. Proc Natl Acad Sci U S A. 2010 Jun 22; 107(25): 11477‑82. doi:10.1073/pnas.1006894107.; van Uden P., Kenneth N.S., Rocha S. Regulation of hypoxiainducible factor-1α by NF-κΒ. Biochem J. 2008 Jun 15; 412(3): 477‑84. doi:10.1042/BJ20080476.; Reeg S., Jung T., Castro J.P., Davies K.J.A., Henze A., Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damagedproteins by the proteasome. Free Radic Biol Med. 2016; 99: 153‑166. doi:10.1016/j.freeradbiomed.2016.08.002.; Sorokin A.V., Kim E.R., Ovchinnikov L.P. Proteasome system of protein degradation and processing. Biochemistry (Mosc). 2009 Dec; 74(13): 1411‑42.; Almond J.B., Cohen G.M. The proteasome: a novel target for cancer chemotherapy. Leukemia. 2002; 16(4): 433–43. doi:10.1038/sj.leu.2402417.; Chen C., Seth A.K., Aplin A.E. Genetic and expression aberrations of E3 ubiquitin ligases in human breast cancer. Mol Cancer Res. 2006; 4: 695–707.; Kondakova I.V., Spirina L.V., Koval V.D., Shashova E.E., Choinzonov E.L., Ivanova E.V., Kolomiets L.A., Chernyshova A.L., Slonimskaya E.M., Usynin E.A., Afanasyev S.G. Chymotripsin-like activity and subunit composition of proteasomes in human cancers. Mol Biol (Mosk). 2014 May-Jun; 48(3): 444‑51.; Voutsadakis I.A. Pathogenesis of colorectal carcinoma and therapeutic implications: the role of the ubiquitin-proteasome system and Cox-2. J Cell Mol Med. 2007; 11(2): 252–337. doi:10.1111/j.1582-4934.2007.00032.x.; Goll D.E., Thompson V.F., Li H., Wei W., Cong J. The calpain system. Physiol Rev. 2003; 83(3): 731‑801. doi:10.1152/physrev.00029.2002.; Ivanova E.V., Kondakova I.V., Spirina L.V., Afanas’ev S.G., Avgustinovich A.V., Cheremisina O.V. Chymotrypsin-like activity of proteasomes and total calpain activity in gastric and colorectal cancer. Bull Exp Biol Med. 2014 Oct; 157(6): 7814. doi:10.1007/s10517-014-2666-y.; Spirina L.V., Usynin Y.A., Kondakova I.V., Yurmazov Z.A., Slonimskaya E.M., Kolegova E.S. The AKT-mTOR Signalling Pathway in Kidney Cancer Tissues. AIP Conf Proc. 2015; 1688: 080004-1–5. doi:10.1063/1.4936067.; Storr S.J., Carragher N.O., Frame M.C., Parr T., Martin S.G. The calpain system and cancer. Nat Rev Cancer. 2011 May; 11(5): 364‑74. doi:10.1038/nrc3050.; Sorimachi H., Hata S., Ono Y. Calpain chronicle an enzyme family under multidisciplinary characterization. Proc Jpn Acad Ser B Phys Biol Sci. 2011; 87: 287–327.; Smith I.J., Dodd S.L. Calpain activation causes a proteasome dependent increase in protein degradation and inhibits the Akt signaling pathway in rat diaphragm muscle. Exp Physiol. 2007; 92(3): 561–73. doi:10.1113/expphysiol.2006.035790.; Molitoris K.H., Kazi A.A., Koos R.D. Inhibition of oxygen-induced hypoxia-inducible factor-1α degradation unmasks estradiol induction of vascular endothelial growth factor expression in ECC-1 cancer cells in vitro. Endocrinology. 2009 Dec; 150(12): 5405‑14. doi:10.1210/en.2009-0884.; Yue C.X., Ma J., Zhou H.J., Tang Q.L., Li L.L., Bi F., Xue Y. The effect of RhoA and proteasome inhibitor MG132 on angiogenesis in tumors. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011 Jul; 42(4): 445‑50.; Li C., Chen S., Yue P., Deng X., Lonial S., Khuri F.R., Sun S.Y. Proteasome inhibitor PS-341 (bortezomib) induces calpain-dependent IkappaB(alpha) degradation. J Biol Chem. 2010 May 21; 285(21): 16096‑104. doi:10.1074/jbc.M109.072694.; Moorthy A.K., Savinova O.V., Ho J.Q., Wang V.Y., Vu D., Ghosh G. The 20S proteasome processes NF-kappaB1 p105 into p50 in a translationindependent manner. EMBO J. 2006 May 3; 25(9): 1945‑56. doi:10.1038/sj.emboj.7601081.; Abramova E.B., Astakhova T.M., Erokhov P.A., Sharova N.P. Multiple forms of the proteasomes and some approaches to their separation. Izv Akad Nauk Ser Biol. 2004; (2): 150‑6.; Ben-Shahar S., Komlosh A., Nadav E., Shaked I., Ziv T., Admon A., DeMartino G.N., Reiss Y. 26 S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate. J Biol Chem. 1999; 274(31): 21963‑72.; Sandmann S., Prenzel F., Shaw L., Schauer R., Unger T. Activity profile of calpains I and II in chronically infarcted rat myocardium-- influence of the calpain inhibitor CAL 9961. Br J Pharmacol. 2002 Apr; 135(8): 1951‑8. doi:10.1038/sj.bjp.0704661.; Laemmi U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.). 1970; 227: 680–5.; Arlt A., Bauer I., Schafmayer C., Tepel J., Müerköster S.S., Brosch M., Röder C., Kalthoff H., Hampe J., Moyer M.P., Fölsch U.R., Schäfer H. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene. 2009 Nov 12; 28(45): 3983‑96. doi:10.1038/onc.2009.264.; Shibata A., Nagaya T., Imai T., Funahashi H., Nakao A., Seo H. Inhibition of NF- kappaB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells. Breast Cancer Res Treat. 2002; 73(3): 237‑43.; https://www.siboncoj.ru/jour/article/view/818
-
8Academic Journal
المؤلفون: E. Shashova E., A. Doroshenko V., L. Bondar N., E. Slonimskaya M., I. Kondakova V., Е. Шашова Е., А. Дорошенко В., Л. Бондарь Н., Е. Слонимская М., И. Кондакова В.
المصدر: Siberian journal of oncology; Том 16, № 3 (2017); 33-39 ; Сибирский онкологический журнал; Том 16, № 3 (2017); 33-39 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-3
مصطلحات موضوعية: molecular subtypes of breast cancer, сhymotrypsin-like activity of proteasomes, caspase-like activity of proteasomes, subunits of proteasomes, calpain activity, молекулярные подтипы рака молочной железы, активность протеасом, активность кальпаинов, субъединичный состав протеасом
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/538/440; Шарова Н.П. Протеасомы в судьбе злокачественной опухоли. Природа. 2008; 5: 20–26.; Grigoreva T.A., Tribulovich V.G., Garabadzhiu A.V., Melino G., Barlev N.A. The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget. 2015; 6 (28): 28. doi:10.18632/oncotarget.4619.; Sorimachi H., Hata S., Ono Y. Calpain chronicle an enzyme family under multidisciplinary characterization. Proc Jpn Acad Ser B Phys Biol Sci. 2011; 87 (6): 287–327.; Storr S.J., Carragher N.O., Frame M.C., Parr T., Martin S.G. The calpain system and cancer. Nat Rev Cancer. 2011 May; 11 (5): 364–74. doi:10.1038/nrc3050.; Спирина Л.В., Кондакова И.В., Коломиец Л.А., Чернышова А.Л., Асадчикова О.Н., Шарова Н.П., Коваль В.Д. Активность протеасом и их субъединичный состав при гиперпластических процессах и раке эндометрия. Опухоли женской репродуктивной системы. 2011; 4: 64–68.; Иванова Э.В., Кондакова И.В., Спирина Л.В., Афанасьев С.Г., Августинович А.В., Черемисина О.В. Химотрипсинподобная активность протеасом и общая активность кальпаинов при раке желудка и толстой кишки. Бюллетень экспериментальной биологии и медицины. 2014; 157 (6): 753–756.; Шашова Е.Е., Астахова Т.М., Плеханова А.С., Богомягкова Ю.В., Люпина Ю.В., Сумеди И.Р., Слонимская Е.М., Ерохов П.А., Абрамова Е.Б., Родоман Г.В., Кузнецов Н.А., Кондакова И.В., Шарова Н.П., Чойнзонов Е.Л. Изменение химотрипсинподобной активности протеасом в развитии карцином молочной и щитовидной желез человека. Бюллетень экспериментальной биологии и медицины. 2013; 156 (8): 209–211.; Какурина Г.В., Кондакова И.В., Чойнзонов Е.Л., Шишкин Д.А., Черемисина О.В. Особенности протеома сыворотки крови больных плоскоклеточными карциномами головы и шеи. Сибирский онколо- гический журнал. 2013; 2: 62–66.; Юнусова Н.В., Спирина Л.В., Кондакова И.В., Коломиец Л.А., Виллерт А.Б., Шпилева О.В. Экспрессия и активность протеаз при метастазировании рака яичников. Известия Российской академии наук. Серия биологическая. 2014; 5: 448–455.; Юрмазов З.А., Спирина Л.В., Усынин Е.А., Кондакова И.В., Слонимская Е.М. Молекулярные показатели, связанные с эффективностью терапии эверолимусом у больных диссеминированным раком почки. Сибирский онкологический журнал. 2016; 15 (2): 42–47. doi:10.21294/1814-4861-2016-15-2-42-47.; Спирина Л.В., Усынин Е.А., Кондакова И.В., Юрмазов З.А., Слонимская Е.М. Влияние таргетной терапии на содержание транскрипционных, ростовых факторов, протеинкиназы mTOR и активности внутриклеточных протеиназ у больных диссеменированным раком почки. Бюллетень экспериментальной биологии и медицины. 2015; 160 (12): 768–772.; Шашова Е.Е., Кондакова И.В., Слонимская Е.М., Глущенко С.А., Колегова Е.С. Изменение химотрипсинподобной и каспазаподобной активностей протеасом в зависимости от степени распространенности рака молочной железы. Сибирский онкологический журнал. 2013; 5 (59): 45–49.; Storr S.J., Lee K.W., Woolston C.M., Safuan S., Green A.R., Macmillan R.D., Benhasouna A., Parr T., Ellis I.O., Martin S.G. Calpain system protein expression in basal-like and triple-negative invasive breast cancer. Ann Oncol. 2011; 23 (9): 2289–2296. doi:10.1093/annonc/mds176.; Слонимская Е.М., Вторушин С.В., Бабышкина Н.Н., Паталяк С.В. Роль морфологических и генетических особенностей строения рецепторов эстрогенов альфа в развитии резистентности к эндокринотерапии тамоксифеном у пациенток люминальным раком молочной железы. Сибирский онкологический журнал. 2014; 3: 39–44.; Babyshkina N., Vtorushin S., Zavyalova M., Patalyak S., Dronova T., Litviakov N., Slonimskaya E., Kzhyshkowska J., Cherdyntseva N., Choynzonov E. The distribution pattern of ERa expression, ESR1 genetic variation and expression of growth factor receptors: association with breast cancer prognosis in Russian patients treated with adjuvant tamoxifen. Clin Exp Med. 2016. doi 10.1007/s10238-016-0428-z.; Bonella F., Sixt S.U., Thomassen J., Schmidt M., Cai M., Mori T., Guzman J., Costabel U. Extracellular 20S proteasome in BAL and serum of patients with alveolar proteinosis. Immunobiology. 2015; 220 (3): 382–388. doi:10.1016/j.imbio.2014.10.010.; Ogawa S., Shih L.-Y., Suzuki T., Otsu M., Nakauchi H., Koeffler H.P., Sanada M. Deregulated intracellular signaling by mutated c-CBL in myeloid neoplasms. Clin Cancer Res. 2010; 16: 3825–31. doi:10.1158/1078-0432.CCR-09-2341.; Powers G.L., Ellison-Zelski S.J., Casa A.J. Proteasome inhibition represses ER gene expression in ER+ cells – a new link between proteasome activity and rstrogen signaling in breast cancer. Oncogene. 2010; 29: 1509–1518. doi:10.1038/onc.2009.434.; Spirina L.V., Kondakova I.V., Choynzonov E.L., Chigevskaya S.Y., Shishkin D.A., Kulbakin D.Y. Expression of vascular endothelial growth factor and transcription factors HIF-1, NF-KB expression in squamous cell carcinoma of head and nesk; association with proteasome and calpain activities. J Cancer Res Clin Oncol. 2013; 139 (4): 625–633. doi:10.1007/ s00432-012-1366-0. doi:10.1007/s00432-012-1366-0; Shashova E., Lyupina Yu.V., Glushchenko S.A., Slonimskaya E.M., Savenkova O.V., Kulikov A.M., Gornostaev N.G., Kondakova I.V., Sharova N.P. Proteasome functioning in breast cancer: connection with clinicalpathological factors. PLOS ONE. 2014; 9 (10): e109933. http://dx.doi. org/10.1371/journal.pone.0109933.; Ben-Shahar S., Komlosh A., Nadav E., Shaked I., Ziv T., Admon A., DeMartino G.N., Reiss Y. 26 S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate. J Biol Chem. 1999; 274 (31): 21963–21972.; Sandmann S., Prenzel F., Shaw L., Schauer R., Unger T. Activity profile of calpains I and II in chronically infarcted rat myocardiuminfluence of the calpain inhibitor CAL 9961. Br J Pharmacol. 2002; 135 (8): 1951–1958.; https://www.siboncoj.ru/jour/article/view/538
-
9Academic Journal
المؤلفون: N. Babyshkina N., S. Vtorushin V., T. Dronova A., N. Krakhmal V., M. Zavyalova V., M. Tsyganov M., S. Patalyak V., E. Slonimskaya M., N. Cherdyntseva V., Н. Бабышкина Н., С. Вторушин В., Т. Дронова А., Н. Крахмаль В., М. Завьялова В., М. Цыганов М., С. Паталяк В., Е. Слонимская М., Н. Чердынцева В.
