-
1Academic Journal
المؤلفون: A. N. Matrosov, Z. G. Gulmakhmadzoda, M. Kh. Tilloeva, K. S. Martsokha, A. A. Sludsky, E. R. Kudratov, A. M. Porshakov, S. P. Murodov, O. D. Nazarova, E. V. Kuklev, I. N. Sharova, M. A. Makashova, A. S. Abdrashitova, E. A. Mikheeva, D. T. Tokaev, A. Sh. Amonov, N. G. Karimov, O. F. Umarov, M. G. Giesiddinzoda, E. N. Kondrat’ev, A. G. Selenina
المصدر: Проблемы особо опасных инфекций, Vol 0, Iss 1, Pp 37-47 (2024)
مصطلحات موضوعية: plague, zoonoses, epidemiology, natural focus, epizootics, carriers and vectors, hissar high-mountain plague focus, epidemiological surveillance, Infectious and parasitic diseases, RC109-216
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Zh. A. Kas’yan, E. V. Naidenova, M. V. Proskuryakova, E. A. Mikheeva, T. V. Toan, B. T.T. Nga, V. V. Cuong, V. V. Kutyrev
المصدر: Проблемы особо опасных инфекций, Vol 0, Iss 4, Pp 27-34 (2022)
مصطلحات موضوعية: arboviruses, socialist republic of vietnam, infectious diseases, dengue fever, zika fever, chikungunya fever, japanese encephalitis, severe fever with thrombocytopenia syndrome, Infectious and parasitic diseases, RC109-216
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: E. A. Mikheeva, A. V. Blinov
المصدر: Геодинамика и тектонофизика, Vol 13, Iss 2 (2022)
مصطلحات موضوعية: irkutsk basin, coal, yttrium, hazardous elements, enrichment, Science
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: P. V. Kulikov, S. D. Zhogolev, R. M. Aminev, K. D. Zhogolev, A. A. Kuzin, S. R. Rubova, A. N. Gorenchuk, E. A. Mikheeva
المصدر: Журнал инфектологии, Vol 11, Iss 2, Pp 116-123 (2019)
مصطلحات موضوعية: community-acquired pneumonia, conscription soldiers, morbidity, etiology, pcr diagnosis, 23-valent pneumococcal polysaccharide vaccine, 13-valent pneumococcal conjugate vaccine, efficacy, Infectious and parasitic diseases, RC109-216
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: Z. L. Devdariani, N. A. Syrova, E. A. Mikheeva, I. V. Terekhova, N. M. Ermakov, G. V. Grigor’eva, O. A. Lobovikova, I. V. Shul’gina
المصدر: Проблемы особо опасных инфекций, Vol 0, Iss 3, Pp 85-89 (2016)
مصطلحات موضوعية: yersinia pestis, capsular antigen f1, monoclonal antibodies, diagnostic test-system, enzyme immune-assay, immunodiagnostics, Infectious and parasitic diseases, RC109-216
وصف الملف: electronic resource
-
6Academic Journal
المصدر: Геодинамика и тектонофизика, Vol 4, Iss 2, Pp 135-165 (2015)
مصطلحات موضوعية: cenozoic, baikal rift, basalts, trace elements, geodynamics, Science
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: T. L. Zakharova, E. A. Mikheeva, N. A. Osina
المصدر: Проблемы особо опасных инфекций, Vol 0, Iss 2, Pp 79-82 (2015)
مصطلحات موضوعية: в-субъединица холерного токсина, гель-хроматография, vibrio cholerae, cholera toxin b-subunit, gel-penetration column chromatography, Infectious and parasitic diseases, RC109-216
وصف الملف: electronic resource
-
8Academic Journal
المصدر: Проблемы особо опасных инфекций, Vol 0, Iss 1(103), Pp 18-23 (2010)
مصطلحات موضوعية: cholera, vibrio cholerae o1, vibrio cholerae o139, immunodiagnostics, serologic diagnostics, immunodiagnostic preparations, Infectious and parasitic diseases, RC109-216
وصف الملف: electronic resource
-
9Academic Journal
المؤلفون: D. V. Khorolsky, A. A. Klimenko, E. S. Pershina, N. M. Babadaeva, A. A. Kondrashov, N. A. Shostak, E. P. Mikheeva, M. P. Mezenova, E. V. Zhilyaev
المصدر: Klinicist, Vol 17, Iss 3, Pp 31-41 (2024)
مصطلحات موضوعية: systemic sclerosis, interstitial lung disease, extent of lung injury, 6-minute walk test, autoantibodies, cross-sectional observational study, multivariate model, high-resolution computed tomography of the lungs, Medicine
Relation: https://klinitsist.abvpress.ru/Klin/article/view/559; https://doaj.org/toc/1818-8338; https://doaj.org/article/5e7884e23e4b4dd58974fa9878c541a1
-
10Academic Journal
المؤلفون: A. A. Klimenko, E. P. Mikheeva, N. A. Shostak
المصدر: Klinicist, Vol 17, Iss 4, Pp 36-41 (2024)
مصطلحات موضوعية: systemic sclerosis, quality of life, dyspnea, calcinosis, fatigue, raynauds phenomenon, physical component of health, mental component of health, predictors, sf-36 quality of life assessment questionnaire, risk factors, Medicine
Relation: https://klinitsist.abvpress.ru/Klin/article/view/577; https://doaj.org/toc/1818-8338; https://doaj.org/article/25472acf2cc84bd4b971c2bc0cd8493b
-
11Academic Journal
المؤلفون: A. R. Galembikova, P. D. Dunaev, T. V. Ivoilova, A. I. Gilyazova, A. E. Galyautdinova, E. G. Mikheeva, S. S. Zykova, N. M. Igidov, P. B. Kopnin, S. V. Boichuk, А. Р. Галембикова, П. Д. Дунаев, Т. В. Ивойлова, А. И. Гилязова, А. Э. Галяутдинова, Е. Г. Михеева, С. С. Зыкова, Н. М. Игидов, П. Б. Копнин, С. В. Бойчук
المساهمون: The study was carried out with the support of the Russian Science Foundation (RSF) (grant No. 20-15-00001) and was performed as a part of Russia Strategic Academic Leadership Program (“Priority-2030”) of Kazan (Volga Region) Federal University, Исследование выполнено при поддержке Российского научного фонда (грант № 20-15-00001) и проведено в рамках Программы стратегического академического лидерства ФГАОУ ВО «Казанский (Приволжский) федеральный университет» («Приоритет-2030»)
المصدر: Advances in Molecular Oncology; Том 11, № 2 (2024); 130-146 ; Успехи молекулярной онкологии; Том 11, № 2 (2024); 130-146 ; 2413-3787 ; 2313-805X
مصطلحات موضوعية: доксорубицин, tubulin depolymerization, cell cycle, apoptosis, mitotic catastrophe, multidrug resistance, triple-negative breast cancer, gastrointestinal stromal tumor, osteosarcoma, colorectal adenocarcinoma, ethyl-pyrrole-carboxyls, pyrrole-carboxamides, paclitaxel, vinblastine, doxorubicin, деполимеризация тубулина, клеточный цикл, апоптоз, митотическая катастрофа, множественная лекарственная устойчивость, трижды негативный рак молочной железы, гастроинтестинальная стромальная опухоль, остеосаркома, колоректальная аденокарцинома, этил-пиррол-карбоксилы, пиррол-карбоксамиды, паклитаксел, винбластин
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/683/355; Bhardwaj V., Gumber D., Abbot V. et al. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv 2015;5:15233–66. DOI:10.1039/C4RA15710A; DeSimone R.W., Currie K.S., Mitchell S.A. et al. Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen 2004;7(5):473–93. DOI:10.2174/1386207043328544; Duarte C.D., Barreiro E.J., Fraga C.A.M. Privileged structures: a useful concept for the rational design of new lead drug candidates. Mini-Rev Med Chem 2007;7(11):1108–19. DOI:10.2174/138955707782331722; Li Petri G., Spanò V., Spatola R. et al. Bioactive pyrrole-based compounds with target selectivity. Eur J Med Chem 2020;208:112783. DOI:10.1016/j.ejmech.2020.112783; Walsh C.T., Garneau-Tsodikova S., Howard-Jones A.R. Biological formation of pyrroles: Nature’s logic and enzymatic machinery. Nat Prod Rep 2006;23:517–31. DOI:10.1039/b605245m; Ahmad S., Alam O., Naim M.J. et al. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur J Med Chem 2018;157:527–61. DOI:10.1016/j.ejmech.2018.08.002; Bianco M.C.A.D., Marinho D.I.L.F., Hoelz L.V.B. et al. Pyrroles as privileged scaffolds in the search for new potential HIV inhibitors. Pharmaceuticals 2021;14(9):893. DOI:10.3390/ph14090893; La Regina G., Bai R., Coluccia A. et al. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J Med Chem 2014;57:6531–52. DOI:10.1021/jm500561a; Jadala C., Prasad B., Prasanthi A.V.G. et al. Transition metal-free one-pot synthesis of substituted pyrroles by employing aza-Wittig reaction. RSC Adv 2019;9:30659–65. DOI:10.1039/C9RA06778G; Tang S., Zhou Z., Jiang Z. et al. Indole-based tubulin inhibitors: binding modes and sars investigations. Molecules 2022;27(5):1587. DOI:10.3390/molecules27051587; Romagnoli R., Oliva P., Salvador M.K. et al. A facile synthesis of diaryl pyrroles led to the discovery of potent colchicine site antimitotic agents. Eur J Med Chem 2021;214:113229. DOI:10.1016/j.ejmech.2021.113229; Sun J., Chen L., Liu C. et al. Synthesis and biological evaluations of 1,2-diaryl pyrroles as analogues of combretastatin A-4. Chem Biol Drug Des 2015;86(6):1541–7. DOI:10.1111/cbdd.12617; Ma Z., Ma Z., Zhang D. Synthesis of multi-substituted pyrrole derivatives through [3+2] cycloaddition with tosylmethyl isocyanides (TosMICs) and electron-deficient compounds. Molecules 2018;23(10):2666. DOI:10.3390/molecules23102666; Mowery P., Mejia F.B., Franceschi C.L. et al. Synthesis and evaluation of the anti-proliferative activity of diaryl-3-pyrrolin-2-ones and fused analogs. Bioorganic Med Chem Lett 2017;27(2):191–5. DOI:10.1016/j.bmcl.2016.11.076; Boichuk S., Galembikova A., Syuzov K. et al. The design, synthesis, and biological activities of pyrrole-based carboxamides: the novel tubulin inhibitors targeting the colchicine-binding site. Molecules 2021;26(19):5780. DOI:10.3390/molecules26195780; Findeisen P., Mühlhausen S., Dempewolf S. et al. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol Evol 2014;6(9):2274–88. DOI:10.1093/gbe/evu187; Avila J. Microtubule functions. Life Sci 1992;50(5):327–34. DOI:10.1016/0024-3205(92)90433-P; Vukušić K., Buđa R., Tolić I.M. Force-generating mechanisms of anaphase in human cells. J Cell Sci 2019;132(18):jcs231985. DOI:10.1242/jcs.231985; de Forges H., Bouissou A., Perez F. Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 2012;44(2):266–74. DOI:10.1016/j.biocel.2011.11.009; Bonifacino J.S., Neefjes J. Moving and positioning the endolysosomal system. Curr Opin Cell Biol 2017;47:266–74. DOI:10.1016/j.ceb.2017.01.008; Wood K.W., Cornwell W.D., Jackson J.R. Past and future of the mitotic spindle as an oncology target. Curr Opin Pharmacol 2001;1(4):370–7. DOI:10.1016/s1471-4892(01)00064-9; von Hoff D.D. The taxoids: Same roots, different drugs. Semin Oncol 1997;24(13):S13-3–10.; Bollag D.M., McQueney P.A., Zhu J. et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 1995;55(11):2325–33.; Gigant B., Wang C., Ravelli R.B.G. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005;435(7041):519–22. DOI:10.1038/nature03566; Hastie S.B. Interactions of colchicine with tubulin. Pharmacol Ther 1991;51(3):377–401. DOI:10.1016/0163-7258(91)90067-V; Mooberry S.L., Tien G., Hernandez A.H. et al. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 1999;59(3):653–60.; Hamel E. Natural products which interact with tubulin in the vinca domain: Maytansine, rhizoxin, phomopsin a, dolastatins 10 and 15 and halichondrin B. Pharmacol Ther 1992;55(1):31–51. DOI:10.1016/0163-7258(92)90028-X; Jordan M.A., Wilson L. Microtubules as a target for anticancer drugs. Nat Cancer 2004;4(4):253–65. DOI:10.1038/nrc1317; Stanton R.A., Gernert K.M., Nettles J.H. et al. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 2011;31(3):443–81. DOI:10.1002/med.20242; Ravelli R.B., Gigant G., Curmi B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004;428(6979):198–202. DOI:10.1038/nature02393; Yang J., Wang Y., Wang T. et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun 2016;7:12103. DOI:10.1038/ncomms12103; Prota A.E., Setter J., Waight A.B. et al. Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation. J Mol Biol 2016;428(15):2981–8. DOI:10.1016/j.jmb.2016.06.023; Steinmetz M.O., Prota A.E. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 2018;28(10):776–92. DOI:10.1016/j.tcb.2018.05.001; Fanale D., Bronte G., Passiglia F. et al. Stabilizing versus destabilizing the microtubules: A double-edge sword for an effective cancer treatment option? Anal Cell Pathol (Amst) 2015;2015:690916. DOI:10.1155/2015/690916; West L.M., Northcote P.T., Battershill C.N. Peloruside A. A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000;65(2):445–9. DOI:10.1021/jo991296y; Prota A.E., Bargsten K., Northcote P.T. et al. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 2014;53(6):1621–5. DOI:10.1002/anie.201307749.; Chaplin D.J., Hill S.A. The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol 2002;54(5):1491–6. DOI:10.1016/S0360-3016(02)03924-X; Siemann D.W., Shi W. Dual targeting of tumor vasculature: combining Avastin and vascular disrupting agents (CA4P or OXi4503). Anticancer Res 2008;28(4 B):2027–31.; Lindamulage I.K., Vu H.-Y., Karthikeyan C. et al. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci Rep 2017;7(1):10298. DOI:10.1038/s41598-017-10972-0; Gupta S., Banerjee M., Poddar A. et al. Biphasic kinetics of the colchicine−tubulin interaction: role of amino acids surrounding the A ring of bound colchicine molecule. Biochemistry 2005;44(30):10181–8. DOI:10.1021/bi050599l; McLoughlin E.C., O’Boyle N.M. Colchicine-binding site inhibitors from chemistry to clinic : a review. Pharmaceuticals 2020;13(1):8. DOI:10.3390/ph13010008; Arnst K.E., Banerjee S., Chen H. et al. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med Res Rev 2019;39(4):1398–426. DOI:10.1002/med.21568; Зыкова С.С., Бойчук С.В., Галембикова А.Р. и др. 3-гидрокси-1,5-диарил-4-пивалоил-2,5-дигидро-2-пирролоны нарушают процессы митоза и индуцируют гибель опухолевых клеток in vitro. Цитология 2014;56:439–42. – Zykova S.S., Boychuk S.V., Galimbekova A.R. et al. 3-hydroxy-1,5-diaryl-4-pivaloyl-2,5-dihydro-2-pyrrolone disrupt the processes of mitosis and induce the death of tumor cells in vitro. Citologiya = Cytology 2014;56:439–42. (In Russ.).; Boichuk S., Galembikova A., Zykova S. et al. Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro. Anti-Cancer Drugs 2016;27(7):620–34. DOI:10.1097/CAD.0000000000000372; Boichuk S., Galembikova A., Dunaev P. et al. Ethyl-2-amino-pyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anti-Cancer Drugs 2019;30(5):475–84. DOI:10.1097/CAD.0000000000000753; Boichuk S., Bikinieva F., Mustafin I. et al. 2-Amino-pyrrole-carboxylate attenuates homology-mediated DNA repair and sensitizes cancer cells to doxorubicin. Biochemistry (Mosc) 2022;87(5):391–9. DOI:10.1134/S0006297922050017; Boichuk S., Syuzov K., Bikinieva F. et al. Computational-based discovery of the anti-cancer activities of pyrrole-based compounds targeting the colchicine-binding site of tubulin. Molecules 2022;27(9):2873. DOI:10.3390/molecules27092873; Boichuk S., Galembikova A., Bikinieva F. et al. 2-APCAs, the novel microtubule targeting agents active against distinct cancer cell lines. Molecules 2021;26(3):616. DOI:10.3390/molecules26030616; Галембикова А.Р., Дунаев П.Д., Бикиниева Ф.Ф. и др. Механизмы цитотоксической активности пиррол-карбоксамидов в отношении опухолевых клеточных сублиний с множественной лекарственной устойчивостью. Успехи молекулярной онкологии 2023;10(3):59–71. DOI:10.17650/2313-805X-2023-10-3-59-71; Carta D., Bortolozzi R., Sturlese M. et al. Synthesis, structure-activity relationships and biological evaluation of 7-phenyl-pyrroloquinolinone 3-amide derivatives as potent antimitotic agents. Eur J Med Chem 2017;127:643–60. DOI:10.1016/j.ejmech.2016.10.026; Brindisi M., Ulivieri C., Alfano G. et al. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur J Med Chem 2019;162:290–320. DOI:10.1016/j.ejmech.2018.11.004; Zykova S.S., Galembikova A.R., Ramazanov B.R. et al. Synthesis and cytotoxic activity of ethyl 2-amino-1-benzamido-4-oxo-5-(2-oxo-2-arylethylidene)-4,5-dihydro-1H-pyrrole-3-carboxylates. Pharm Chem J 2016;49(12):817–20. DOI:10.1007/s11094-016-1378-1; Zykova S.S., Igidov N.M., Zakhmatov A.V. et al. Synthesis and biological activity of 2-amino-1-aryl-5-(3,3-dimethyl-2-oxobutylidene)-4-oxo-n-(thiazol-5-yl)-4,5-dihydro-1H-pyrrole-3-carboxamides. Pharm Chem J 2018;52(3):198–204.; Zykova S.S., Kizimova I.A., Syutkina A.I. et al. Synthesis and cytostatic activity of (e)-ethyl-2-amino-5-(3,3-dimethyl-4-oxobutyliden)-4-oxo-1- (2-phenylaminobenzamido)-4,5-dihydro-1hpyrrol-3-carboxylate. Pharm Chem J 2020;53:895–8. DOI:10.1007/s11094-020-02096-z; Boichuk S., Galembikova A., Sitenkov A. et al. Establishment and characterization of a triple negative basal-like breast cancer cell line with multi-drug resistance. Oncol Lett 2017;14(4):5039–45. DOI:10.3892/ol.2017.6795; Boichuk S., Bikinieva F., Valeeva E. et al. Establishment and characterization of multi-drug resistant p53-negative osteosarcoma SaOS-2 subline. Diagnostics (Basel) 2023;13(16):2646. DOI:10.3390/diagnostics13162646; Хуснутдинов Р.Р., Галембикова А.Р., Бойчук С.В. Получение клона клеток гастроинтестинальной стромальной опухоли с признаками множественной лекарственной устойчивости и оценка его свойств. Современные технологии в медицине 2016;8(4):36–41. DOI:10.17691/stm2016.8.4.05; Taguchi T., Sonobe H., Toyonaga S. et al. Conventionaland molecular cytogenetic characterization of a newhuman cell line, GIST-T1, established from gastrointestinal stromal tumor. Lab Invest 2002;82(5):663–5. DOI:10.1038/labinvest.3780461; Wittmann C., Sivchenko A.S., Bacher F. et al. Inhibition of microtubule dynamics in cancer cells by indole-modified latonduine derivatives and their metal complexes. Inorg Chem 2022;61(3):1456–70. DOI:10.1021/acs.inorgchem.1c03154; Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. DOI:10.3390/biomedicines10030601; Marupudi N.I., Han J.E., Li K.W. et al. Paclitaxel : a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 2007;6(5):609–21. DOI:10.1517/14740338.6.5.609; Young J.A., Howell S.B., Green M.R. Pharmacokinetics and toxicity of 5-day continuous infusion of vinblastine. Cancer Chemother Pharmacol 1984;12(1):43–5. DOI:10.1007/BF00255908; Mora E., Smith E.M., Donohoe C. et al. Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am J Cancer Res 2016;6(11):2416–30.; Abu Samaan T.M., Samec M., Liskova A. et al. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789. DOI:10.3390/biom9120789; Hashemi M., Zandieh M.A., Talebi Y. et al. Paclitaxel and docetaxel resistance in prostate cancer: molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023;160:114392. DOI:10.1016/j.biopha.2023.114392; Zhang Y., Yang S.H., Guo X.L. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomed Pharmacother 2017;96:659–66. DOI:10.1016/j.biopha.2017.10.041; Toledo B., González-Titos A., Hernández-Camarero P. et al. A brief review on chemoresistance; targeting cancer stem cells as an alternative approach. Int J Mol Sci 2023;24(5):4487. DOI:10.3390/ijms24054487; Distefano M., Scambia G., Ferlini C. et al. Antitumor activity of paclitaxel (taxol) analogues on MDR-positive human cancer cells. Anticancer Drug Des 1998;13(5):489–99.; Liu J., Yang X., Gao S. et al. DDX11-AS1 modulates DNA damage repair to enhance paclitaxel resistance of lung adenocarcinoma cells. Pharmacogenomics 2023;24(3):163–72. DOI:10.2217/pgs-2022-0121; Kavallaris M., Kuo D.Y., Burkhart C.A. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Investig 1997;100(5): 1282–93. DOI:10.1172/JCI119642; Poruchynsky M.S., Giannakakou P., Ward Y. et al. Accompanying protein alterations in malignant cells with a microtubule-polymerizing drug-resistance phenotype and a primary resistance mechanism. Biochem Pharmacol 2001;62(11):1469–80. DOI:10.1016/s0006-2952(01)00804-8; Houghton J.A., Houghton P.J., Hazelton B.J. et al. In situ selection of a human rhabdomyosarcoma resistant to vincristine with altered beta-tubulins. Cancer Res 1985;45(6):2706–12.; Stengel C., Newman S.P., Leese M.P. et al. Class III β-tubulin expression and in vitro resistance to microtubule targeting agents. Br J Cancer 2009;102:316–24. DOI:10.1038/sj.bjc.6605489; Rodríguez-Antona C. Pharmacogenomics of paclitaxel. Pharmacogenomics 2010;11(5):621–3. DOI:10.2217/pgs.10.32; Ezrahi S., Aserin A., Garti N. Basic principles of drug delivery systems – the case of paclitaxel. Adv Colloid Interface Sci 2019;263:95–130. DOI:10.1016/j.cis.2018.11.004; Tuy H.D., Shiomi H., Mukaisho K.I. et al. ABCG2 expression in colorectal adenocarcinomas may predict resistance to irinotecan. Oncol Lett 2016;12(4):2752–60. DOI:10.3892/ol.2016.4937; Mooberry S.L., Weiderhold K.N., Dakshanamurthy S. et al. Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole. Mol Pharmacol 2007;72(1):132–40. DOI:10.1124/mol.107.034876; https://umo.abvpress.ru/jour/article/view/683
-
12Academic Journal
المؤلفون: E. M. Mikheeva, N. I. Penkina, A. D. Yuditskiy, Е. М. Михеева, Н. И. Пенкина, А. Д. Юдицкий
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 6 (2023); 31-35 ; Российский вестник перинатологии и педиатрии; Том 68, № 6 (2023); 31-35 ; 2500-2228 ; 1027-4065
مصطلحات موضوعية: иммунитет, assisted reproductive technologies, acute respiratory viral infections, immunity, вспомогательные репродуктивные технологии, острые респираторные инфекции
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1903/1432; Горелов А.В., Николаева С.В. Актуальные вопросы инфекционной респираторной патологии у детей. Педиатрия им. Г.Н. Сперанского 2020; 99 (6): 8–14. DOI:10.24110/0031–403X-2020–99–6–8–14; Канкасова М.Н., Мохова О.Г., Поздеева О.С. Часто болеющие дети: взгляд инфекциониста. Практическая медицина 2014; 9(85): 67–71.; Авезова Г.С., Косимова С.М. Часто болеющие дети: распространенность и факторы риска. European Research 2017; 5(28):79–80.; Казумян М.А., Василенок А.В., Теплякова Е.Д. Современный взгляд на проблему «дети с рекуррентными инфекциями» (часто болеющие дети) и их иммунный статус. Медицинский вестник Юга России 2018; 9(3): 37–43. DOI 10.21886/2219–8075–2018–9–3–37–43; Бабаян М.Л. Часто болеющие дети: проблемы терапии острых респираторных инфекций у детей. Медицинский совет 2014; 14: 11–13.; Делягин В.М. Повторные респираторные инфекции у детей (часто болеющие дети). РМЖ 2013; 21(25): 1237–1240.; Савельева Е.В., Дрововозова Ю.В., Маркова М.Ю., Мирзаянова А.Л., Фазылова И.Р. Клиническая характеристика часто болеющих детей на педиатрическом участке. Уральский медицинский журнал 2020 ;4(187): 130–132. DOI:10.25694/URMJ.2020.04.31; Feleszko W., Ruszczyhski M., Zalewski B.M. Non-specific immune stimulation in respiratory tract infections. Separating the wheat from the chaff. Paediatr Respir Rev 2014; 15(2): 200–206. DOI:10.1016/j.prrv.2013.10.006; Гапархоева З.М., Селиверстова Е.Н., Башкина О.А. Часто болеющие дети: проблемы диагностики и терапии. International scientific review 2015; 4(5): 71–75.; Adamson D.G., de Mouzon J., Chamberset G.M., Zegers-Hochschild F., Mansour R., Ishihara O. et al. International Committee for Monitoring Assisted Reproductive Technology: world report on assisted reproductive technology, 2011. Fertil Steril 2018; 110: 1067–1080. DOI:10.1016/j.fertnstert.2018.06.039; Calhaz-Jorge C., De Geyter C., Kupka M.S., de Mouzon J., Erb K., Mocanu E. et al. Assisted reproductive technology in Europe, 2013: results generated from European registers by ESHRE. Hum Reprod. 2017; 32: 1957–1973. DOI:10.1093/humrep/dex264; Yeung E.H., Sundaram R., Bell E.M., Druschel C., Kus C., Xie Y., Buck Louis G.M. Infertility treatment and children’s longitudinal growth between birth and 3 years of age. Hum Reprod 2016; 31: 1621–1628. DOI:10.1093/humrep/dew106; Xu X., Wu H., Bian Y., Cui L., Man Y., Wang Z. et al. The altered immunological status of children conceived by assisted reproductive technology. Reprod Biol Endocrinol 2021; 19(1): 171. DOI:10.1186/s12958–021–00858–2; Pandey S., Shetty A., Hamilton M., Bhattacharya S., Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI:a systematic review and meta-analysis. Hum Reprod Update 2012; 18(5): 485–503. DOI:10.1093/humupd/dms018; Chen M., Heilbronn L.K. The health outcomes of human offspring conceived by assisted reproductive technologies (ART). J Dev Orig Health Dis 2017; 8(4): 388–402. DOI:10.1017/S2040174417000228; Qin J-B., Sheng X-Q., Wu D., Gao S.Y., You Y.P., Yang T.B., Wang H. Worldwide prevalence of adverse pregnancy outcomes among singleton pregnancies after in vitro fertilization/ intracytoplasmic sperm injection: a systematic review and meta-analysis. Arch Gynecol Obstetr 2017; 295(2): 285–301. DOI:10.1007/s00404–016–4250–3; Sullivan-Pyke C.S., Senapati S., Mainigi M.A., Barnhart K.T. In Vitro fertilization and adverse obstetric and perinatal outcomes. Semin Perinatol 2017; 41(6): 345–353. DOI:10.1053/j.semperi.2017.07.001; Иакашвили С.