-
1Academic Journal
المؤلفون: Wensheng Wang, Rui Wang
المصدر: Systems, Vol 12, Iss 12, p 584 (2024)
مصطلحات موضوعية: systemic risk, clean energy market, dynamic factor copula model, systemic importance, risk spillover, Systems engineering, TA168, Technology (General), T1-995
وصف الملف: electronic resource
-
2Dissertation/ Thesis
المؤلفون: 湯詠皓, Tang, Yung-Hao
المساهمون: 楊曉文
مصطلحات موضوعية: 動態 Factor Copula模型, 關聯結構, 蒙地卡羅情境模擬, 附保證投資型商品, 時間序列模型, Dynamic Factor Copula, Copula, Monte Carlo Simulation, GMXB, Time Series Model
وصف الملف: 2039014 bytes; application/pdf
Relation: [1]Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfoli-os. Journal of financial Economics, 63(3), 443-494.\n[2]Andersson, M., Krylova, E., & Vähämaa, S. (2008). Why does the correlation between stock and bond returns vary over time?. Applied Financial Econom-ics, 18(2), 139-151.\n[3]Alonso-García, J., Wood, O., & Ziveyi, J. (2018). Pricing and hedging guaran-teed minimum withdrawal benefits under a general Lévy framework using the COS method. Quantitative Finance, 18(6), 1049-1075.\n[4]Brennan, M. J., & Schwartz, E. S. (1976). The pricing of equity-linked life in-surance policies with an asset value guarantee. Journal of Financial Economics, 3(3), 195-213.\n[5]Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedastici-ty. Journal of econometrics, 31(3), 307-327.\n[6]Connolly, R., Stivers, C., & Sun, L. (2005). Stock market uncertainty and the stock-bond return relation. Journal of Financial and Quantitative Analysis, 161-194.\n[7]Creal, D., Koopman, S. J., & Lucas, A. (2013). Generalized autoregressive score models with applications. Journal of Applied Econometrics, 28(5), 777-795.\n[8]Dai, M., Kuen Kwok, Y., & Zong, J. (2008). Guaranteed minimum withdrawal benefit in variable annuities. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 18(4), 595-611.\n[9]Erb, C. B., Harvey, C. R., & Viskanta, T. E. (1994). Forecasting international equity correlations. Financial analysts journal, 50(6), 32-45.\n[10]Engle, R. (2002). Dynamic conditional correlation: A simple class of multivari-ate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339-350.\n[11]Jondeau, E., & Rockinger, M. (2006). The copula-garch model of conditional dependencies: An international stock market application. Journal of interna-tional money and finance, 25(5), 827-853.\n[12]Longin, F., & Solnik, B. (2001). Extreme correlation of international equity markets. The journal of finance, 56(2), 649-676.\n[13]Meneguzzo, D., & Vecchiato, W. (2004). Copula sensitivity in collateralized debt obligations and basket default swaps. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 24(1), 37-70.\n[14]Oh, D. H., & Patton, A. J. (2017). Modeling dependence in high dimensions with factor copulas. Journal of Business & Economic Statistics, 35(1), 139-154.\n[15]Oh, D. H., & Patton, A. J. (2018). Time-varying systemic risk: Evidence from a dynamic copula model of cds spreads. Journal of Business & Economic Statis-tics, 36(2), 181-195.\n[16]Patton, A. J. (2004). On the out-of-sample importance of skewness and asym-metric dependence for asset allocation. Journal of Financial Econometrics, 2(1), 130-168.\n[17]Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. Inter-national economic review, 47(2), 527-556.\n[18]Riccetti, L. (2010). The use of copulas in asset allocation: when and how a cop-ula model can be useful. LAP LAMBERT Academic Publishing.\n[19]Schönbucher, P. J., & Schubert, D. (2001). Copula-dependent default risk in in-tensity models. In Working paper, Department of Statistics, Bonn University.; G0108352010; https://nccur.lib.nccu.edu.tw//handle/140.119/135939; https://nccur.lib.nccu.edu.tw/bitstream/140.119/135939/1/201001.pdf