المساهمون: Грант Президента РФ, РФФИ
المصدر: Siberian journal of oncology; Том 16, № 2 (2017); 27-35 ; Сибирский онкологический журнал; Том 16, № 2 (2017); 27-35 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-2
مصطلحات موضوعية: luminal breast cancer, endocrine therapy, tamoxifen, transforming growth factor b type i receptor (tgf-bri), gene polymorphism, люминальный рак молочной железы, эндокринная терапия, тамоксифен, рецептор трансформирующего фактора роста bi типа (TGF-BRI), полиморфизм генов
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/516/423; Стенина М.Б., Фролова М.А. Рак молочной железы: наиболее важные научные события и выводы последних лет. Практическая онкология. 2011; 12 (1): 6–11.; Семиглазов В.Ф., Палтуев Р.М., Семиглазов В.В., Дашян Г.А., Семиглазова Т.Ю., Криворотько П.В., Николаев К.С. Общие рекомендации по лечению раннего рака молочной железы St. Gallen-2015, адаптированные экспертами Российского общества онкомаммологов. Опухоли женской репродуктивной системы. 2015; 3: 43–60. doi: http://dx.doi.org/10.17650/1994-4098-2015-11-3-43-60.; Band A.M., Laiho M. Crosstalk of TGF-β and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 2011; 16 (2): 109–15. doi:10.1007/s10911-011-9203-7.; Derynck R., Zhang Y.E. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 2003 Oct 9; 425 (6958): 577–84.; Kleuser B., Malek D., Gust R., Pertz H.H., Potteck H., Kleuser B., Malek D., Gust R., Pertz H.H., Potteck H. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30. Mol Pharmacol. 2008 Dec; 74: 1533–43. doi:10.1124/mol.108.046854.; Ito I., Hanyu A., Wayama M., Goto N., Katsuno Y., Kawasaki S., Nakajima Y., Kajiro M., Komatsu Y., Fujimura A., Hirota R., Murayama A., Kimura K., Imamura T., Yanagisawa J. Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation. J Biol Chem. 2010 May 7; 285 (19): 14747–55. doi:10.1074/jbc. M109.093039.; Matsuda T., Yamamoto T., Muraguchi A., Saatcioglu F. Cross-talk between transforming growth factor-beta and estrogen receptor signaling through Smad3. J Biol Chem. 2001 Nov16; 276: 42908–1.; Wu L., Wu Y., Gathings B., Wan M., Li X., Grizzle W., Liu Z., Lu C., Mao Z., Cao X. Smad4 as a transcription corepressor for estrogen receptor alpha. J Biol Chem. 2003 Apr 25; 278 (17): 15192–200.; Gao N., Zhai Q., Li Y., Huang K., Bian D., Wang X., Liu C., Xu H., Zhang T. Clinical Implications of TβRII Expression in Breast Cancer. PLoS One. 2015 Nov 9; 10 (11): e0141412. doi:10.1371/journal.pone.0141412.; Paiva C.E., Drigo S.A., Rosa F.E., Moraes Neto F.A., Caldeira J.R.F., Soares F.A., Rogatto S.R. Absence of transforming growth factor-b type II receptor is associated with poorer prognosis in HER2-negative breast tumours. Annals of Oncology. 2010; 21: 734–40. doi:10.1093/annonc/mdp518.; Busch S., Sims A.H., Stål O., Fernö M., Landberg G. Loss of TGFβ receptor type 2 expression impairs estrogen response and confers tamoxifen resistance. Cancer Res. 2015 Apr 1; 75 (7): 1457–69. doi:10.1158/0008-5472.CAN-14-1583.; Gilboa L., Wells R.G., Lodish H.F., Henis Y.I. Oligomeric structure of type I and type II transforming growth factor β receptors: homodimers form in the ER and persist at the plasma membrane. J Cell Biol. 1998 Feb 23; 140 (4): 767–77.; Chen T., Jackson C.R., Link A., Markey M.P., Colligan B.M., Douglass L.E., Pemberton J.O., Deddens J.A., Graff J.R., Carter J.H. Int7G24A variant of transforming growth factor-beta receptor type I is associated with invasive breast cancer. Clin Cancer Res. 2006 Jan 15; 12 (2): 392–7.; Chen C., Zhao K.N., Masci P.P., Lakhani S.R., Antonsson A., Simpson P.T., Vitetta L. TGFβ isoforms and receptors mRNA expression in breast tumours: prognostic value and clinical implications. BMC Cancer. 2015 Dec 24; 15: 1010. doi:10.1186/s12885-015-1993-3.; de Kruijf E.M., Dekker T.J., Hawinkels L.J., Putter H., Smit V.T., Kroep J.R., Kuppen P.J., van de Velde C.J., ten Dijke P., Tollenaar R.A., Mesker W.E. The prognostic role of TGF-β signaling pathway in breast cancer patients. Ann Oncol. 2013 Feb; 24 (2): 384–90. doi:10.1093/annonc/mds333.; Song B., Margolin S., Skoglund J., Zhou X., Rantala J., Picelli S., Werelius B., Lindblom A. TGFBR1(*)6A and Int7G24A variants of transforming growth factor beta receptor 1 in Swedish familial and sporadic breast cancer. Br J Cancer. 2007 Oct 22; 97 (8): 1175–9. doi:10.1038/sj.bjc.6603961www.bjcancer.com.; https://www.siboncoj.ru/jour/article/view/516
-
10Academic Journal
المؤلفون: N. Litviakov V., M. Tsyganov M., M. Ibragimova K., I. Deryusheva V., P. Kazantseva V., I. Mitrofanova V., I. Frolova G., M. Buldakov A., E. Slonimskaya M., E. Choinzonov L., Yu. Kzhyshkovska G., N. Cherdyntseva V., Н. Литвяков В., М. Цыганов М., М. Ибрагимова К., И. Дерюшева В., П. Казанцева В., И. Митрофанова В., И. Фролова Г., М. Булдаков А., Е. Слонимская М., Е. Чойнзонов Л., Ю. Кжышковска Г., Н. Чердынцева В.