Н., Самчук П.М. Влияние гормонов плаценты на подготовку родовых путей у женщин с беременностью, наступившей после экстракорпорального оплодотворения и трансплантации эмбриона, в зависимости от формы бесплодия. Вопросы гинекологии, акушерства и перинатологии 2017; 16 (4): 49–53. DOI:10.20953/1726–1678–2017–4–49–53; Plowden T.C., Novak C.M., Spong C.Y. Disparities in obstetrical outcomes in ART pregnancies compared with natural conceptions. Semin Reprod Med 2013; 31(5): 340–346. DOI:10.1055/s-0033–1348892; Castelli C., Perrin J., Thirion X., Comte F., Gamerre M., Courbiere B. Maternal factors influencing the decision to breastfeed newborns conceived with IVF. Breastfeed Med 2015; 10(1): 26–30. DOI:10.1089/bfm.2014.0078; Kohl Schwartz A.S., Mitter V.R., Amylidi-Mohr S., Fasel P., Minger M.A., Limoni C. et al. The greater incidence of small-for-gestational-age newborns after gonadotropin-stimulated in vitro fertilization with a supraphysiological estradiol level on ovulation trigger day. Acta Obstet Gynecol Scand 2019; 98(12): 1575–1584. DOI:10.1111/aogs.13691; Cromi A., Serati M., Candeloro I., Uccella S., Scandroglio S., Agosti M., Ghezzi F. Assisted reproductive technology and breastfeeding outcomes: a case-control study. Fertil Steril 2015; 103(1): 89–94. DOI:10.1016/j.fertnstert.2014.10.009; Wijs L.A., Fusco M.R., Doherty D.A., Keelan J.A., Hart R.J. Asthma and allergies in offspring conceived by ART: a systematic review and meta-analysis. Hum Reprod Update 2021; 28(1): 132–148. DOI:10.1093/humupd/dmab031; Mitter V.R., Hаberg S.E., Magnus M.C. Early childhood respiratory tract infections according to parental subfertility and conception by assisted reproductive technologies. Hum Reprod 2022; 37(9): 2113–2125. DOI:10.1093/humrep/deac162; https://www.ped-perinatology.ru/jour/article/view/1903
-
13Academic Journal
المؤلفون: A. A. Klimenko, E. P. Mikheeva, N. A. Shostak, N. A. Demidova, А. А. Клименко, Е. П. Михеева, Н. А. Шостак, Н. A. Демидова
المصدر: Rheumatology Science and Practice; Vol 61, No 6 (2023); 672-677 ; Научно-практическая ревматология; Vol 61, No 6 (2023); 672-677 ; 1995-4492 ; 1995-4484
مصطلحات موضوعية: нарушение функционирования, disablement, work disability, socio-economic burden, absenteeism, presenteeism, work productivity impairment, activity impairment, predictors of labour capacity loss, impaired functioning, инвалидизация, нетрудоспособность, социально-экономическое бремя, абсентеизм, презентеизм, снижение производительности труда, снижение повседневной активности, предикторы потери трудоспособности
وصف الملف: application/pdf
Relation: https://rsp.mediar-press.net/rsp/article/view/3483/2343; Singh MK, Clements PJ, Furst DE Maranian P, Khanna D. Work productivity in scleroderma: analysis from the University of California, Los Angeles scleroderma quality of life study. Arthritis Care Res (Hoboken). 2012;64(2):176-183. doi:10.1002/acr.20676; Hudson M, Steele R, Lu Y, Thombs BD; Canadian Scleroderma Research Group; Baron M. Work disability in systemic sclerosis. J Rheumatol. 2009;36(11):2481-2486. doi:10.3899/jrheum.081237; Lee JJY, Gignac MAM, Johnson SR. Employment outcomes in systemic sclerosis. Best Pract Res Clin Rheumatol. 2021;35(3):101667. doi:10.1016/j.berh.2021.101667; Ouimet JM, Pope JE, Gutmanis I, Koval J. Work disability in scleroderma is greater than in rheumatoid arthritis and is predicted by high HAQ scores. Open Rheumatol J. 2008;2:44-52. doi:10.2174/1874312900802010044; Mau W, Listing J, Huscher D, Zeidler H, Zink A. Employment across chronic inflammatory rheumatic diseases and comparison with the general population. J Rheumatol. 2005;32(4):721-728.; Morrisroe K, Sudararajan V, Stevens W, Sahhar J, Zochling J, Roddy J, et al. Work productivity in systemic sclerosis, its economic burden and association with health-related quality of life. Rheumatology (Oxford). 2018;57(1):73-83. doi:10.1093/rheumatology/kex362; Клабукова ДЛ, Крысанова ВС, Ермолаева ТН, Давыдовская МВ, Кокушкин КА. Социально-экономическое бремя системной склеродермии: систематический обзор. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(3):291-303. doi:10.17749/2070-4909/farmakoekonomika.2020.041; Knarborg M, Løkke A, Hilberg O, Ibsen R, Sikjaer MG. Direct and indirect costs of systemic sclerosis and associated interstitial lung disease: A nationwide population-based cohort study. Respirology. 2022;27(5):341-349. doi:10.1111/resp.14234; Xiang L, Kua SMY, Low AHL. Work productivity and economic burden of systemic sclerosis in a multiethnic Asian population. Arthritis Care Res (Hoboken). 2022;74(5):818-827. doi:10.1002/acr.24521; Padala SD, Lao C, Solanki K, White D. Direct and indirect health-related costs of systemic sclerosis in New Zealand. Int J Rheum Dis. 2022;25(12):1386-1394. doi:10.1111/1756-185X.14433; Sandqvist G, Scheja A, Hesselstrand R. Pain, fatigue and hand function closely correlated to work ability and employment status in systemic sclerosis. Rheumatology (Oxford). 2010;49(9):1739-1746. doi:10.1093/rheumatology/keq145; Peres N, Morell-Dubois S, Hachulla E, Hatron PY, Duhamel A, Godard D, et al. Sclérodermie systémique et difficultés professionnelles : résultats d’une enquête prospective [Systemic sclerosis and occupational difficulties: Results of a prospective study]. Rev Med Interne. 2017;38(11):718-724 (In French). doi:10.1016/j.revmed.2017.06.006; Nguyen C, Poiraudeau S, Mestre-Stanislas C, Rannou F, Bérezné A, Papelard A, et al. Employment status and socio-economic burden in systemic sclerosis: A cross-sectional survey. Rheumatology (Oxford). 2010;49(5):982-989. doi:10.1093/rheumatology/kep400; Decuman S, Smith V, Verhaeghe S, Deschepper E, Vermeiren F, De Keyser F. Work participation and work transition in patients with systemic sclerosis: A cross-sectional study. Rheumatology (Oxford). 2012;51(2):297-304. doi:10.1093/rheumatology/ker288; Кричевская ОА, Вакуленко ОЮ, Горячев ДВ, Эрдес ШФ. О некоторых подходах к количественной оценке снижения производительности труда при ревматических заболеваниях. Научно-практическая ревматология. 2012;54(5):90-97. doi:10.14412/1995-4484-2012-1188; Cordeiro RA, Fischer FM, Shinjo SK. Systemic autoimmune diseases and work outcomes in Brazil: A scoping review. Rev Saude Publica. 2022;56:24. doi:10.11606/s1518-8787.2022056003918; Вакуленко ОЮ, Кричевская ОА, Горячев ДВ, Эрдес ШФ. Взаимосвязь клинических характеристик ревматоидного артрита с трудоспособностью и производительностью труда. Научно-практическая ревматология. 2012;52(3):60-67. doi:10.14412/1995-4484-2012-711; Xavier RM, Zerbini CAF, Pollak DF, Morales-Torres JLA, Chalem P, Restrepo JFM, et al. Burden of rheumatoid arthritis on patients’ work productivity and quality of life. Adv Rheumatol. 2019;59(1):47. doi:10.1186/s42358-019-0090-8; Подряднова МВ, Балабанова РМ, Урумова ММ. Эрдес ШФ. Взаимосвязь клинических характеристик анкилозирующего спондилита с трудоспособностью и производительностью труда. Научно-практическая ревматология. 