-
1Academic Journal
مصطلحات موضوعية: Railway engineering, Rail transportation, Energy consumption, 3323 Tecnología de Los Ferrocarriles, 3322.04 Transmisión de Energía
وصف الملف: application/pdf
Relation: https://www.sciencedirect.com/science/article/pii/S0142061524003442; https://doi.org/10.1016/j.ijepes.2024.110123; International Journal of Electrical Power & Energy Systems, septiembre 2024, vol. 160, 110123; https://uvadoc.uva.es/handle/10324/73153; 110123; International Journal of Electrical Power & Energy Systems; 160
-
2Academic Journal
المؤلفون: Davila Sacoto, Miguel, Hernández Callejo, Luis, Luis Gerardo, Gonzalez, Duque-Perez, Oscar, Zorita-Lamadrid, Angel, Ochoa Correa, Danny
المصدر: Sensors, 24(12), (2024-06-10)
Relation: https://doi.org/10.3390/s24123768; oai:zenodo.org:13853292
الاتاحة: https://doi.org/10.3390/s24123768
-
3Academic Journal
المصدر: IEEE Access ; page 1-1 ; ISSN 2169-3536
-
4Academic Journal
المؤلفون: Dávila-Sacoto, Miguel, González, L. G., Hernández-Callejo, Luis, Duque-Perez, Óscar, Zorita-Lamadrid, Ángel L., Víctor Alonso-Gómez, Espinoza, J. L.
المصدر: Electronics, 12(11), 2415, (2023-05-23)
Relation: https://doi.org/10.3390/electronics12112415; oai:zenodo.org:11297620
-
5Academic Journal
المساهمون: Giraldo-Sánchez, Carlos Eduardo, Universidad Católica de Oriente. Facultad de Ciencias Agropecuarias
مصطلحات موضوعية: Control biológico, Depredador, Parasitoide, Liriomyza, Colombia, Biological control, Predator, Parasitoid, Moscas, Dípteros, Plagas de campo, Patología vegetal, Fitopatología, Insectos nocivos para la agricultura
جغرافية الموضوع: Sudamérica, Colombia, Rionegro, Antioquia
وصف الملف: 13p.; application/pdf
Relation: https://repositorio.uco.edu.co; https://repositorio.uco.edu.co/jspui/handle/20.500.13064/1817; Henao Gallo, Julián Andrés; Duque Pérez, Oscar Mauricio. Efecto de la aspiración mecánica sobre minadores (Diptera: Agromyzidae) y sus enemigos naturales, en un cultivo de crisantemo del oriente antioqueño (Trabajo de grado) Rionegro, Antioquia: Universidad Católica de Oriente; 2022. 13p.
-
6Electronic Resource
-
7Electronic Resource
-
8Electronic Resource
-
9Academic Journal
المؤلفون: Bonet Jara, Jorge, Morinigo-Sotelo, Daniel, Duque-Perez, Oscar, Serrano-Iribarnegaray, Luis, Pons-Llinares, Joan
المصدر: IEEE Transactions on Industry Applications, 58(4), 4522 - 4531, (2022-07-22)
Relation: https://doi.org/10.1109/TIA.2022.3166876; oai:zenodo.org:13838574
-
10Academic Journal
المؤلفون: Mariano, Deyslen, Hernández-Callejo, Luis, Solís, Martín, Zorita-Lamadrid, Angel, Duque-Perez, Oscar, González, L. G., Alonso-Gómez, Víctor, Jaramillo Duque, Alvaro, Santos García, F.
المصدر: Energy Science & Engineering, 10(12), 4694-4707, (2022-08-22)
Relation: https://doi.org/10.1002/ese3.1298; oai:zenodo.org:11298223
الاتاحة: https://doi.org/10.1002/ese3.1298
-
11Academic Journal
المؤلفون: Arranz Gimón, Ángel Eugenio, Zorita Lamadrid, Ángel Luis, Moríñigo Sotelo, Daniel, Duque Pérez, Óscar
مصطلحات موضوعية: Electric power, Energía eléctrica, Hann function, Función Hann, Adjustable speed drive, Variadores de velocidad, Induction motors, Motores de inducción, 3306 Ingeniería y Tecnología Eléctricas
وصف الملف: application/pdf
Relation: https://doi.org/10.1016/j.epsr.2022.107833; Electric Power Systems Research, 2022, vol. 206, 107833; https://uvadoc.uva.es/handle/10324/52105
-
12Academic Journal
المؤلفون: Mariano-Hernández, Deyslen, Hernández Callejo, Luis, Solís, Martín, Zorita Lamadrid, Angel Luis, Duque-Perez, Oscar, Gonzalez Morales, Luis Gerardo, Santos Garcia, Felix, Jaramillo Duque, Álvaro, Ospino C., Adalberto, Alonso Gómez, Víctor, Bello, Hugo J.