المصدر: Siberian journal of oncology; Том 16, № 6 (2017); 47-56 ; Сибирский онкологический журнал; Том 16, № 6 (2017); 47-56 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-6
مصطلحات موضوعية: breast cancer, tumor-associated macrophages, gene expression, tumor progression, рак молочной железы, опухолеассоциированные макрофаги, экспрессия генов, опухолевая прогрессия
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/641/490; Kaufmann M., von Minckwitz G., Mamounas E.P., Cameron D., Car-ey L.A., Cristofanilli M., Denkert C., Eiermann W., Gnant M., Harris J.R., Karn T., Liedtke C., Mauri D., Rouzier R., Ruckhaeberle E., Semiglazov V., Symmans W.F., Tutt A., Pusztai L. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol. 2012; 19 (5): 1508–16. doi:10.1245/s10434-011-2108-2.; Liu B., Ezeogu L., Zellmer L., Yu B., Xu N., Joshua Liao D. Protecting the normal in order to better kill the cancer. Cancer Med. 2015; 4 (9): 1394–403. doi:10.1002/cam4.488.; Kim E.S. Chemotherapy Resistance in Lung Cancer. Lung Cancer and Personalized Medicine: Springer. 2016: 189–209. doi:10.1007/978-3-319-24223-1_10.; Findlay J.M., Castro-Giner F., Makino S., Rayner E., Kartsonaki C., Cross W., Kovac M., Ulahannan D., Palles C., Gillies R.S., MacGregor T.P., Church D., Maynard N.D., Buffa F., Cazier J.B., Graham T.A., Wang L.M., Sharma R.A., Middleton M., Tomlinson I. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat Commun. 2016 Apr 5; 7: 11111. doi:10.1038/ncomms11111.; Ibragimova M., Tsyganov M., Litviakov N. Natural and chemotherapy-induced clonal evolution of tumors. Biochemistry (Mosc). 2017 Apr; 82 (4): 413–425. doi:10.1134/S0006297917040022.; De Palma M., Lewis C.E. Cancer: Macrophages limit chemotherapy. Nature. 2011 Apr 21; 472 (7343): 303–4. doi:10.1038/472303a.; Hughes R., Qian B.Z., Rowan C., Muthana M., Keklikoglou I., Olson O.C., Tazzyman S., Danson S., Addison C., Clemons M., Gonzalez-Angulo A.M., Joyce J.A., De Palma M., Pollard J.W., Lewis C.E. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 2015 Sep 1; 75 (17): 3479–91. doi:10.1158/0008-5472. CAN-14-3587.; Yang J., Li X., Liu X., Liu Y. The role of tumor-associated macrophages in breast carcinoma invasion and metastasis. Int J Clin Exp Pathol. 2015 Jun 1; 8 (6): 6656–64.; Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41: 49–61. doi:10.1016/j. immuni.2014.06.010.; Riabov V., Gudima A., Wang N., Mickley A., Orekhov A., Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014; 5: 75. doi:10.3389/ fphys.2014.00075.; Mitchem J.B., Brennan D.J., Knolhoff B.L., Belt B.A., Zhu Y., Sanford D.E., Belaygorod L., Carpenter D., Collins L., Piwnica-Worms D., Hewitt S., Udupi G.M., Gallagher W.M., Wegner C., West B.L., Wang-Gillam A., Goedegebuure P., Linehan D.C., DeNardo D.G. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013; 73: 1128–1141. doi:10.1158/0008-5472.; Zitvogel L., Galluzzi L., Smyth M.J., Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity. 2013; 39: 74–88. doi:10.1016/j. immuni.2013.06.014.; Mantovani A., Biswas S.K., Galdiero M.R., Sica A., Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013 Jan; 229 (2): 176–85. doi:10.1002/path.4133.; Mantovani A., Locati M. Tumor-Associated Macrophages as a Paradigm of Macrophage Plasticity, Diversity, and Polarization Lessons and Open Questions. Arterioscler Thromb Vasc Biol. 2013; 33: 1478–1483. doi:10.1161/ATVBAHA.113.300168.; DeNardo D.G., Brennan D.J., Rexhepaj E., Ruffell B., Shiao S.L., Madden S.F., Gallagher W.M., Wadhwani N., Keil S.D., Junaid S.A., Rugo H.S., Hwang E.S., Jirström K., West B.L., Coussens L.M. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Disc. 2011; 1: 54–67. doi:10.1158/2159-8274.CD-10-0028.; Dijkgraaf E.M., Heusinkveld M., Tummers B., Vogelpoel L.T., Goedemans R., Jha V., Nortier J.W., Welters M.J., Kroep J.R., van der Burg S.H. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res. 2013; 73: 2480–92. doi:10.1158/0008-5472.; Kzhyshkowska J., Gratchev A., Goerdt S. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomarker Insights. 2007; 2: 128–46.; Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem. 2016; 397: 231–47. doi:10.1515/hsz-2015-0269.; Shao R., Hamel K., Petersen L., Cao J.Q., Arenas R.B., Bigelow C., Bentley B., Yan W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene. 2009; 28: 4456. doi:10.1038/onc.2009.292.; Gratchev A., Kzhyshkowska J., Kannookadan S., Ochsenreiter M., Popova A., Yu X., Mamidi S., Stonehouse-Usselmann E., Muller-Molinet I., Gooi L., Goerdt S. Activation of a TGF-β-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J Immunol. 2008; 180: 6553–65.; Lin L., Chen Y.S., Yao Y.D., Chen J.Q., Chen J.N., Huang S.Y., Zeng Y.J., Yao H.R., Zeng S.H., Fu Y.S., Song E.W. CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotar-get. 2015; 6: 34758–34773. doi:10.18632/oncotarget.5325.; Chen J., Yao Y., Gong C., Yu F., Su S., Chen J., Liu B., Deng H., Wang F., Lin L., Yao H., Su F., Anderson K.S., Liu Q., Ewen M.E., Yao X., Song E. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 2011; 19: 541–555. doi:10.1016/j.ccr.2011.02.006.; Nagarsheth N., Wicha M.S., Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017 Sep 30; 17 (9): 559–572. doi:10.1038/nri.2017.49.; Schwartz G.F., Hortobagyi G.N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Cancer. 2004; 100 (12): 2512–32.; Wolff A.C., Hammond M.E., Hicks D.G., Dowsett M., McShane L.M., Allison K.H., Allred D.C., Bartlett J.M., Bilous M., Fitz-gibbons P., Hanna W., Jenkins R.B., Mangu P.B., Paik S., Perez E.A., Press M.F., Spears P.A., Vance G.H., Viale G., Hayes D.F.; American Society of Clinical Oncology; College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Medicine. 2007; 131: 18–43. doi:10.1043/1543-2165(2007)131[18:ASOCCO]2.0.CO;2.; Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M., Denisov E.V., Garbukov E.Y., Merzliakova M.K., Volkomorov V.V., Vtorushin S.V., Zavyalova M.V., Slonimskaya E.M., Perelmuter V.M. Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response. Cancer Chemother Pharmacol. 2013; 71 (1): 153–63. doi:10.1007/s00280-012-1992-x.; Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M., Slonimskaya Е.M., Ibragimova M.K., Kazantseva P.V., Kzhyshkowska J., Choinzonov E.L. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy. Oncotarget. 2016 Feb 16; 7 (7): 7829–41. doi:10.18632/oncotarget.6953.; Pfaffl M.W., Lange I.G., Daxenberger A., Meyer H.H. Tissue-specific expression pattern of estrogen receptors (ER): quantification of ER alpha and ER beta mRNA with real-time RT-PCR. APMIS. 2001 May; 109 (5): 345–55.; Martinez F.O., Helming L., Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009; 27: 451–83. doi:10.1146/annurev.immunol.021908.132532.; Schutyser E., Richmond A., Van Damme J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J Leukoc Biol. 2005; 78: 14–26.; Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem. 2016 Mar; 397 (3): 231–47. doi:10.1515/hsz-2015-0269.; Leung S.Y., Yuen S.T., Chu K.M., Mathy J.A., Li R., Chan A.S., Law S., Wong J., Chen X., So S. Expression profiling identifies chemokine (C-C motif) ligand 18 as an independent prognostic indicator in gastric cancer. Gastroenterol. 2004; 127: 457–469.; Sainz Jr. B., Martin B., Tatari M., Heeschen C., Guerra S. ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res. 2014 Dec 15; 74 (24): 7309–20. doi:10.1158/0008-5472. CAN-14-1354.; https://www.siboncoj.ru/jour/article/view/641
-
11Academic Journal
المؤلفون: M. Zavjalova V., N. Telegina S., S. Vtorushin V., V. Perelmute M., E. Slonimskaya M., E. Denisov V., N. Cherdyntseva V., S. Patalyak V., N. Skryabin A., K. Khristenko Yu., М. Завьялова В., Н. Телегина С., С. Вторушин В., В. Перельмутер М., Е. Слонимская М., Е. Денисов В., Н. Чердынцева В., С. Паталяк В., Н. Скрябин А., К. Христенко Ю.
المصدر: Siberian journal of oncology; № 2 (2013); 41-44 ; Сибирский онкологический журнал; № 2 (2013); 41-44 ; 2312-3168 ; 1814-4861 ; undefined
مصطلحات موضوعية: breast cancer, luminal A breast cancer, lymphogenic metastasis, рак молочной железы, люминальный тип А, лимфогенное метастазирование
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/93/95; Аксель Е.М., Давыдов М.И. Заболеваемость злокачественными новообразованиями населения России и стран СНГ в 2008 г // Вестник РОНЦ им. Н.Н. Блохина РАМН. 2011. Т. 22, № 3. С. 54–92.; Кулигина Е.Ш. Эпидемиологические и молекулярные аспекты рака молочной железы // Практическая онкология. 2010. Т. 11, № 4. C. 203–216.; Перельмутер В.М., Завьялова М.В., Вторушин С.В. и др. Генетические и клинико-патологические особенности рака молочной железы у больных с сохраненной менструальной функцией и в менопаузе // Успехи геронтологии. 2008. Т. 21, № 4. С. 643–654.; Писарева Л.Ф., Бояркина А.П., Панферова Е.В. и др. Заболеваемость раком молочной железы женского населения Иркутской области. Факторы риска // Сибирский онкологический журнал. 2012. № 5 (53). С. 12–17.; Parker J.S., Mullins M., Cheang M.C. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes // J. Clin. Oncol. 2009. Vol. 27 (8). P. 1160–1167.; Perou C.M., Sorlie T., Eisen M.B. et al. Molecular portraits of human breast tumours // Nature. 2000. Vol. 406. Р. 747–752.; Weigelt B., Mackay A., A’hern R. et al. Breast cancer molecular profiling with single sample predictors: a retrospective analysis // Lancet Oncol. 2010. Vol. 11 (4). P. 339-349.; Zavyalova M.V., Perelmuter V.M., Vtorushin S.V. et al. The presence of alveolar structures in invasive ductal NOS breast carcinoma is associated with lymph node metastasis // Diagn. Cytopathol. 2013. Vol. 41(3). P. 279–282.; https://www.siboncoj.ru/jour/article/view/93; undefined
-
12Academic Journal
المؤلفون: K. Simonov A., Zh. Startseva A., E. Slonimskaya M., К. Симонов А., Ж. Старцева А., Е. Слонимская М.
