يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"E. S. Dryuchkov"', وقت الاستعلام: 0.34s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 23, № 4 (2020); 253-259 ; Известия высших учебных заведений. Материалы электронной техники; Том 23, № 4 (2020); 253-259 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2020-4

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/415/418; Dresselhaus M. S., Dresselhaus G., Eklund P. C. Science of Fullerenes and Carbon Nanotubes. London: Academic Press, Inc., 1996. 965 p.; Saito R., Dresselhaus M. S., Dresselhaus G. Physical properties of carbon nanotubes. London: Imperial College Press, 1998. 262 p.; Запороцкова И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: строение и электронные свойства. Волгоград: ВолГУ, 2009. 490 с.; Mohamed A. E.-M. A., Mohamed M. A. Carbon nanotubes: Synthesis, characterization, and applications. In: Carbon Nanomaterials for Agri-food and Environmental Applications. Elsevier Inc., 2019. P. 21—32. DOI:10.1016/B978-0-12-819786-8.00002-5; Arunkumar T., Karthikeyan R., Ram Subramani R., Viswanathan K., Anish M. Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs) // International Journal of Ambient Energy. 2020. V. 41, N 4. P. 452—456. DOI:10.1080/01430750.2018.1472657; Tomilin O. B., Rodionova E. V., Rodin E. A., Poroshina M. D., Frolov AS. The effect of carbon nanotube modifications on their emission properties // Fullerenes Nanotubes and Carbon Nanostructures. 2020. V. 28, N 2. P. 123—128. DOI:10.1080/1536383X.2019.1680978; Savin A. V., Savina O. I. An effect of chemical modification of surface of carbon nanotubes on their thermal conductivity // Physics of the Solid State. 2019. V. 61, N 2. P. 279—284. DOI:10.1134/S1063783419020252; Dresselhaus M. S., Dresselhaus G., Avouris P. Сarbon nanotubes: synthesis, structure, properties, and application. Berlin: Springer-Verlag, 2000. 464 p.; Дьячков П. Н. Электронные свойства и применение нанотрубок. М.: БИНОМ. Лаборатория знаний, 2010. 488 с.; Wojtkiewicz J., Brzostowski B., Pilch M. Electronic and optical properties of carbon nanotubes directed to their applications in solar cells // PRAM 2019: Parallel Processing and Applied Mathematics. Poland, 2020. P. 341—349. DOI:10.1007/978-3-030-43222-5_30; Suhito I. R., Koo K.-M., Kim T. H. Recent advances in electrochemical sensors for the detection of biomolecules and whole cells // Biomedicines. 2021. V. 9, N 1. P. 1—20. DOI:10.3390/biomedicines9010015; Park S. H., Bai S.-J., Song, Y. S. Improved performance of carbon nanotubes embedded photomicrobial solar cell // Nanotechnology. 2020. V. 31, N 11. P. 115401. DOI:10.1088/1361-6528/ab5b2a; Liu H., Li Y. Modified carbon nanotubes for hydrogen storage at moderate pressure and room temperature // Fullerenes Nanotubes and Carbon Nanostructures. 2020. V. 28, N 8. P. 663—670. DOI:10.1080/1536383X.2020.1738396; Manut A., Zoolfakar A. S., Mamat M. H., Ab Ghani N. S., Zolkapli M. Characterization of titanium dioxide (TiO2) nanotubes for resistive-type humidity sensor // IEEE International Conference on Semiconductor Electronics, Proceedings (ICSE). Vietnam, 2020. P. 104—107. DOI:10.1109/ICSE49846.2020.9166854; Aydın M. T. A., Hoşgün H. L. Hydrothermal synthesis and characterization of vanadium-doped titanium dioxide nanotubes // Journal of the Australian Ceramic Society. 2020. V. 56, N 2. P. 645—651. DOI:10.1007/s41779-019-00382-y; Hussain R. A., Hussain I. Metal telluride nanotubes: Synthesis, and applications // Materials Chemistry and Physics. 2020. V. 256. P. 123691. DOI:10.1016/j.matchemphys.2020.123691; Fujisawa K., Hayashi T., Endo M., Terrones M., Kim J. H., Kim Y.A. Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes // Nanoscale. 2018. V. 10, N 26. P. 12723—12733. DOI:10.1039/c8nr02323a; Liu Y., Khavrus V., Lehmann T., Yang H.-L., Stepien L., Greifzu M., Oswald S., Gemming T., Bezugly V., Cuniberti G. Boron-doped single-walled carbon nanotubes with enhanced thermoelectric power factor for flexible thermoelectric devices // ACS Applied Energy Materials. 2020. V. 3, N 3. P. 2556—2564. DOI:10.1021/acsaem.9b02243; Fakhrabadi M. M. S., Allahverdizadeh A., Norouzifard V., Dadashzadeh B. Effects of boron doping on mechanical properties and thermal conductivities of carbon nanotubes // Solid State Communications. 2012. V. 152, N 21. P. 1973—1979. DOI:10.1016/j.ssc.2012.08.003; Rubio A. Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes // Physics Revier Series B. Condenced Matter. 2004. V. 69. P. 245403. DOI:10.1103/PhysRevB.69.245403; Debnarayan J., Sun C.-L., Chen L.-C., Chen K.-H. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes // Progress in Materials Science. 2013. V. 58. P. 565. DOI:10.1016/j.pmatsci.2013.01.003; Boroznina N. P., Boroznin S. V., Zaporotskova I. V., Kozhitov L. V., Popkova A. V. On the practicability of sensors based on surface carboxylated boron-carbon nanotubes // Russian Journal of Inorganic Chemistry. 2019. V. 64, N 1. P. 74—78. DOI:10.1134/S0036023619010029; Boroznina N. P., Zaporotskova I. V., Boroznin S. V., Dryuchkov E. S. Sensors based on amino group surface-modified CNTs // Chemosensors. 2019. V. 7, N 1. P. 11. DOI:10.3390/CHEMOSENSORS7010011; Koch W., Holthausen M. C. A Chemist's Guide to Density Functional Theory. Weinheim: Wiley-VCH, 2001. 294 p.; Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., Curtiss L. A. J. 6-31G* basis set for third-row atoms // Journal of Computational Chemistry. 2001. V. 22, N 9. P. 976—984. DOI:10.1002/jcc.1058; https://met.misis.ru/jour/article/view/415

  2. 2