2014;52(5):513-519. doi:10.14412/1995-4484-2014-513-519; Sağ S, Nas K, Sağ MS, Tekeoğlu İ, Kamanlı A. Relationship of work disability between the disease activity, depression and quality of life in patients with ankylosing spondylitis. J Back Musculoskelet Rehabil. 2018;31(3):499-505. doi:10.3233/BMR-169657; Boonen A, Boone C, Albert A, Mielants H. Understanding limitations in at-work productivity in patients with active ankylosing spondylitis: The role of work-related contextual factors. J Rheumatol. 2015;42(1):93-100. doi:10.3899/jrheum.131287; Scofield L, Reinlib L, Alarcón GS, Cooper GS. Employment and disability issues in systemic lupus erythematosus: A review. Arthritis Rheum. 2008;59(10):1475-1479. doi:10.1002/art.24113; Baker K, Pope J. Employment and work disability in systemic lupus erythematosus: A systematic review. Rheumatology (Oxford). 2009;48(3):281-284. doi:10.1093/rheumatology/ken477; Jetha A, Johnson SR, Gignac MAM. Unmet workplace support needs and lost productivity of workers with systemic sclerosis: A path analysis study. Arthritis Care Res (Hoboken). 2021;73(3):423-431. doi:10.1002/acr.24123; Lerner D, Amick BC 3rd, Rogers WH, Malspeis S, Bungay K. The work limitations questionnaire. Med Care. 2001;39(1):72-85. doi:10.1097/00005650-200101000-00009; Tang K, Beaton DE, Boonen A, Gignac MA, Bombardier C. Measures of work disability and productivity: Rheumatoid Arthritis Specific Work Productivity Survey (WPS-RA), Workplace Activity Limitations Scale (WALS), Work Instability Scale for Rheumatoid Arthritis (RA-WIS), Work Limitations Questionnaire (WLQ), and Work Productivity and Activity Impairment Questionnaire (WPAI). Arthritis Care Res (Hoboken). 2011;63(11):337-349. doi:10.1002/acr.20633; Morrisroe K, Huq M, Stevens W, Rabusa C, Proudman SM, Nikpour M; and the Australian Scleroderma Interest Group (ASIG). Determinants of unemployment amongst Australian systemic sclerosis patients: Results from a multicentre cohort study. Clin Exp Rheumatol. 2016;34(Suppl 100(5)):79-84.; Bérezné A, Seror R, Morell-Dubois S, de Menthon M, Fois E, Dzeing-Ella A, et al. Impact of systemic sclerosis on occupational and professional activity with attention to patients with digital ulcers. Arthritis Care Res (Hoboken). 2011;63(2):277-285. doi:10.1002/acr.20342; Steen VD, Medsger TA. The value of the Health Assessment Questionnaire and special patient-generated scales to demonstrate change in systemic sclerosis patients over time. Arthritis Rheum. 1997;40:1984-1991. doi:10.1002/art.1780401110; Schnitzer M, Hudson M, Baron M, Steele R; Canadian Scleroderma Research Group. Disability in systemic sclerosis – A longitudinal observational study. J Rheumatol. 2011;38(4):685-692. doi:10.3899/jrheum.100635; Jaeger VK, Distler O, Maurer B, Czirják L, Lóránd V. Functional disability and its predictors in systemic sclerosis: A study from the DeSScipher project within the EUSTAR group. Rheumatology (Oxford). 2018;57(3):441-450. doi:10.1093/rheumatology/kex182; Valenzuela A, Baron M, Rodriguez-Reyna TS, Proudman S, Khanna D. Calcinosis is associated with ischemic manifestations and increased disability in patients with systemic sclerosis. Semin Arthritis Rheum. 2020;50(5):891-896. doi:10.1016/j.semarthrit.2020.06.007; Guillevin L, Hunsche E, Denton CP, Krieg T, Schwierin B, Rosenberg D, et al.; DUO Registry Group. Functional impairment of systemic scleroderma patients with digital ulcerations: Results from the DUO Registry. Clin Exp Rheumatol. 2013;31(2 Suppl 76):71-80.; Castellví I, Eguiluz S, Escudero-Contreras A, Ríos JJ, Calvo-Alén J, Callejas-Rubio JL, et al.; LAUDES Study Group. LAUDES Study: Impact of digital ulcers on hand functional limitation, work productivity and daily activities, in systemic sclerosis patients. Rheumatol Int. 2019;39(11):1875-1882. doi:10.1007/s00296-019-04436-z; Sharif R, Mayes MD, Nicassio PM, Gonzalez EB, Draeger H, McNearney TA, et al.; GENISOS Study Group. Determinants of work disability in patients with systemic sclerosis: A longitudinal study of the GENISOS cohort. Semin Arthritis Rheum. 2011;41(1):38-47. doi:10.1016/j.semarthrit.2011.01.002; Poole JL, Anwar S, Mendelson C, Allaire S. Workplace barriers encountered by employed persons with systemic sclerosis. Work. 2016;55(4):923-929. doi:10.3233/WOR-162448; https://rsp.mediar-press.net/rsp/article/view/3483
-
14Academic Journal
المؤلفون: E. R. Mikheeva, I. V. Katraeva, A. A. Kovalev, S. V. Shekhurdina, E. A. Zhuravleva, A. A. Laikova, D. A. Kovalev, Yu. V. Litti, Э. Р. Михеева, И. В. Катраева, А. А. Ковалев, С. В. Шехурдина, Е. А. Журавлева, А. А. Лайкова, Д. А. Ковалев, Ю. В. Литти
المساهمون: Исследование выполнено на средства гранта Российского научного фонда № 21-79-10153. (https://rscf.ru/project/21-79-10153/). Е. А. Журавлева, А. А. Лайкова и Ю. В. Литти были поддержаны Министерством науки и высшего образования Российской Федерации.
المصدر: Alternative Energy and Ecology (ISJAEE); № 7 (2024); 92-120 ; Альтернативная энергетика и экология (ISJAEE); № 7 (2024); 92-120 ; 1608-8298
مصطلحات موضوعية: микробное сообщество, dairy wastewater, carrier materials, microbial community, молочные сточные воды, несущие материалы
وصف الملف: application/pdf
Relation: https://www.isjaee.com/jour/article/view/2451/1990; Srisowmeya G., Chakravarthy M., Bakshi A., Devi G. N. Improving process stability, biogas production and energy recovery using two-stage mesophilic anaerobic codigestion of rice wastewater with cow dung slurry. Biomass Bioenergy, 2021, 152, 106184. https://doi.org/10.1016/j.biombioe.2021.106184.; Wang T., Wang J., Pu J., Bai C., Peng C., Shi H., Wu R., Xu Z., Zhang Y., Luo D., Yang L., Zhang Q. Comparison of Thermophilic-Mesophilic and Mesophilic-Thermophilic Two-Phase High-Solid Sludge Anaerobic Digestion at Different Inoculation Proportions: Digestion Performance and Microbial Diversity. Microorganisms, 2023, 11, 2409. https://doi.org/10.3390/micro-organisms11102409.; Paranjpe A., Saxena S., Jain P. Biogas yield using single and two stage anaerobic digestion: An experimental approach. Energy Sustain. Dev. – 2023, 74, 6-19. https://doi.org/10.1016/j.esd.2023.03.005.; Mishra P., Balachandar G., Das D. Improvement in biohythane production using organic solid waste and distillery effluent. Waste Manage. – 2017, 66, 70-78. https://doi.org/10.1016/j.wasman.2017.04.040.; Qin Y., Wu J., Xiao B., Cong M., Hojo T., Cheng J., Li Y. Y. Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste. Energy, 2019, 179, 1235-1245. https://doi.org/10.1016/j.energy.2019.04.182.; Seengenyoung J., Mamimin C., Prasertsan P., Sompong O. Pilot-scale of biohythane production from palm oil mill effluent by two-stage thermophilic anaerobic fermentation. Int. J. Hydrog. Energy, 2019, 44, 3347-3355. https://doi.org/10.1016/j.ijhydene.2018.08.021.; Levin D. B., Chahine R. Challenges for renewable hydrogen production from biomass. Int. J. Hydrog. Energy, 2010, 35, 4962-4969. https://doi.org/10.1016/J.IJHYDENE.2009.08.067.; Yuan Y., Hu X., Chen H., Zhou Y., Zhou Y., Wang D. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Sci. Total Environ, 2019, 694, 133741. https://doi.org/10.1016/j.scitotenv.2019.133741.; Pan H., Feng Q., Zhao Y., Li X., Zi H. Influence of Organic Loading Rate on Methane Production from Brewery Wastewater in Bioelectrochemical Anaerobic Digestion. Fermentation, 2023, 9, 932. https://doi.org/10.3390/fermentation9110932.; Wang S., Ma F., Ma W., Wang P., Zhao G., Lu X. Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system. Water, 2019, 11, 133. https://doi.org/10.3390/w11010133.; Rademacher A., Nolte C., Schönberg M.,Klocke M. Temperature increases from 55 to 75 C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure. Appl. Microbiol. Biotechnol. – 2012, 96, 565-576. https://doi.org/10.1007/s00253-012-4348-x.; Li W., Guo J., Cheng H., Wang W., Dong R. Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation. Appl. Energy, 2017, 189, 613-622. https://doi.org/10.1016/j.apenergy.2016.12.101.; Meng X., Yuan X., Ren J., Wang X., Zhu W., Cui Z. Methane production and characteristics of the microbial community in a two-stage fixed-bed anaerobic reactor using molasses. Bioresour. Technol., 2017, 241, 1050- 1059. https://doi.org/10.1016/j.biortech.2017.05.181.; Sanz J. L., Rojas P., Morato A., Mendez L., Ballesteros M., González-Fernández C. Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere, 2017, 168, 1013-1021. https://doi.org/10.1016/j.chemo-sphere.2016.10.109.; Moset V., Poulsen M., Wahid R., Højberg O., Møller H. B. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microb. Biotechnol. – 2015, 8, 787-800. https://doi.org/10.1111/1751-7915.12271.; Wang M., Wang Y., Peng J., Wang L., Yang J., Kou X., Chai B., Gao L., Han X. A comparative study on Mesophilic and thermophilic anaerobic digestion of different total solid content sludges produced in a long sludge-retention-time system. Results in Engineering, 2023, 19, 101228. https://doi.org/10.1016/j.rineng.2023.101228.; Sompong O., Hniman A., Prasertsan P., Imai T. Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. Int. J. Hydrog. Energy, 2011, 36, 3409-3416. https://doi.org/10.1016/j.ijhydene.2010.12.053.; Noike T., Mizuno O. Hydrogen fermentation of organic municipal wastes. Water Sci. Technol. – 2000, 42, 155-162. https://doi.org/10.2166/wst.2000.0261.; Sompong O., Prasertsan P., Intrasungkha N., Dhamwichukorn S., Birkeland N. K. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge. Int. J. Hydrog. Energy, 2008, 33, 1221-1231. https://doi.org/10.1016/j.ijhydene.2007.12.017.; Cheong D. Y., Hansen C. L. Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes. Bioresour. Technol. – 2007, 98, 2229- 2239. https://doi.org/10.1016/j.biortech.2006.09.039.; Cho S. K., Im W. T., Kim D. H., Kim M. H., Shin H. S., Oh S. E. Dry anaerobic digestion of food waste under mesophilic conditions: Performance and methanogenic community analysis. Bioresour. Technol. – 2013, 131, 210-217. https://doi.org/10.1016/j.biortech.2012.12.100.; Khongkliang P., Kongjan P., Sompong O. Hydrogen and methane production from starch processing wastewater by thermophilic two-stage anaerobic digestion. Energy Procedia, 2015, 79, 827-832. https://doi.org/10.1016/j.egypro.2015.11.573.; Chu C. F., Li Y. Y., Xu K. Q., Ebie Y., Inamori Y., Kong H. N. A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrog. Energy, 2008, 33, 4739-4746. https://doi.org/10.1016/j.ijhydene.2008.06.060.; Chookaew T., Sompong O., Prasertsan P. Fermentative production of hydrogen and soluble metabolites from crude glycerol of biodiesel plant by the newly isolated thermotolerant Klebsiella pneumoniae TR17. Int. J. Hydrog. Energy. – 2012, 37, 13314-13322. https://doi.org/10.1016/j.ijhydene.2012.06.022.; Pan J., Zhang R., El-Mashad H. M., Sun H., Ying Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrog. Energy. – 2008, 33, 6968-6975. https://doi.org/10.1016/j.ijhydene.2008.07.130.; Kumar G., Buitrón, G. Fermentative biohydrogen production in fixed bed reactors using ceramic and polyethylene carriers as supporting material. Energy Procedia. – 2017, 142, 743-748. https://doi.org/10.1016/j.egypro.2017.12.121.; Zhao C. Development of fixed-bed bioreactor for higher bio-hydrogen production. The Degree of Doctor of Philosophy in Biotechnology, the Graduate School of Life and Environmental Sciences, the University of Tsukuba, 2019.; Chang J. S., Lee K. S., Lin P. J. Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrog. Energy. – 2002, 27, 1167-1174. https://doi.org/10.1016/S0360-3199(02)00130-1.; Zheng H., Li D., Stanislaus M. S., Zhang N., Zhu Q., Hu X., Yang Y. Development of a bio-zeolite fixed-bed bioreactor for mitigating ammonia inhibition of anaerobic digestion with extremely high ammonium concentration livestock waste. Chem. Eng. J. – 2015, 280, 106-114. https://doi.org/10.1016/j.cej.2015.06.024.; Hernández, E.S.; Rodriguez, X. Treatment of settled cattle-wastewaters by downflow anaerobic filter. Bioresour. Technol. 1992, 40, 77-79. https://doi.org/10.1016/0960-8524(92)90123-F.; Yang Y., Tada C., Miah M. S., Tsukahara K., Yagishita T., Sawayama S. Influence of bed materials on methanogenic characteristics and immobilized microbes in anaerobic digester. Mater. Sci. Eng. C. – 2004, 24, 413-419. https://doi.org/10.1016/j.msec.2003.11.005.; Yang Y., Tada C., Tsukahara K., Sawayama S. Methanogenic community and performance of fixed-and fluidized-bed reactors with reticular polyurethane foam with different pore sizes. Mater. Sci. Eng. C. – 2004, 24, 803-813. https://doi.org/10.1016/j.msec.2004.08.022.; Nozhevnikova A. N., Russkova Y. I., Litti Y. V., Parshina S. N., Zhuravleva E. A., Nikitina A. A. Syntrophy and interspecies electron transfer in methanogenic microbial communities. Microbiology, 2020, 89, 129-147. https://doi.org/10.1134/S0026261720020101.; Baek G., Kim J., Kim J., Lee C. Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies, 2018, 11, 107. https://doi.org/10.3390/en11010107.; Gokfiliz P., Karapinar I. The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. Int. J. Hydrog. Energy, 2017, 42, 2553-2561. https://doi.org/10.1016/j.ijhydene.2016.03.041.; Escalante H., Castro L., Amaya M. P., Jaimes L., Jaimes-Estévez J. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Manage. – 2018, 71, 711-718. https://doi.org/10.1016/j.wasman.2017.09.026.; Bella K., Rao P. V. Anaerobic co-digestion of cheese whey and septage: Effect of substrate and inoculum on biogas production. J. Environ. Manage. – 2022, 308, 114581. https://doi.org/10.1016/j.jenvman.2022.114581.; Slavov A. K. General characteristics and treatment possibilities of dairy wastewater – a review. Food Technol. Biotechnol. – 2017, 55, 14. doi:10.17113/ftb.55.01.17.4520.; Rincón-Catalán N. I., Pérez-Fabiel S., Mejía-González G., Herrera-López D., Castro-Chan R., Cruz-Salomón A., Sebastian P. J. Power generation from cheese whey treatment by anaerobic digestion and microbial fuel cell. Waste Biomass Valorization. – 2022, 13, 3221-3231. https://doi.org/10.1007/s12649-022-01720-1.; Fernández C., Cuetos M. J., Martínez E. J., Gómez X. Thermophilic anaerobic digestion of cheese whey: Coupling H2 and CH4 production. Biomass Bioenergy. – 2015, 81, 55-62. https://doi.org/10.1016/j.biombioe.2015.05.024.; Dębowski M., Zieliński M., Kisielewska M., Kazimierowicz J. Evaluation of anaerobic digestion of dairy wastewater in an innovative multi-section horizontal flow reactor. Energies. – 2020, 13, 2392. https://doi.org/10.3390/en13092392.; Kargi F., Eren N. S., Ozmihci S. Bio-hydrogen production from cheese whey powder (CWP) solution: comparison of thermophilic and mesophilic dark fermentations. Int. J. Hydrog. Energy. – 2012, 37, 8338-8342. https://doi.org/10.1016/j.ijhydene.2012.02.162.; Mikheeva E. R., Katraeva I. V., Kovalev A. A., Kovalev D. A., Nozhevnikova A. N., Panchenko V., Fiore U., Litti Y. V. The start-up of continuous biohydrogen production from cheese whey: comparison of inoculum pretreatment methods and reactors with moving and fixed polyurethane carriers. Appl. Sci. – 2021, 11, 510. https://doi.org/10.3390/app11020510.; Mikheeva E. R., Katraeva I. V., Vorozhtsov D. L., Litti Y. V., Nozhevnikova A. N. Efficiency of two-phase anaerobic fermentation and the physicochemical properties of the organic fraction of municipal solid waste processed in a vortex-layer apparatus. Appl. Biochem. Microbiol. – 2020, 56, 736-742. https://doi.org/10.1134/S0003683820060113.; Mikheeva E. R., Katraeva I. V., Kovalev A. A., Biryuchkova P. D., Zhuravleva E. A., Vishnyakova A.V., Litti Y. V. Pretreatment in vortex layer apparatus boosts dark fermentative hydrogen production from cheese whey. Fermentation, 2022, 8, 674. https://doi.org/10.3390/fermentation8120674.; Fadrosh D. W., Ma B., Gajer P., Sengamalay N., Ott S., Brotman R. M., Ravel J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 1-7. https://doi.org/10.1186/2049-2618-2-6.; Gohl D., MacLean A., Hauge A., Becker A., Walek D., Beckman K. An optimized protocol for high-throughput amplicon-based microbiome profiling. Protoc. Exch. – 2016. https://doi.org/10.1038/protex.2016.030.; Menzel T., Neubauer P., Junne S. Role of microbial hydrolysis in anaerobic digestion. Energies, 2020, 13, 5555. https://doi.org/10.3390/en13215555.; Dyksma S., Jansen L., Gallert C. Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome, 2020, 8, 1-14. https://doi.org/10.1186/s40168-020-00862-5.; Lee J., Koo T., Yulisa A., Hwang S. Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. J. Environ. Manage. – 2019, 241, 418-426. https://doi.org/10.1016/j.jenvman.2019.04.038.; Cai C., Li L., Hua Y., Liu H., Dai X. Ferroferric oxide promotes metabolism in Anaerolineae other than microbial syntrophy in anaerobic methanogenesis of antibiotic fermentation residue. Sci. Total Environ. – 2021, 758, 143601. https://doi.org/10.1016/j.scitotenv.2020.143601.; Venetsaneas N., Antonopoulou G., Stamatelatou K., Kornaros M., Lyberatos G. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. – 2009, 100, 3713-3717. https://doi.org/10.1016/j.biortech.2009.01.025.; Yang P., Zhang R., McGarvey J. A., Benemann J. R. Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrog. Energy, 2007, 32, 4761-4771. https://doi.org/10.1016/j.ijhydene.2007.07.038.; Ozyurt B., Hitit Z. Y., Ertunc S., Hapoglu H., Akay B., Demirtas G. F. Biological hydrogen production: effects of inoculation and production media. Int. J. Glob. Warm. – 2014, 6, 350-365. https://doi.org/10.1504/IJGW.2014.061036.; Ozyurt B., Soysal F., Hitit Z. Y., Camcioglu S., Akay B., Ertunc S. An efficient dark fermentative hydrogen production by GMV control of pH. Int. J. Hydrog.Energy, 2019, 44, 19709-19718. https://doi.org/10.1016/j.ijhydene.2019.06.048.; Penniston J., Gueguim Kana E. B. Impact of medium pH regulation on biohydrogen production in dark fermentation process using suspended and immobilized microbial cells. Biotechnol. Biotechnol. Equip. – 2018, 32, 204-212. https://doi.org/10.1080/13102818.2017.1408430.; Ziara R. M., Miller D. N., Subbiah J., Dvorak B. I. Lactate wastewater dark fermentation: the effect of temperature and initial pH on biohydrogen production and microbial community. Int. J. Hydrog. Energy, 2019, 44, 661-673. https://doi.org/10.1016/j.ijhydene.2018.11.045.; Dareioti M. A., Vavouraki A. I., Tsigkou K., Zafiri C., Kornaros M. Dark fermentation of sweet sorghum stalks, cheese whey and cow manure mixture: Effect of pH, pretreatment and organic load. Processes, 2021, 9, 1017. https://doi.org/10.3390/pr9061017.; Gadhamshetty V., Johnson D. C., Nirmalakhandan N., Smith G. B., Deng S. Dark and acidic conditions for fermentative hydrogen production. Int. J. Hydrog. Energy, 2009, 34, 821-826. https://doi.org/10.1016/j.ijhydene.2008.11.040.; Jariyaboon R., Hayeeyunu S., Usmanbaha N., Ismail S. B., O-Thong S., Mamimin C., Kongjan P. Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. Fermentation, 2023, 9, 636. https://doi.org/10.3390/fermentation9070636.; Zhang F., Chen Y., Dai K., Shen N., Zeng R. J. The glucose metabolic distribution in thermophilic (55°C) mixed culture fermentation: A chemostat study. Int. J. Hydrog. Energy, 2015, 40, 919-926. https://doi.org/10.1016/j.ijhydene.2014.11.098.; Rogers P. Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv. Appl. Microbiol. – 1986, 31, 1-60. https://doi.org/10.1016/S0065-2164(08)70438-6.; Valdez-Vazquez I., Poggi-Varaldo H. M. Hydrogen production by fermentative consortia. Renew. Sust. Energ. Rev. – 2009, 13, 1000-1013. https://doi.org/10.1016/j.rser.2008.03.003.; Giuliano A., Zanetti L., Micolucci F., Cavinato C. Thermophilic two-phase anaerobic digestion of source-sorted organic fraction of municipal solid waste for bio-hythane production: effect of recirculation sludge on process stability and microbiology over a long-term pilot-scale experience. Water Sci. Technol. – 2014, 69, 2200-2209. https://doi.org/10.2166/wst.2014.137.; Guo X. M., Trably E., Latrille E., Carrère H., Steyer J. P. Hydrogen production from agricultural waste by dark fermentation: a review. Int. J. Hydrog. Energy, 2010, 35, 10660-10673. https://doi.org/10.1016/j.ijhydene.2010.03.008.; Lindner J., Zielonka S., Oechsner H., Lemmer A. Is the continuous two-stage anaerobic digestion process well suited for all substrates? Bioresour. Technol. – 2016, 200, 470-476. https://doi.org/10.1016/j.biortech.2015.10.052.; Garcia-Aguirre J., Aymerich E., de González-Mtnez Goñi J., Esteban-Gutiérrez M. Selective VFA Production Potential from Organic Waste Streams: Assessing Temperature and PH Influence. Bioresour. Technol. – 2017, 244, 1081-1088. https://doi.org/10.1016/j.biortech.2017.07.187.; Fernández-Rodríguez J., Pérez M., Romero L. I. Semicontinuous Temperature-Phased Anaerobic Digestion (TPAD) of Organic Fraction of Municipal Solid Waste (OFMSW). Comparison with Single-Stage Processes. Chem. Eng. J. – 2016, 285, 409-416. https://doi.org/10.1016/j.cej.2015.10.027.; Litti Y. V., Potekhina M. A., Zhuravleva E. A., Vishnyakova A. V., Gruzdev D. S., Kovalev A. A., Kovalev D. A., Katraeva I. V., Parshina S. N. Dark fermentative hydrogen production from simple sugars and various wastewaters by a newly isolated Thermoanaerobacterium thermosaccharolyticum SP-H2. Int. J. Hydrog. Energy, 2022, 47, 24310-24327. https://doi.org/10.1016/j.ijhydene.2022.05.235.; Eng F., Fuess L. T., Bovio-Winkler P., Etchebehere C., Sakamoto I. K., Zaiat M. Optimization of volatile fatty acid production by sugarcane vinasse dark fermentation using a response surface methodology. Links between performance and microbial community composition. Sustain. Energy Technol. Assess. – 2022, 53, 102764. https://doi.org/10.1016/j.seta.2022.102764.; Couto P. T., Eng F., Bovio-Winkler P., Cavalcante W. A., Etchebehere C., Fuentes L., Nopens I., Zaiat M., Ribeiro R. Modeling of hydrogen and organic acid production using different concentrations of sugarcane vinasse under thermophilic conditions and a link with microbial community 16S rRNA gene sequencing data. J. Clean. Prod. – 2022, 370, 133437. https://doi.org/10.1016/j.jclepro.2022.133437.; Luo L., Sriram S., Johnravindar D., Martin T. L. P., Wong J. W., Pradhan N. Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation. Bioresour. Technol. – 2022, 358, 127404. https://doi.org/10.1016/j.biortech.2022.127404.; Song Z. X., Dai Y., Fan Q. L., Li X. H., Fan Y. T., Hou H. W. Effects of pretreatment method of natural bacteria source on microbial community and bio-hydrogen production by dark fermentation. Int. J. Hydrog. Energy, 2012, 37, 5631-5636. https://doi.org/10.1016/j.ijhydene.2012.01.010.; Sittijunda S., Baka S., Jariyaboon R., Reungsang A., Imai T., Kongjan P. Integration of Dark Fermentation with Microbial Electrolysis Cells for Biohydrogen and Methane Production from Distillery Wastewater and Glycerol Waste Co-Digestion. Fermentation, 2022, 8, 537. https://doi.org/10.3390/fermentation8100537.; Bo Z., Wei-min C. A. I., Pin-Jing H. E. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes. J. Environ. Sci. – 2007, 19, 244-249.https://doi.org/10.1016/S1001-0742(07)60040-0.; Detman A., Mielecki D., Pleśniak Ł., Bucha M., Janiga M., Matyasik I., Chojnacka A., Jędrysek M. O., Błaszczyk M. K., Sikora A. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. Biotechnol. Biofuels, 2018, 11, 1-18. https://doi.org/10.1186/s13068-018-1106-z.; Yang K., Yu Y., Hwang S. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Res. – 2003, 37, 2467-2477. https://doi.org/10.1016/S0043-1354(03)00006-X.; Ince O. Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res. – 1998, 32, 2707-2713. https://doi.org/10.1016/S0043-1354(98)00036-0.; Kovalev A. A., Mikheeva E. R., Panchenko V., Katraeva I. V., Kovalev D. A., Zhuravleva E. A., Litti Y. V. Optimization of Energy Production from Two-Stage Mesophilic-Thermophilic Anaerobic Digestion of Cheese Whey Using a Response Surface Methodology Approach. Energies, 2022, 15, 8928. https://doi.org/10.3390/en15238928.; Fink C., Beblawy S., Enkerlin A. M., Mühling L., Angenent L. T., Molitor B. A shuttle-vector system allows heterologous gene expression in the thermophilic methanogen Methanothermobacter thermautotrophicus ΔH. MBio, 2021, 12, e02766-21. https://doi.org/10.1128/mBio.02766-21.; Gies E. A., Konwar K. M., Beatty J. T., Hallam S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. – 2014, 80, 6807-6818. https://doi.org/10.1128/AEM.01774-14.; Yi Y., Wang H., Chen Y., Gou M., Xia Z., Hu B., Nie Y., Tang Y. Identification of novel butyrate-and acetate-oxidizing bacteria in butyrate-fed mesophilic anaerobic chemostats by DNA-based stable isotope probing. Microb. Ecol. – 2020, 79, 285-298. https://doi.org/10.1007/s00248-019-01400-z.; Dyksma S., Gallert C. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion. Environ. Microbiol. Rep. – 2019, 11, 558-570. https://doi.org/10.1111/1758-2229.12759.; Serna-García R., Borrás L., Bouzas A., Seco A. Insights into the biological process performance and microbial diversity during thermophilic microalgae co-digestion in an anaerobic membrane bioreactor (AnMBR). Algal Res. – 2020, 50, 101981. https://doi.org/10.1016/j.algal.2020.101981.; Wang G., Li Q., Gao X., Wang X. C. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresour. Technol. – 2018, 250, 812-820. https://doi.org/10.1016/j.biortech.2017.12.004.; Wang Z., Zhang C., Watson J., Sharma B. K., Si B., Zhang Y. Adsorption or direct interspecies electron transfer? A comprehensive investigation of the role of biochar in anaerobic digestion of hydrothermal liquefaction aqueous phase. Chem. Eng. J. – 2022, 435, 135078. https://doi.org/10.1016/j.cej.2022.135078.; Kuroda K., Shinshima F., Tokunaga S., Noguchi T. Q., Yamauchi M., Nobu M. K., Narihiro T., Yamada M. Assessing the effect of green tuff as a novel natural inorganic carrier on methane-producing activity of an anaerobic sludge microbiome. Environ. Technol. Innov. – 2021, 24, 101835. https://doi.org/10.1016/j.eti.2021.101835; https://www.isjaee.com/jour/article/view/2451
-
15Academic Journal
المؤلفون: D. V. Khorolsky, A. A. Klimenko, E. S. Pershina, N. M. Babadeva, A. A. Kondrashov, N. A. Shostak, E. P. Mikheeva, E. V. Zhilyaev, Д. В. Хорольский, А. А. Клименко, Е. С. Першина, Н. М. Бабадаева, А. А. Кондрашов, Н. А. Шостак, Е. П. Михеева, Е. В. Жиляев
المصدر: Modern Rheumatology Journal; Том 17, № 4 (2023); 57-63 ; Современная ревматология; Том 17, № 4 (2023); 57-63 ; 2310-158X ; 1996-7012
مصطلحات موضوعية: компьютерная томография легких высокого разрешения, interstitial lung disease, six-minute walk test, autoantibodies, cross-sectional observational study, high-resolution computed tomography of the lungs, интерстициальное заболевание легких, тест с 6-минутной ходьбой, аутоантитела, одномоментное наблюдательное исследование
وصف الملف: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1460/1385; Goh NS, Desai SR, Veeraraghavan S, et al. Interstitial lung disease in systemic sclerosis: a simple staging system. Am J Respir Crit Care Med. 2008 Jun 1;177(11):1248-54. doi:10.1164/rccm.200706-877OC. Epub 2008 Mar 27.; Bergamasco A, Hartmann N, Wallace L, Verpillat P. Epidemiology of systemic sclerosis and systemic sclerosis-associated interstitial lung disease. Clin Epidemiol. 2019 Apr 18; 11:257-273. doi:10.2147/CLEP.S191418. eCollection 2019.; Steele R, Hudson M, Lo E, Baron M; Canadian Scleroderma Research Group. Clinical decision rule to predict the presence of interstitial lung disease in systemic sclerosis. Arthritis Care Res (Hoboken). 2012 Apr; 64(4):519-24. doi:10.1002/acr.21583.; Lumetti F, Barone L, Alfieri C, et al. Quality of life and functional disability in patients with interstitial lung disease related to Systemic Sclerosis. Acta Biomed. 2015 Sep 14; 86(2):142-8.; Zhou Z, Fan Y, Thomason D, et al. Eco-nomic Burden of Illness Among Commercially Insured Patients with Systemic Sclerosis with Interstitial Lung Disease in the USA: A Claims Data Analysis. Adv Ther. 2019 May; 36(5):1100-1113. doi:10.1007/s12325-019-00929-2. Epub 2019 Mar 30.; Tyndall AJ, Bannert B, Vonk M, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis. 2010 Oct;69(10):1809-15. doi:10.1136/ard.2009.114264. Epub 2010 Jun 15.; Aragona CO, Versace AG, Ioppolo C, et al. Emerging Evidence and Treatment Perspectives from Randomized Clinical Trials in Systemic Sclerosis: Focus on Interstitial Lung Disease. Biomedicines. 2022 Feb 21;10(2):504. doi:10.3390/biomedicines10020504.; Van den Hoogen F, Khanna D, Fransen J, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 2013 Nov;65(11):2737-47. doi:10.1002/art.38098. Epub 2013 Oct 3.; Wittram C, Mark EJ, McLoud TC. CT-histologic correlation of the ATS/ERS 2002 classification of idiopathic interstitial pneumonias. Radiographics. 2003 Sep-Oct;23(5): 1057-71. doi:10.1148/rg.235035702.; Suliman YA, Dobrota R, Huscher D, et al. Brief Report: Pulmonary Function Tests: High Rate of False-Negative Results in the Early Detection and Screening of Scleroderma-Related Interstitial Lung Disease. Arthritis Rheumatol. 2015 Dec;67(12):3256-61. doi:10.1002/art.39405.; Rutka K, Garkowski A, Karaszewska K, tebkowska U. Imaging in Diagnosis of Systemic Sclerosis. J Clin Med. 2021 Jan 12;10(2):248. doi:10.3390/jcm10020248.; Ананьева ЛП, Александрова ЕН. Аутоантитела при системной склеродермии: спектр, клинические ассоциации и прогностическое значение. Научно-практическая ревматология. 2016;54(1):86-99.; Yang C, Tang S, Zhu D, et al. Classical Disease-Specific Autoantibodies in Systemic Sclerosis: Clinical Features, Gene Susceptibility, and Disease Stratification. Front Med (Lausanne). 2020 Nov 19;7:587773. doi:10.3389/fmed.2020.587773. eCollection 2020.; Stochmal A, Czuwara J, Trojanowska M, Rudnicka L. Antinuclear Antibodies in Systemic Sclerosis: an Update. Clin Rev Allergy Immunol. 2020 Feb;58(1):40-51. doi:10.1007/s12016-018-8718-8.; https://mrj.ima-press.net/mrj/article/view/1460
-
16
المؤلفون: A. V. Drakon, A. V. Eremin, V. N. Zolotarenko, M. R. Korshunova, E. Yu. Mikheeva
المصدر: Combustion, Explosion, and Shock Waves. 59:185-198
مصطلحات موضوعية: Fuel Technology, General Chemical Engineering, General Physics and Astronomy, Energy Engineering and Power Technology, General Chemistry
-
17
المؤلفون: A. S. Osokina, E. A. Mikheeva, I. V. Maslennikov
المصدر: Siberian Herald of Agricultural Science. 53:71-79
مصطلحات موضوعية: Forestry, Plant Science
-
18
المؤلفون: A. V. Drakon, A. V. Eremin, V. N. Zolotarenko, M. R. Korshunova, E. Yu. Mikheeva
المصدر: Физика горения и взрыва. 59:69-82
مصطلحات موضوعية: Process Chemistry and Technology, Mechanical Engineering
-
19INFLUENCE OF VITAMIN AND MINERAL FEED SUPPLEMENTS ON THE PRODUCTIVITY OF HONEY BEES (APIS MELLIFERA)
المؤلفون: S. L. Vorobieva, E. A. Mikheeva, A. V. Shishkin, M. Yu. Popkova
المصدر: The Bulletin of Izhevsk State Agricultural Academy. :16-21
مصطلحات موضوعية: General Medicine
-
20
المؤلفون: E. A. Malkova, E. V. Mikheeva, I. A. Kshnyasev
المصدر: Theoretical and Applied Ecology. :186-193
مصطلحات موضوعية: Ecology, Ecology, Evolution, Behavior and Systematics