المصدر: Siberian journal of oncology; № 1 (2015); 76-83 ; Сибирский онкологический журнал; № 1 (2015); 76-83 ; 2312-3168 ; 1814-4861 ; undefined
مصطلحات موضوعية: breast cancer, radical mastectomy, locoregional recurrence, adjuvant radiation therapy, prognostic factors, рак молочной железы, радикальная мастэктомия, рецидив, адъювантная лучевая терапия, факторы прогноза
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/113/115; Ефимкина Ю.В., Гладилина И.А., Шабанов М.А. Сравнительный анализ отдаленных результатов лечения больных раком молочной железы I–IIA стадий в зависимости от основных прогностических факторов // Опухоли женской репродуктивной системы. 2010. № 4. С. 6–9.; Жогина Ж.А., Мусабаева Л.И., Слонимская Е.М. Показания к выбору объема адъювантной лучевой терапии при радикальной ма стэктомии у больных раком молочной // Сибирский онкологический журнал. 2005. № 3. С. 3–10.; Симонов К.А., Старцева Ж.А., Слонимская Е.М. Отдаленные результаты комплексного лечения больных раком молочной железы с использованием различного объема адъювантной лучевой терапии // Сибирский онкологический журнал. 2013. № 2. С. 30–35.; Симонов К.А., Старцева Ж.А., Слонимская Е.М. Роль адъю вантной лучевой терапии в комплексном лечении больных раком молочной железы // Бюллетень Сибирского отделения Российской академии медицинских наук. 2012. Т. 32, № 6. С. 34–40.; Старцева Ж.А., Великая В.В., Симонов К.А., Мусабаева Л.И. Послеоперационная лучевая терапия как метод профилактики мест ных рецидивов рака молочной железы // Радиация и риск. 2013. Т. 22, № 3. С. 72–79.; Старцева Ж.А., Симонов К.А., Слонимская Е.М. Дифферен цированный подход к назначению адъювантной лучевой терапии у больных операбельным раком молочной железы // Радиация и риск. 2014. Т. 23, № 2. С. 102–111.; Щепотин И.Б., Зотов А.С., Зайчук В.В. Факторы риска развития местных рецидивов инвазивного рака молочной железы // Онкология. 2010. Т. 4, № 12. С. 347–350.; Abi-Raad R., Boutrus R., Wang R., Niemierko A., Macdonald S., Smith B., Taghian A.G. Patterns and risk factors of locoregional recurrence in T1–T2 node negative breast cancer patients treated with mastectomy: implications for postmastectomy radiotherapy // Int. J. Radiat. Oncol. Biol. Phys. 2011. Vol. 81 (3). Р. 151–157. doi:10.1016/j.ijrobp.2011.01.015.; Altinyollar H., Berberoрlu U., Irkin F. The correlation of extranodal invasion with other prognostic parameters in lymph node positive breast cancer // J. Surg. Oncol. 2007. Vol. 95 (7). Р. 567–571.; AndersonP., FreedmanG., Nicolaou N., Sharma N., Li T., Topham N., Morrow M. Postmastectomy chest wall radiation to a temporary tissue expander or permanent breast implant--is there a difference in complication rates? // Int. J. Radiat. Oncol. Biol. Phys. 2009. Vol. 74 (1). P. 81–85. doi:10.1016/j.ijrobp.2008.06.1940.; Bauman L., Barth R.J., Rosenkranz K.M. Breast conservation in women with multifocal-multicentric breast cancer: is it feasible? // Ann. Surg. Oncol. 2010. Suppl. 3. Р. 325–329. doi:10.1245/s10434-010-1247-1.; Ceilley E., Jagsi R., Goldberg S., Grignon L., Kachnic L., Powell S., Taghian A. Radiotherapy for invasive breast cancer in North America and Europe: results of a survey // Int. J. Radiat. Oncol. Biol. Phys. 2005. Vol. 61. (2). P. 365–367.; Childs S.K., Chen Y.H., Duggan M.M., Golshan M., Pochebit S., Wong J.S., Bellon J.R. Surgical margins and the risk of local-regional recurrence after mastectomy without radiation therapy // Int. J. Radiat. Oncol. Biol. Phys. 2012. Vol. 84 (5). Р. 1133–1138. doi:10.1016/j.ijrobp.2012.02.048.; Clarke M., Collins R., Darby S., Davies C., Elphinstone P., Evans E., Godwin J., Gray R., Hicks C., James S., MacKinnon E., McGale P., McHugh T., Peto R., Taylor C., Wang Y. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15 year survival: an overview of the randomized trials // Lancet. 2005. Vol. 366 (9503). Р. 2087–2106.; Dragun A.E., Huang B., Gupta S., Crew J.B., Tucker T.C. One Decade Later: Trends and Disparities in the Application of Post-Mastectomy Radiotherapy Since the Release of the American Society of Clinical Oncology Clinical Practice Guidelines // Int. J. Radiat. Oncol. Biol. Phys. 2012. Vol. 83 (5). e. 591–596. doi:10.1016/j.ijrobp.2012.02.002.; Duraker N., Demi D., Bati B., Yilmaz B.D., Bati Y., Çaynak Z.C., Sobutay E. Survival Benefit of Post-mastectomy Radiotherapy in Breast Carcinoma Patients with T1-2 Tumor and 1–3 Axillary Lymph Node(s) Metastasis // Jpn. J. Clin. Oncol. 2012. Vol. 42 (7). Р. 601–608. doi:10.1093/jjco/hys052.; Floyd S.R., Taghian A.G. Post-mastectomy radiation in large nodenegative breast tumors: does size really matter? // Radiother Oncol. 2009. Vol. 91 (1). Р. 33–37. doi:10.1016/j.radonc.2008.09.015.; Fodor J., Polgar C., Major T., Németh G. Locoregional failure 15 years after mastectomy in women with one to three positive axillary nodes with or without irradiation the significance of tumor size // Strahlenther Onkol. 2003. Vol. 179 (3). Р. 197–202.; Fortin A., Dagnault A., Blondeau L., Vu T.T., Larochelle M. The impact of the number of excised axillary nodes and of the percentage of involved nodes on regional nodal failure in patients treated by breastconserving surgery with or without regional irradiation // Int. J. Radiat. Oncol. Biol. Phys. 2006. Vol. 65 (1). Р. 33–39.; Garg A.K., Strom E.A., McNeese M.D., Buzdar A.U., Hortobagyi G.N., Kuerer H.M., Perkins G.H., Singletary S.E., Hunt K.K., Sahin A., Schechter N., Valero V., Tucker S.L., Buchholz T.A. T3 disease at presentation or pathologic involvement of four or more lymph nodes predict for locoregional recurrence in stage II breast cancer treated with neoadjuvant chemotherapy and mastectomy without radiotherapy // Int. J. Radiat. Oncol. Biol. Phys. 2004. 59 (1). P. 138–145.; Goldhirsch A., Ingle J.N., Gelber R.D., Coates A.S., Thürlimann B., Senn H.J. Thresholds for therapies: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer // Ann. Oncol. 2009. Vol. 20. Р. 1319–1329. doi:10.1093/annonc/mdp322.; Hamamoto Y., Ohsumi Sh., Aogi K., Shinohara S., Nakajima N., Kataoka M., Takashima S. Impact of aggregate of risk factors for isolated locoregional failure in breast cancer patients treated with mastectomy without radiotherapy // Breast Cancer. 2013. Vol. 20 (3). Р. 247–253. doi:10.1007/s12282-012-0335-4.; Hastings J., Iganej S., Huang C., Huang R., Slezak J. Risk Factors for Locoregional Recurrence After Mastectomy in Stage T1N0 Breast Cancer // Am. J. Clin. Oncol. 2014. Vol. 37 (5). P. 486–491. doi:10.1097/COC.0b013e31827e54c2.; Jagsi R., Raad R.A., Goldberg S., Sullivan T., Michaelson J., Powell S.N., Taghian A.G. Locoregional recurrence rates and prognostic factors for failure in node-negative patients treated with mastectomy: implications for postmastectomy radiation // Int. J. Radiat. Oncol. Biol. Phys. 2005. Vol. 62 (4). P. 1035–1039.; Kubicky C., Mongoue-Tchokote S. Prognostic Significance of the Number of Positive Lymph Nodes in Women With T1-2N1 Breast Cancer Treated With Mastectomy: Should Patients With 1, 2, and 3 Positive Lymph Nodes Be Grouped Together? // Int. J. Radiat. Oncol. Biol. Phys. 2013. Vol. 85 (5). P. 1200–1205. doi:10.1016/j.ijrobp.2012.11.005.; Kunkler I.H., Canney P., van Tienhoven G., Russell N.S. Elucidating the role of chest wall irradiation in ‘intermediate-risk’ breast cancer: The MRC/EORTC SUPREMO trial // Clin. Oncol. (R Coll Radiol). 2008. Vol. 20 (1). Р. 31–34.; Kyndi M., Srensen F.B., Knudsen H., Overgaard M., Nielsen H.M., Overgaard J. Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: The Danish Breast Cancer Cooperative Group // J. Clin. Oncol. 2008. Vol. 26 (9). Р. 1419–1426. doi:10.1200/JCO.2007.14.5565.; Lee J.C., Truong P.T., Kader H.A., Speers C.H., Olivotto I.A. Postmastectomy radiotherapy reduces locoregional recurrence in elderly women with high-risk breast cancer // Clin. Oncol. 2005. Vol. 17. (8). P. 623–629.; Livi L., Meattini I., Di Cataldo V., Cardillo Cde L., Scotti V., Sanchez L., Nori J., Agresti B., Iermano C., Pasquetti E.M., Bianchi S., Cataliotti L., Biti G. Postmastectomy radiotherapy in breast cancer adjuvant treatment // Minerva Chir. 2010. Vol. 65 (5). P. 527–536.; Martinez-Ramos D., Escrig J., Torrella A., Hoashi J.S., Alcalde M., Salvador J.L. Risk of recurrence of non-metastatic breast cancer in women under 40 years: a population registry cancer study in a European country // Breast J. 2012. Vol. 18. (2). Р. 118–123. doi:10.1111/j.15244741.2011.01208.x.; Matsunuma R., Oguchi M., Fujikane T., Matsuura M., Sakai T., Kimura K., Morizono H., Iijima K., Izumori A., Miyagi Y., Nishimura S., Makita M., Gomi N., Horii R., Akiyama F., Iwase T. Influence of lymphatic invasion on locoregional recurrence following mastectomy: indication for postmastectomy radiotherapy for breast cancer patients with one to three positive nodes // Int. J. Radiat. Oncol. Biol. Phys. 2012. Vol. 83 (3). Р. 845–852. doi:10.1016/j.ijrobp.2011.08.029.; Miles R.C., Gullerud R.E., Lohse C.M., Jakub J.W., Degnim A.C., Boughey J.C. Local recurrence after breast-conserving surgery: multivariable analysis of risk factors and the impact of young age // Ann. Surg. Oncol. 2012. Vol. 19 (4). Р. 1153–1159. doi:10.1245/s10434-011-2084-6.; Moo T. A., McMillan R., Lее M., Stempel M., Patil S., Ho A., ElTamer M. Selection Criteria for Postmastectomy Radiotherapy in T1–T2 Tumors with 1 to 3 Positive Lymph Nodes // Ann. Surg. Oncol. 2013. Vol. 20 (10). Р. 3169–3174. doi:10.1245/s10434-013-3117-0.; Munshi A., Prabhu A., Kunkler I. Post mastectomy radiotherapy in one to three lymph node positive breast cancer // Acta Oncol. 2012. Vol. 51 (4). Р. 547–550. doi:10.3109/0284186X.2011.633929.; Nagao Т., Kinoshita Т., Tamura N., Hojo T., Morota M., Kagami Y. Locoregional recurrence risk factors in breast cancer patients with positive axillary lymph nodes and the impact of postmastectomy radiotherapy // Int. J. Clin. Oncol. 2013. Vol. 18 (1). Р. 54–61. doi:10.1007/s10147-0110343-y.; Nixon A., Neuberg D., Hayes D., Gelman R., Connolly J.L., Schnitt S., Abner A., Recht A., Vicini F., Harris J.R. Relationship of patients age to pathologic features of the tumor and prognosis for patients with stage 1 or 11 breast cancer // J. Clin. Oncol. 1994. Vol. 12. Р. 888–894.; Overgaard M., Nielsen H.M., Overgaard J. Is the benefit of postmastectomy irradiation limited to patients with four or more positive nodes, as recommended in international consensus reports? A subgroup analysis of the DBCG 82 b&c randomized trials // Radiother. Oncol. 2007. Vol. 82 (3). P. 247−253.; Panoff J.E., Hurley J., Takita C., Reis I.M., Zhao W., Sujoy V., Gomez C.R., Jorda M., Koniaris L., Wright J.L. Risk of locoregional recurrence by receptor status in breast cancer patients receiving modern systemic therapy and post-mastectomy radiation // Breast Cancer Res. Treat. 2011. Vol. 128 (3). Р. 899–906. doi:10.1007/s10549-011-1495-1.; Patani N., Carpenter R. Oncological and aesthetic considerations of conservational surgery for multifocal/multicentric breast cancer // Breast J. 2010. Vol. 16 (3). Р. 222–232. doi:10.1111/j.1524-4741.2010.00917.x.; Paul S., Srivastava K., Chaudhuri T., Rathor S. Post-mastectomy radiotherapy for one to three axillary node positive early breast cancer: To radiate or not to radiate? // Clin. Cancer Investig J. 2013. Vol. 2. Р. 14–19.; Poortmans P. Evidence based radiation oncology: Breast cancer // Radiother. Oncol. 2007. Vol. 84 (1). P. 84–101.; Raghav K.P., Hernandez-Aya L.F., Lei X., Chavez-Macgregor M., Meric-Bernstam F., Buchholz T.A., Sahin A., Do K.A., Hortobagyi G.N., Gonzalez-Angulo A.M. Impact of Low Estrogen/Progesterone Receptor Expression on Survival Outcomes in Breast Cancers Previously Classified as Triple Negative Breast Cancers // Cancer. 2012. Vol. 118 (6). Р. 1498–1506. doi:10.1002/cncr.26431.; Recht A., Edge S., Solin L., Robinson D.S., Estabrook A., Fine R.E., Fleming G.F., Formenti S., Hudis C., Kirshner J.J., Krause D.A., Kuske R.R., Langer A.S., Sledge G.W. Jr., Whelan T.J., Pfister D.G. Postmastectomy radiotherapy guidelines of the American Society of Clinical Oncology // J. Clin. Oncol. 2001. Vol. 19 (5). Р. 1539–1569.; Schiffman S.C., McMasters K.M., Scoggins C.R., Martin R.C., Chagpar A.B. Lymph node ratio: a proposed refinement of current axillary staging in breast cancer patients // J. Am. Coll. Surg. 2011. Vol. 213 (1). Р. 45–52. doi:10.1016/j.jamcollsurg.2011.04.024.; Sheikh F., Rebecca А., Pockaj B., Wasif N., McCullough A.E., Casey W., Kreymerman P., Gray R.J. Inadequate Margins of Excision When Undergoing Mastectomy for Breast Cancer: Which Patients are at Risk? // Ann. Surg. Oncol. 2011. Vol. 18 (4). Р. 952–956. doi:10.1245/s10434-010-1406-4.; Sobin L.H., Greene F.L. Multifocal/multicentric breast carcinoma // Cancer. 2004. Vol. 100 (11). Р. 2488–2489.; Stranzl H., Ofner P., Peintinger F. Postoperative irradiation in breast cancer patients with one to three positive axillary lymph nodes. Is there an impact of axillary extranodal tumor extension on locoregional and distant control? // Strahlenther. Onkol. 2006. Vol. 182. Р. 583–588.; Taylor M.E., Haffty B.G., Rabinovitch R., Arthur D.W., Halberg F.E., Strom E.A., White J.R., Cobleigh M.A., Edge S.B. ACR appropriateness criteria on postmastectomy radiotherapy expert panel on radiation oncologybreast // Int. J. Radiat. Oncol. Biol. Phys. 2009. Vol. 73 (4). P. 997–1002. doi:10.1016/j.ijrobp.2008.10.080.; Trovo M., Durofil E., Polesel J., Roncadin M., Perin T., Mileto M., Piccoli E., Quitadamo D., Massarut S., Carbone A., Trovo M.G. Locoregional Failure in Early-Stage Breast Cancer Patients Treated With Radical Mastectomy and Adjuvant Systemic Therapy: Which Patients Benefit From Postmastectomy Irradiation? // Int. J. Radiat. Oncol. Biol. Phys. 2012. Vol. 83 (2). Р. 153–157. doi:10.1016/j.ijrobp.2011.12.050.; Truong P.T., Olivotto I.A., Kader H.A., Panades M., Speers C.H., Berthelet E. Selecting breast cancer patients with T1–T2 tumors and one to three positive axillary nodes at high postmastectomy locoregional recurrence risk for adjuvant radiotherapy // Int. J. Radiat. Oncol. Biol. Phys. 2005. Vol. 61 (5). P. 1337–1347.; Truong P.T., Woodward W.A., Thames H.D., Ragaz J., Olivotto I.A., Buchholz T.A. The ratio of positive to excised nodes identifies high-risk subsets and reduces inter-institutional differences in locoregional recurrence risk estimates in breast cancer patients with 1–3 positive nodes: an analysis of prospective data from British Columbia and the M. D. Anderson Cancer Center // Int. J. Radiat. Oncol. Biol. Phys. 2007. Vol. 68 (1). P. 59–65.; Ustaalioglu B.O., Bilici A., Kefeli U., Şeker M., Oncel M., Gezen C., Gumus M., Demirelli F. The importance of multifocal/multicentric tumor on the disease-free survival of breast cancerpatients: single center experience // Am. J. Clin. Oncol. 2012. Vol. 35 (6). Р. 580–586. doi:10.1097/COC.0b013e31822d9cd6.; Wallgren A., Bonetti M., Gelber R., Goldhirsch A., CastiglioneGertsch M., Holmberg S.B., Lindtner J., Thürlimann B., Fey M., Werner I.D., Forbes J.F., Price K., Coates A.S., Collins J. Risk factors for locoregional recurrence among breast cancer patients: results from International Breast Cancer Study Group Trials I through VII // J. Clin. Oncol. 2003. Vol. 21 (7). Р. 1205–1213.; Yang P.S., Chen C.M., Liu M.C., Jian J.M., Horng C.F., Liu M.J., Yu B.L., Lee M.Y., Chi C.W. Radiotherapy can decrease locoregional recurrence and increase survival in mastectomy patients with T1 to T2 breast cancer and one to three positive nodes with negative estrogen receptor and positive lymphovascular invasion status // Int. J. Radiat. Oncol. Biol. Phys. 2010. Vol. 77 (2). Р. 516–522. doi:10.1016/j.ijrobp.2009.05.016.; https://www.siboncoj.ru/jour/article/view/113; undefined
-
13Academic Journal
المؤلفون: E. Slonimskaya M., N. Tarabanovskaya A., A. Doroshenko V., S. Patalyak V., Е. Слонимская М., Н. Тарабановская А., А. Дорошенко В., С. Паталяк В.
المصدر: Siberian journal of oncology; Том 15, № 3 (2016); 37-42 ; Сибирский онкологический журнал; Том 15, № 3 (2016); 37-42 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-3
مصطلحات موضوعية: breast cancer, neoadjuvanct chemotherapy, capecitabine, immediate tumor response, metastasis-free survival, рак молочной железы, неоадъювантная химиотерапия, капецитабин, непосредственная эффективность, безметастатическая выживаемость
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/347/342; Слонимская Е.М., Брагина О.В., Тарабановская Н.А., Дорошенко А.В., Гарбуков Е.Ю. Опыт применения капецитабина в неоадъювантной химиотерапии рака молочной железы // Современная онкология. 2012. № 4. С. 22–25.; Bonnefoi H., Litière S., Piccart M., MacGrogan G., Fumoleau P., Brain E., Petit T., Rouanet P., Jassem J., Moldovan C., Bodmer A., Zaman K., Cufer T., Campone M., Luporsi E., Malmström P., Werutsky G., Bogaerts J., Bergh J., Cameron D.A. Pathological complete response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified breast cancer intrinsic subtypes: a landmark and two-step approach analyses from the EORTC 10994/BIG 1-00 phase III trial // Ann. Oncol. 2014. Vol. 25 (6). Р. 1128–1136. doi:10.1093/annonc/mdu118.; Hatzis C., Symmans W.F., Zhang Y., Gould R., Moulder S., Hunt K.K., Abu-Khalaf M.M., Hofstatter E., Lannin D.R., Chagpar A.B., Pusztai L. Relationship between complete pathologic response to neoadjuvant chemotherapy and survival in triple negative breast cancer // Clin. Cancer Res. 2016. Vol. 22 (1). P. 26–33. doi:10.1158/1078-0432.CCR-14-3304.; Eremin J., Cowley G., Walker L.G., Murray E., Stovickova M., Eremin O. Women with large (≥3 cm) and locally advanced breast cancers (T3, 4, N1, 2, M0) receiving neoadjuvant chemotherapy (NAC: cyclophosphamide, doxorubicin, docetaxel): addition of capecitabine improves 4-year disease-free survival // Springerplus. 2015. Vol. 4. P. 9. doi:10.1186/2193-1801-4-9.; Kaufmann M., Von Minckwitz G., Mamounas E.P., Cameron D., Carey L.A., Cristofanilli M., Denkert C., Eiermann W., Gnant M., Harris J.R., Karn T., Liedtke C., Mauri D., Rouzier R., Ruckhaeberle E., Semiglazov V., Symmans W.F., Tutt A., Pusztai L. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer // Ann. Surg. Oncol. 2012. Vol. 19 (5). Р. 1508–1516. doi:10.1245/s10434-011-2108-2.; Luangdilok S., Samarnthai N., Korphaisarn K. Association between Pathological Complete Response and Outcome Following Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer Patients // J. Breast Cancer. 2014. Vol. 17 (4). Р. 376–385. doi:10.4048/jbc.2014.17.4.376.; Miller M., Ottesen R.A., Niland J.C., Kruper L., Chen S.L., Vito C. Tumor response ratio predicts overall survival in breast cancer patients treated with neoadjuvant chemotherapy // Ann. Surg. Oncol. 2014. Vol. 21 (10). P. 3317–3323. doi:10.1245/s10434-014-3922-0.; Steger G.G., Greil R., Lang A., Rudas M., Fitzal F., Mlineritsch B., Hartmann B. L., Bartsch R., Melbinger E., Hubalek M., Stoeger H., Dubsky P., Ressler S., Petzer A.L., Singer C. F., Muss C., Jakesz R., Gampenrieder S.P., Zielinski C.C., Fesl C., Gnant M. Epirubicine and docetaxel with or without capecitabine as neoadjuvant treatment for early breast cancer: final results of a randomized phase III study (ABCSG-24) // Ann. Oncol. 2014. Vol. 25 (2). P. 366–371. doi:10.1093/annonc/mdt508.; Symmans W.F., Peintinger F., Hatzis C., Rajan R., Kuerer H., Valero V., Assad L., Poniecka A., Hennessy B., Green M., Buzdar A.U., Singletary S.E., Hortobagyi G.N., Pusztai L. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy // J. Clin. Oncol. 2007. Vol. 25 (28). P. 4414–4422.; Teshome M., Hunt K.K. Neoadjuvant Therapy in the Treatment of Breast Cancer // Surg. Oncol. Clin. N. Am. 2014. Vol. 23 (3). Р. 505–523. doi:10.1016/j.soc.2014.03.006; Haddad T.C., Goetz M.P. Landscape of neoadjuvant therapy for breast cancer // Ann. Surg. Oncol. 2015. Vol. 22 (5). P. 1408–1415. doi:10.1245/s10434-015-4405-7.; Rapoport B.L., Demetriou G.S., Moodley S.D., Benn C.A. When and how do I use neoadjuvant chemotherapy for breast cancer? // Curr. Treat. Option. 2014. Vol. 15 (1). Р. 86–98. doi:10.1007/s11864-013-0266-0.; Rastogi P., Geyer C.E. Jr., Mamounas E.P., DeMichele A. Drug development: neoadjuvant opportunities in breast cancer // Am. Soc. Clin. Oncol. Educ. Book. 2013. P. 73–79. doi:10.1200/EdBook_AM.2013.33.73.; https://www.siboncoj.ru/jour/article/view/347
-
14Academic Journal
المؤلفون: E. Usynin A., L. Spirinа V., E. Slonimskaya M, I. Kondakova V., E. Grigoriev G., A. Gorbunov K., Е. Усынин А., Л. Cпирина В., Е. Слонимская М., И. Кондакова В., Е. Григорьев Г., А. Горбунов К.
المصدر: Siberian journal of oncology; Том 15, № 6 (2016); 22-27 ; Сибирский онкологический журнал; Том 15, № 6 (2016); 22-27 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-6
مصطلحات موضوعية: bladder cancer, transcription factor HIF-1α, VEGF, transcription factor NF-κB, proteasomes, calpaines, рак мочевого пузыря, транскрипционный фактор НIР-1α, VЕGF, транскрипционный фактор NF-кВ, протеасомы, кальпаины
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/441/390; Тахауов Р.М., Чойнзонов Е.Л., Писарева Л.Ф., Карпов А.Б., Одинцова И.Н. Заболеваемость злокачественными новообразованиями населения Томской области. Здравоохранение Российской Федерации. 2003; 2: 30–32.; Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2014 году. М., 2016; 236.; Винтизенко С.И., Слонимская Е.М., Усынин Е.А., Юрмазов З.А., Хурсевич Н.А. Неоадъювантная химиотерапия в органосохранном лечении мышечно-инвазивного рака мочевого пузыря. Сибирский онкологический журнал. 2009; 2: 21–24.; Волкова М.И., Матвеев В.Б., Медведев С.В., Носов Д.А., Фигурин К.М., Хмелевский Е.В., Черняев В.А. Клинические рекомендации по диагностике и лечению больных раком мочевого пузыря. М., 2014.; Попов А.М., Карякин О.Б. Органосохраняющее лечение инвазивного рака мочевого пузыря. Российский онкологический журнал. 2005; 3: 49–52.; Sternberg C.N. Neo-adjuvant and adjuvant chemotherapy of bladder cancer: Is there a role? Ann Oncol. 2002; 13 Suppl 4: 273–9.; Griffiths G., Hall R., Sylvester R., Raghavan D., Parmar M.K. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: longterm results of the BA06 30894 trial. J Clin Oncol. 2011 Jun 1; 29 (16): 2171–7. doi:10.1200/JCO.2010.32.3139.; Grossman H.B., Natale R.B., Tangen C.M., Speights V.O., Vogelzang N.J., Trump D.L., deVere White R.W., Sarosdy M.F., Wood D.P. Jr., Raghavan D., Crawford E.D. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003 Aug 28; 349 (9): 859–66.; Takata R., Obara W., Fujioka T. Study of the prediction system for clinical response to M-VAC neoadjuvant chemotherapy for bladder cancer. Aktuelle Urol. 2010 Jan; 41 Suppl 1: S41–5. doi:10.1055/s-0029-1224655.; Fergelot P., Rioux-Leclercq N., Patard J.J. Molecular Pathways of tumour angiogenesis and new targeted therapeutical approches in renal cancer. Prog Urol. 2005; 15 (6): 1021–1029.; García-Closas M., Malats N., Real F.X., Yeager M., Welch R., Silverman D., Kogevinas M., Dosemeci M., Figueroa J., Chatterjee N., Tardón A., Serra C., Carrato A., García-Closas R., Murta-Nascimento C., Rothman N., Chanock S.J. Large-scale evaluation of candidate genes identifies association between VEGF polymorphism and bladder cancer risk. PLoS Genet. 2007 Feb 23; 3 (2): e29. doi:10.1371/journal.pgen.0030029.; Goddard J.C., Sutton C.D., Furness P.N., O’Byrne K.J., Kockelbergh R.C. Microvessel density at presentation predicts subsequent muscle invasion in superficial bladder cancer. Clin Cancer Res. 2003 Jul; 9 (7): 2583–6.; Juvekar A., Manna S., Ramaswami S., Chang T.P., Vu H.Y., Ghosh C.C., Celiker M.Y., Vancuriva I. Bortezomib induces nuclear translocation of IkBα resulting in gene-specific suppression of NF-kB-dependent transcription and induction of apoptosis in CTCL. Mol Cancer Res. 2011 Feb; 9 (2): 183–94. doi:10.1158/1541-7786.MCR-10-0368.; Spirina L.V., Kondakova I.V., Choynzonov E.L., Chigevskaya S.Y., Shishkin D.A., Kulbakin D.Y. Expression of vascular endothelial growth factor and transcription factors HIF-1 and NF-κB expression in squamous cell carcinoma of head and neck; association with proteasome and calpains activity. J Cancer Res Clin Oncol. 2013 Apr; 139 (4): 625–33. doi:10.1007/s00432-012-1366-0.; Wu W.K., Volta V., Cho C.H., Wu Y.C., Li H.T., Yu L., Li Z.J., Sung J.J. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells. Biochem Biophys Res Commun. 2009 Sep 4; 386 (4): 598–601. doi:10.1016/j.bbrc.2009.06.080.; Yue C.X., Ma J., Zhou H.J., Tang Q.L., Li L.L., Bi F., Xue Y. The effect of RhoA and proteasome inhibitor MG132 on angiogenesis in tumors. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011 Jul; 42 (4): 445–50.; Спирина Л.В., Кондакова И.В., Усынин Е.А., Винтизенко С.И. Регуляция ангиогенеза при злокачественных новообразованиях почки и мочевого пузыря. Сибирский онкологический журнал. 2008; 28: 65–70.; Кондакова И.В., Спирина Л.В., Коваль В.Д., Шашова Е.Е., Чойнзонов Е.Л., Иванова Э.В., Коломиец Л.А., Чернышова А.Л., Слонимская Е.М., Усынин Е.А., Афанасьев С.Г. Химотрипсинподобная активность и субъединичный состав протеасом в злокачественных опухолях человека. Молекулярная биология. 2014; 48 (3): 444–451.; https://www.siboncoj.ru/jour/article/view/441
-
15Academic Journal
المؤلفون: K. Simonov A., Zh. Startseva A., E. Slonimskaya M., К. Симонов А., Ж. Старцева А., Е. Слонимская М.
المصدر: Siberian journal of oncology; № 2 (2013); 30-35 ; Сибирский онкологический журнал; № 2 (2013); 30-35 ; 2312-3168 ; 1814-4861 ; undefined
مصطلحات موضوعية: breast cancer, adjuvant radiation therapy, complex treatment, рак молочной железы, адъювантная лучевая терапия, комплексное лечение
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/91/93; Геворкян В.С. Современные возможности внутритканевой лучевой терапии в комбинированном и комплексном лечении рака молочной железы центральной и медиальной локализации: Автореф. дис. … канд. мед. наук. М., 2008. 23 с.; Жогина Ж.А., Мусабаева Л.И., Слонимская Е.М. Показания к выбору объема адъювантной лучевой терапии при радикальной мастэктомии у больных раком молочной железы // Сибирский онкологический журнал. 2005. № 3 (15). С. 3–10.; Жогина Ж.А., Слонимская Е.М., Мусабаева Л.И. Влияние клинико-морфологических факторов на течение и прогноз ранних форм рака молочной железы // Сибирский онкологический журнал. 2003. № 3 (7). С. 7–10.; Пасов В.В. Патогенетические механизмы развития местных лучевых повреждений у больных раком молочной железы (обзор) // Мед. радиология и рад. безопасность. 2002. Т. 47, № 1. С. 61–67.; Ceilley E., Jagsi R., Goldberg S. et al. Radiotherapy for invasive breast cancer in North America and Europe: results of a survey // Int. J. Radiat. Oncol. Biol. Phys. 2005. Vol. 61. (2). P. 365–367.; Clarke M., Collins R., Darby S. et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials // Lancet. 2005. Vol. 366. Р. 2087–2106.; Gebski V., Lagleva M., Keech A. et al. Survival effects of postmastectomy adjuvant radiation therapy using biologically equivalent doses: A clinical perspective // J. Natl. Cancer Inst. 2006. Vol .98. Р. 26–38.; Giordano S.H., Kuo Y.F., Freeman J.L. et al. Risk of cardiac death after adjuvant radiotherapy for breast cancer // J. Natl. Cancer Inst. 2005. Vol. 97. Р. 419–424.; Gnant M., Harbeck N., Thomssen C. St. Gallen 2011: Summary of the Consensus Discussion // Breast Care (Basel). 2011. Vol. 6 (2). P.136–141.; Huang E.H., Tucker S., Strom E.A. et al. Postmastectomy radiation improves local-regional control and survival in patients with locally advanced breast cancer treated with neoadjuvant chemotherapy and mastectomy // J. Clin. Oncol. 2004. Vol. 22. Р. 4639–4647.; Jagsi R., Raad R.A., Goldberg S. et al. Locoregional recurrence rates and prognostic factors for failure in node-negative patients treated with mastectomy: implications for postmastectomy radiation // Int. J. Radiat. Oncol. Biol. Phys. 2005. Vol. 62. Р. 1035–1039.; Kunkler I.H., Canney P., van Tienhoven G., Russell N.S. Elucidating the role of chest wall irradiation in «intermediate-risk» breast cancer: The MRC/EORTC SUPREMO trial // Clin. Oncol. (R Coll. Radiol.) 2008. Vol. 20. Р. 31–34.; Livi L., Meattini I., Di Cataldo V. Postmastectomy radiotherapy in breast cancer adjuvant treatment // Minerva Chir. 2010. Vol. 65 (5). Р. 527–536.; Nagao T., Kinoshita T., Tamura N. et al. Locoregional recurrence risk factors in breast cancer patients with positive axillary lymph nodes and the impact of postmastectomy radiotherapy // Int. J. Clin. Oncol. 2013. Vol. 18 (1). P. 54–61.; Nielsen H.M., Overgaard M., Grau C. et al. Study of failure pattern among high-risk breast cancer patients with or without postmastectomy radiotherapy in addition to adjuvant systemic therapy: long-term results from the Danish Breast Cancer Cooperative Group DBCG 82 b and c randomized studies // J. Clin. Oncol. 2006. Vol. 24 (15). Р. 2268–2275.; Olivotto I.A., Truong P.T., Chua B. Postmastectomy radiation therapy: who needs it? // J. Clin. Oncol. 2004. Vol. 22 (21). Р. 4237–4239.; Overgaard M., Hansen P.S., Overgaard J. et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy // N. Engl. J. Med. 1997. Vol. 337. Р. 949–955.; Overgaard M., Jensen J., Overgaard J. et al. Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomized trial // Lancet. 1999. Vol. 353. Р. 1641–1648.; Overgaard M., Nielsen H.M., Overgaard J. Is the benefit of postmastectomy irradiation limited to patients with four or more positive nodes, as recommended in international consensus reports? A subgroup analysis of the DBCG 82 b&c randomized trials // Radiother. Oncol. 2007. Vol. 82. Р. 247–253.; Recht A., Edge S., Solin L. et al. Postmastectomy radiotherapy guidelines of the American Society of Clinical Oncology // J. Clin. Oncol. 2001. Vol. 19. Р. 1539–1569.; Russell N., Kunkler I., Canney P. Postmastectomy Radiotherapy: Will the Selective Use of Postmastectomy Radiotherapy Study End the Debate? // J. Clin. Oncol. 2009. Vol. 27 (6). P. 996–1001.; Sharma R., Bedrosian I., Lucci A. et al. Present-day locoregional control in patients with t1 or t2 breast cancer with 0 and 1 to 3 positive lymph nodes after mastectomy without radiotherapy // Ann. Surg. Oncol. 2010. Vol. 17. P. 2899–2908.; Taylor M.E., Haffty B.G., Rabinovitch R. et al. ACR appropriateness criteria on postmastectomy radiotherapy expert panel on radiation oncology-breast // Int. J. Radiat. Oncol. Biol. Phys. 2009. Vol. 73 (4). P. 997–1002.; Truong P.T., Olivotto I.A., Kader H.A. et al. Selecting breast cancer patients with T1–T2 tumors and one to three positive axillary nodes at high postmastectomy locoregional recurrence risk for adjuvant radiotherapy // Int. J. Radiat. Oncol. Biol. Phys. 2005. Vol. 61. P. 1337–1347.; Truong P.T., Woodward W.A., Thames H.D. et al. The ratio of positive to excised nodes identifies high-risk subsets and reduces interinstitutional differences in locoregional recurrence risk estimates in breast cancer patients with 1–3 positive nodes: an analysis of prospective data from British Columbia and the M. D. Anderson Cancer Center // Int. J. Radiat. Oncol. Biol. Phys. 2007. Vol. 68. P. 59–65.; Wu S.G., He Z.Y., Li F.Y. et al. The clinical value of adjuvant radiotherapy in patients with early stage breast cancer with 1 to 3 positive lymph nodes after mastectomy // Chin. J. Cancer. 2010. Vol. 29. P. 668–676.; Yang P.S., Chen C.M., Liu M.C. et al. Radiotherapy can decrease locoregional recurrence and increase survival in mastectomy patients with T1 to T2 breast cancer and one to three positive nodes with negative estrogen receptor and positive lymphovascular invasion status // Int. J. Radiat. Oncol. Biol. Phys. 2010. Vol. 77. Р. 516–522.; https://www.siboncoj.ru/jour/article/view/91; undefined
-
16Academic Journal
المؤلفون: E. Shashova E., I. Kondakova V., E. Slonimskaya M., S. Glushenko A., E. Kolegova S., Е. Шашова Е., И. Кондакова В., Е. Слонимская М., С. Глущенко А., Е. Колегова С.
المصدر: Siberian journal of oncology; № 5 (2013); 45-49 ; Сибирский онкологический журнал; № 5 (2013); 45-49 ; 2312-3168 ; 1814-4861 ; undefined
مصطلحات موضوعية: breast cancer, proteasome activity, lymph node metastasis, рак молочной железы, активность протеасом, лимфогенное метастазирование
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/238/240; Кондакова И. В., Спирина Л. В., Шашова Е. Е. и др. Активность протеасом в опухолях женской репродуктивной системы//Биоорганическая химия. 2012. Т. 38, № 1. С. 106-110; Середа Е. Е., Кондакова И. В., Слонимская Е. М. Ферменты метаболизма эстрогенов и рецепторы как факторы риска развития и прогноза при раке молочной железы//Сибирский онкологический журнал. 2004. № 1 (9). С. 35-43; Спирина Л.В., Кондакова И.В., Усынин Е.А. и др. Активность протеасом в тканях злокачественных опухолей различных локализаций//Сибирский онкологический журнал. 2009. № 5 (35). С.49-52; Спирина Л.В., Кондакова И.В., Усынин Е.А. и др. Регуляция экспрессии транскрипционных факторов и фактора роста эндотелия протеасомной системой при метастазировании рака почки//Вестник РОНЦ им. Н.Н. Блохина РАМН. 2012. Т. 23, № 1. С. 27-32; Цимоха А.С. Протеасомы: участие в клеточных процессах//Цитология. 2010. Т. 52, № 4. С. 277-300; Чойнзонов Е. Л., Спирина Л. В., Кондакова И. В. и др. Роль внутриклеточныхпротеиназврегуляцииэкспрессиитранскрипционных факторов HIF-1, NF-kB и фактора роста сосудов при лимфогенном метастазировании плоскоклеточных карцином головы и шеи//Бюллетень СО РАМН. 2012. № 6. С. 15-21; Шашова Е.Е., Кондакова И.В., Слонимская Е.М. и др. Сравнительное изучение содержания рецепторов эстрогенов и прогестерона в неизмененной, опухолевой и метастатической тканях при раке молочной железы//Сибирский онкологический журнал. 2008. № 4 (28). С. 42-45; Ben-Shahar S., Komlosh A., Nadav E. et al. 26 S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate//J. Biol. Chem. 1999. Vol. 274 (31). P. 21963-21972; Ha N.-H, Nair V.S., Reddy D.N. et al. Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes//Cancer Res. 2011. Vol.71. P. 7259-7269; Jones M.D., Liu J.C., Thomas K. A Proteasome Inhibitor, Bortezomib, Inhibits Breast Cancer Growth and Reduces Osteolysis by Downregulating Metastatic Genes//Clin. Cancer Res. 2010. Vol. 16. P. 4978-4989; Kretzer N.M., Cherian M.T., Mao C. et al. A Noncompetitive small molecule inhibitor of estrogen-regulated gene expression and breast cancer cell growth that enhances proteasome-dependent degradation of estrogen Receptor-α//J. Biol. Chem. 2010. Vol. 285 (53). P. 41863-41873; Kisselev A., Callard A., Goldberg A. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate//J. Biol. Chem. 2006. Vol. 281 (13). P. 8582-8590; Landis-Piwowar K.R., Milacic V., Chen D. et al. The proteasome as a potential target for novel anticancer drugs and chemosensitizers//Drug Resist. Updat. 2006. Vol. 9. P. 263-273; Lie C., Kiran M. Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue//Cancer Res. 2005. Vol. 65 (13). P. 5599-5606; Li C., Li R., Grandis J.R., Johnson D.E. Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells//Mol. Cancer Ther. 2008. Vol. 7 (6). P. 1647-1655; Lowry O.H., Rosenbrough N.J., Randall R.J. Protein measurement with the folin phenol reagent//J. Biol. Chem. 1951. Vol. 193. Р. 265-275; La Rosa P., Pesiri V., Leclercq G. et al. Palmitoylation regulates 17-estradiol-induced estrogen receptor-degradation and transcriptional activity//Mol. Endocrinol. 2012. Vol. 26. P. 762-764; Marx C., Yau C., Banwait S. et al. Proteasome-Regulated ERBB2 and Estrogen Receptor Pathways in Breast Cancer//Mol. Pharmacol. 2007. Vol. 71. P. 1525-1534; Milano A., Iaffaioli R.V., Caponigro F. The proteasome: a worth while target for the treatment of solid tumours?//Eur. J. Cancer. 2007. Vol 43. P. 1125-1133; Spirina L.V., Yunusova N.V., Kondakova I.V. et al. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer//Mol. Biol. Repor. 2012. Vol. 39 (9). P. 8655-86; Spirina L.V., Kondakova I.V., Choynzonov E.L. et al. Expression of vascular endothelial growth factor and transcription factors HIF-1, NF-kB expression in squamous cell carcinoma of head and neck; association with proteasome and calpain activities//J. Cancer Res. Clin. Oncol. 2013. Vol. 139. P. 625-633; Sharova N.P., Astakhova T.M., Karpova Y.D. et al. Changes in proteasome pool in human papillary thyroid carcinoma development//Centr. Eur. J. Biol. 2011. Vol. 6 (4). P. 486-496; Xie Y. Structure, Assembly and Homeostatic Regulation of the 26S Proteasome//J. Mol. Cell Biol. 2010. Vol. 2 (6). P. 308-317; Xu H., Ju D., Jarois T., Xie Y. Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells//Breast Cancer Res. Treat. 2008. Vol. 107. P. 267-274; https://www.siboncoj.ru/jour/article/view/238; undefined
-
17Academic Journal
المؤلفون: M. Tsyganov M., M. Ibragimova K., E. Slonimskaya M., N. Cherdyntseva V., N. Litviakov V., М. Цыганов М., М. Ибрагимова К., Е. Слонимская М., Н. Чердынцева В., Н. Литвяков В.
المصدر: Siberian journal of oncology; № 5 (2015); 59-66 ; Сибирский онкологический журнал; № 5 (2015); 59-66 ; 2312-3168 ; 1814-4861 ; undefined
مصطلحات موضوعية: multidrug resistance genes, single nucleotide polymorphism, breast cancer, microarray research, АВС-транспортеры, рак молочной железы, однонуклеотидный полиморфизм, микроматричное исследование
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/154/156; Литвяков Н.В. Регуляция экспрессии генов множественной лекарственной устойчивости в опухоли молочной железы при проведении неоадъювантной химиотерапии: Автореф. дис. … д-ра биол. наук. Томск, 2014. 47 с.; Литвяков Н.В. Градиентный феномен экспрессии генов множественной лекарственной устойчивости в опухоли молочной железы при проведении неоадъювантной химиотерапии: связь с прогрессированием заболевания // Сибирский онкологический журнал, 2013. № 4. С. 5–11.; Литвяков Н.В., Гарбуков Е.Ю., Слонимская Е.М., Цыганов М.М., Денисов Е.В., Вторушин С.В., Христенко К.Ю., Завьялова М.В., Чердынцева Н.В. Связь безметастатической выживаемости больных раком молочной железы и вектора изменения экспрессии генов множественной лекарственной устойчивости в опухоли при проведении неоадъювантной химиотерапии // Вопросы онкологии. 2013. Т. 59, № 3 (59). С. 334–340.; Литвяков Н.В., Чердынцева Н.В., Цыганов М.М., Денисов Е.В., Мерзлякова М.К., Гарбуков Е.Ю., Вторушин С.В., Завьялова М.В., Слонимская Е.М. Ассоциация генетического полиморфизма с изменением экспрессии генов множественной лекарственной устойчивости в опухоли молочной железы в процессе неоадъювантной химиотерапии // Медицинская генетика. 2011. Т. 10, № 10. С. 37–43.; Allen J.D., Jackson S.C., Schinkel A.H. A mutation hot spot in the Bcrp1 (Abcg2) multidrug transporter in mouse cell lines selected for Doxorubicin resistance // Cancer Res. 2002. Vol. 62 (8). P. 2294–2299.; Di Francia R., Siesto R.S., Valente D., Spart D., Berretta M. Pharmacogenomics panel test for prevention toxicity in patient who receive Fluoropirimidine/Oxaliplatin-based therapy // Eur. Rev. Med. Pharmacol. Sci. 2012. Vol. 16 (9). P. 1211–1217.; Einert T.R., Schmidt G., Binnig G. Diagnostics // Ann. Oncol. 2012. Vol. 23 (Suppl. 5): P. 12–22. doi:10.1093/annonc/mds161.; Errico A., Claudiani P., D’Addio M., Rugarli E.I. Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon // Hum. Mol. Genet. 2004. Vol. 13 (18). P. 2121–2132.; Gillet J.P., Gottesman M.M. Overcoming multidrug resistance in cancer: 35 years after the discovery of ABCB1 // Drug Resistance Updates. 2012. Vol. 15 (1–2). P. 2–4. doi:10.1016/j.drup.2012.03.001.; Gökmen-Polar Y., Toroni R.A., Hocevar B.A., Badve S., Zhao Q., Shen C., Bruckheimer E., Kinch M.S., Miller K.D. Dual targeting of EphA2 and ER restores tamoxifen sensitivity in ER/EphA2-positive breast cancer // Breast Cancer Res. Treat. 2011. Vol. 127 (2). P. 375–384. doi:10.1007/s10549-010-1004-y.; Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: role of ATP–dependent transporters // Nat. Rev. Cancer. 2002. Vol. 2 (1). P. 48–58.; He Y.J., Winham S.J., Hoskins J.M., Glass S., Paul J., Brown R., Motsinger-Reif A., McLeod H.L Carboplatin/taxane-induced gastrointestinal toxicity: a pharmacogenomics study on the SCOTROC1 trial // Pharmacogenomics J. 2015. doi:10.1038/tpj.2015.52.; Henriksen U., Gether U., Litman T. Effect of Walker A mutation (K86M) on oligomerization and surface targeting of the multidrug resistance transporter ABCG2 // J. Cell Sci. 2005. Vol. 118 (7). P. 1417–1426.; Hoffmeyer S., Burk O., von Richter O., Arnold H.P., Brockmöller J., Johne A., Cascorbi I., Gerloff T., Roots I., Eichelbaum M., Brinkmann U. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97 (7). P. 3473–3478.; Honjo Y., Hrycyna C.A., Yan Q.W., Medina-Pérez W.Y., Robey R.W., van de Laar A., Litman T., Dean M., Bates S.E. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCPoverexpressing cells // Cancer Res. 2001. Vol. 61 (18). P. 6635–6639.; Huang Y., Sadée W. Membrane transporters and channels in chemoresistance and -sensitivity of tumor cells // Cancer Lett. 2006. Vol. 239 (2). P. 168–182.; Huang Y. Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy // Cancer Metastasis Rev. 2007. Vol. 26 (1). P. 183–201.; Januchowski R., Zawierucha P., Ruciński M., Andrzejewska M., Wojtowicz K., Nowicki M., Zabel M. Drug transporter expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line // Biomed. Pharmacother. 2014. Vol. 68 (4). P. 447–453. doi:10.1016/j. biopha.2014.02.002.; Januchowski R., Wojtowicz K., Sujka-Kordowska P., Andrzejewska M., Zabel M. MDR gene expression analysis of six drug-resistant ovarian cancer cell lines // Biomed. Res. Int. 2013. doi:10.1155/2013/241763.; Kim H.S., Kim M.K., Chung H.H., Kim J.W., Park N.H., Song Y.S., Kang S.B. Genetic polymorphisms affecting clinical outcomes in epithelial ovarian cancer patients treated with taxanes and platinum compounds: a Korean population-based study // Gynecol. Oncol. 2009. Vol. 113 (2): P. 264–269. doi:10.1016/j.ygyno.2009.01.002.; Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M., Denisov E.V., Garbukov E.Y., Merzliakova M.K., Volkomorov V.V., Vtorushin S.V., Zavyalova M.V., Slonimskaya E.M., Perelmuter V.M. Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response // Cancer Chemother. Pharmacol. 2013. Vol. 71 (1). P. 153–163. doi:10.1007/s00280-012-1992-x.; Mannan A.U., Boehm J., Sauter S.M., Rauber A., Byrne P.C., Neesen J., Engel W. Spastin, the most commonly mutated protein in hereditary spastic paraplegia interacts with Reticulon 1 an endoplasmic reticulum protein // Neurogenetics. 2006. Vol. 7 (2). P. 93–103.; Nakanishi T. Drug transporters as targets for cancer chemotherapy // Cancer Genomics Proteomics. 2007. Vol. 4 (3). P. 241–254.; Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR // Nucleic Acids Res. 2001. Vol. 29 (9). P. e45.; Polgar O., Ozvegy-Laczka C., Robey R.W., Morisaki K., Okada M., Tamaki A., Koblos G., Elkind N.B., Ward Y., Dean M., Sarkadi B., Bates S.E. Mutational studies of G553 in TM5 of ABCG2: a residue potentially involved in dimerization // Biochemistry. 2006. Vol. 45 (16): P. 5251–5260.; Robey R., Honjo Y., Morisaki K., Nadjem T.A., Runge S., Risbood M., Poruchynsky M.S., Bates S.E. Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity // Br. J. Cancer. 2003. Vol. 89 (10). P. 1971–1978.; Sauer G., Brehm G., Schneider S., Nielsch K., Wehrspohn R.B., Choi J., Hofmeister H., Gösele U. Highly ordered monocrystalline silver nanowire arrays // J. Appl. Phys. 2002. Vol. 91 (5): P. 3243–3247.; Schwartz G.F., Hortobagyi G.N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania // Cancer. 2004. Vol. 100 (12). P. 2512–2532.; Taheri M., Mahjoubi F., Omranipour R. Effect of MDR1 polymorphism on multidrug resistance expression in breast cancer patients // Genet. Mol. Res. 2010. Vol. 9 (1). P. 34–40. doi:10.4238/vol9-1gmr669.; Tamura A., Wakabayashi K., Onishi Y., Takeda M., Ikegami Y., Sawada S., Tsuji M., Matsuda Y., Ishikawa T. Re-evaluation and functional classification of nonsynonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2 // Cancer Sci. 2007. Vol. 98 (2). P. 231–239.; Teft W.A., Mansell S.E., Kim R.B. Endoxifen, the active metabolite of tamoxifen, is a substrate of the efflux transporter P-glycoprotein (multidrug resistance 1) // Drug Metab. Dispos. 2011. Vol. 39 (3). P. 558–562. doi:10.1124/dmd.110.036160.; Vega-Gálvez A., Di Scalab K., Rodrígueza K., Lemus-Mondacaa R., Mirandaa M., Lópeza J., Perez-Wona M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian) // Food Chemistry. 2009. Vol. 117 (4). P. 647–653. doi:10.1016/j.foodchem.2009.04.066.; Xu Y., Jiang Z., Yin P., Li Q., Liu J. Role for Class I histone deacetylases in multidrug resistance // Exp. Cell Res. 2012. Vol. 318 (3). P. 177–186. doi:10.1016/j.yexcr.2011.11.010.; Zhuang G., Brantley-Sieders D.M., Vaught D., Yu J., Xie L., Wells S., Jackson D., Muraoka-Cook R., Arteaga C., Chen J. Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy // Cancer Res. 2010. Vol. 70 (1). P. 299–308. doi:10.1158/0008-5472.CAN-09-1845.; https://www.siboncoj.ru/jour/article/view/154; undefined
-
18Academic Journal
المؤلفون: L. Tashireva A., T. Geraschenko S., M. Zavyalova V., O. Saveleva E., E. Kaygorodova V., N. Tarabanovskaya A., E. Slonimskaya M., E. Denisov V., V. Perelmuter M., Л. Таширева А., Т. Геращенко С., М. Завьялова В., О. Савельева Е., Е. Кайгородова В., Н. Тарабановская А., Е. Слонимская М., Е. Денисов В., В. Перельмутер М.
المساهمون: РФФИ
المصدر: Siberian journal of oncology; Том 15, № 6 (2016); 48-54 ; Сибирский онкологический журнал; Том 15, № 6 (2016); 48-54 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-6
مصطلحات موضوعية: cytokines, tumor niche, premetastatic niche, breast cancer, цитокины, опухолевая ниша, преметастатическая ниша, рак молочной железы
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/446/394; Ewing J. Neoplastic diseases. Ed 6. Philadelphia: W. B. Saunders Co. 1928.; Paget S. The distribution of secondary growths in cancer of the breast. The Lancet. 1889; 133 (3421): 571–573.; Barcellos-Hoff M.H., Lyden D., Wang T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013 Jul; 13 (7): 511–8. doi:10.1038/nrc3536.; Salgado R., Denkert C., Demaria S., Sirtaine N., Klauschen F., Pruneri G., Wienert S., Van den Eynden G., Baehner F.L., Penault-Llorca F., Perez E.A., Thompson E.A., Symmans W.F., Richardson A.L., Brock J., Criscitiello C., Bailey H., Ignatiadis M., Floris G., Sparano J., Kos Z., Nielsen T., Rimm D.L., Allison K.H., Reis-Filho J.S., Loibl S., Sotiriou C., Viale G., Badve S., Adams S., Willard-Gallo K., Loi S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015 Feb; 26 (2): 259–71. doi:10.1093/annonc/mdu450.; Yao M., Brummer G., Acevedo D., Cheng N. Cytokine Regulation of Metastasis and Tumorigenicity. Adv Cancer Res. 2016; 132: 265–367. doi:10.1016/bs.acr.2016.05.005.; Niu J., Chang Z., Peng B., Xia Q., Lu W., Huang P., Tsao M.S., Chiao P.J. Keratinocyte growth factor/fibroblast growth factor-7-regulated cell migration and invasion through activation of NF-kappaB transcription factors. J Biol Chem. 2007 Mar 2; 282 (9): 6001–11. doi:10.1074/jbc.M606878200.; Sasaki T., Hiroki K., Yamashita Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res Int. 2013; 2013: 546318. doi:10.1155/2013/546318.; Sato S., Hanibuchi M., Kuramoto T., Yamamori N., Goto H., Ogawa H., Mitsuhashi A., Van T.T., Kakiuchi S., Akiyama S., Nishioka Y., Sone S. Macrophage stimulating protein promotes liver metastases of small cell lung cancer cells by affecting the organ microenvironment. Clin Exp Metastasis. 2013 Mar; 30 (3): 333–44. doi:10.1007/s10585-012-9540-y.; Bertazza L., Mocellin S. The dual role of tumor necrosis factor (TNF) in cancer biology. Curr Med Chem. 2010; 17 (29): 3337–3352.; Перельмутер В.М., Манских В.Н. Прениша как отсутствующее звено концепции метастатических ниш, объясняющее избирательное метастазирование злокачественных опухолей и форму метастатической болезни. Биохимия. 2012; 77 (1): 130–139.; https://www.siboncoj.ru/jour/article/view/446
-
19Academic Journal
المؤلفون: M. Tsesarsky A., I. Frolova G., D. Bukharin G., N. Fomina Yu., E. Slonimskaya M., S. Velichko A., М. Цесарский А., И. Фролова Г., Д. Бухарин Г., Н. Фомина Ю., Е. Слонимская М., С. Величко А.
المصدر: Bulletin of Siberian Medicine; Том 1, № 2 (2002); 92-100 ; Бюллетень сибирской медицины; Том 1, № 2 (2002); 92-100 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2002-1-2
مصطلحات موضوعية: cancer of mammary, fibroadenoma, mammogram, cyst, ultra sound research, рак молочной железы, фиброаденома, киста, ультразвуковое исследование, маммография
Relation: Заболотская Н.В. Ультразвуковая маммография. М., 1997. 104 с.; Рожкова Н.И. Рентгенодиагностика заболеваний молочной железы. М., 1993. 222 с.; Framarino dei Malatesta M.L., Piccioni M.G., Felici A., et al. Intracystic carcinoma of the breast // Eur. J. Gynaecol. Oncol. 1992. ‹ 1. P. 40—44.; Frankel S.D., Sickles E.A., Curpen B.N., Sollitto R.A., Ominsky S.H., Galvin H.B. Mammographic screening of women aged 40—49 years. Benefit, risk, and cost considerations // Cancer. 1995. ‹ 10. P. 2097—2106.; Gordon P.B., Goldenberg S.L. Malignant breast masses detected only by ultrasound. A retrospective review // Cancer. 1995. ‹ 4. P. 626—630.; Hackeloer B.-J., Duda V., Lauth G. Ultrasound Mammography. 1989. P. 144.; Kessler M., Milz P., Sittek H., et al. Imaging methods in diagnosis and differential diagnosis of breast cancer // Bildgebung. 1995. ‹ 3. P. 160—172.; Schmidt-Hatthiesen M., Bastert G. Gynecologische Oncologie. 1995. P. 5.; https://bulletin.tomsk.ru/jour/article/view/3971