مصطلحات موضوعية: Drift detection, Electrical consumption forecasting, Energy forecasting, Machine learning, Smart buildings
وصف الملف: 14 páginas; application/pdf
Relation: Sustainability; 1. IEA Tracking Buildings. 2021. Available online: https://www.iea.org/reports/tracking-buildings-2021 (accessed on 16 March 2022).; 2. Cholewa, T.; Siuta-Olcha, A.; Smolarz, A.; Muryjas, P.; Wolszczak, P.; Guz, Ł.; Bocian, M.; Balaras, C.A. An easy and widelapplicable forecast control for heating systems in existing and new buildings: First field experiences. J. Clean. Prod. 2022, 352, 131605. [CrossRef]; 3. Devagiri, V.M.; Boeva, V.; Abghari, S.; Basiri, F.; Lavesson, N. Multi-view data analysis techniques for monitoring smart building systems. Sensors 2021, 21, 6775. [CrossRef] [PubMed]; 4. Izidio, D.M.; de Mattos Neto, P.S.; Barbosa, L.; de Oliveira, J.F.; Marinho, M.H.D.N.; Rissi, G.F. Evolutionary hybrid system for energy consumption forecasting for smart meters. Energies 2021, 14, 1794. [CrossRef]; 5. Hong, T.; Wang, Z.; Luo, X.; Zhang, W. State-of-the-art on research and applications of machine learning in the building life cycle. Energy Build. 2020, 212, 109831. [CrossRef]; 6. Kim, J.Y.; Cho, S.B. Electric energy consumption prediction by deep learning with state explainable autoencoder. Energies 2019, 12, 739. [CrossRef]; 7. Zeng, A.; Ho, H.; Yu, Y. Prediction of building electricity usage using Gaussian Process Regression. J. Build. Eng. 2020, 28, 101054. [CrossRef]; 8. Xu, W.; Peng, H.; Zeng, X.; Zhou, F.; Tian, X.; Peng, X. A hybrid modelling method for time series forecasting based on a linear regression model and deep learning. Appl. Intell. 2019, 49, 3002–3015. [CrossRef]; 9. Cholewa, T.; Siuta-Olcha, A.; Smolarz, A.; Muryjas, P.; Wolszczak, P.; Anasiewicz, R.; Balaras, C.A. A simple building energy model in form of an equivalent outdoor temperature. Energy Build. 2021, 236, 110766. [CrossRef]; 11. Iwashita, A.S.; Papa, J.P. An Overview on Concept Drift Learning. IEEE Access 2019, 7, 1532–1547. [CrossRef]; 12. Baier, L.; Kühl, N.; Satzger, G.; Hofmann, M.; Mohr, M. Handling concept drifts in regression problems—the error intersection approach. In WI2020 Zentrale Tracks; GITO Verlag: Berlin, Germany, 2020; pp. 210–224.; 13. Kahraman, A.; Kantardzic, M.; Kahraman, M.; Kotan, M. A data-driven multi-regime approach for predicting energy consumption. Energies 2021, 14, 6763. [CrossRef]; 14. Webb, G.I.; Lee, L.K.; Goethals, B.; Petitjean, F. Analyzing concept drift and shift from sample data. Data Min. Knowl. Discov. 2018, 32, 1179–1199. [CrossRef]; 15. Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under Concept Drift: A Review. IEEE Trans. Knowl. Data Eng. 2019, 31, 2346–2363. [CrossRef]; 16. Brzezinski, D.; Stefanowski, J. Reacting to different types of concept drift: The accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 81–94. [CrossRef]; 17. Wadewale, K.; Desai, S.; Tennant, M.; Stahl, F.; Rana, O.; Gomes, J.B.; Thakre, A.A.; Redes, E.M.; Padmalatha, E.; Rani, P.; et al. Survey on Method of Drift Detection and Classification for time varying data set. Comput. Biol. Med. 2016, 32, 1–7.; 18. Khezri, S.; Tanha, J.; Ahmadi, A.; Sharifi, A. A novel semi-supervised ensemble algorithm using a performance-based selection metric to non-stationary data streams. Neurocomputing 2021, 442, 125–145. [CrossRef]; 19. Fekri, M.N.; Patel, H.; Grolinger, K.; Sharma, V. Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network. Appl. Energy 2021, 282, 116177. [CrossRef]; 20. Jagait, R.K.; Fekri, M.N.; Grolinger, K.; Mir, S. Load Forecasting Under Concept Drift: Online Ensemble Learning With Recurrent Neural Network and ARIMA. IEEE Access 2021, 9, 98992–99008. [CrossRef]; 21. Fenza, G.; Gallo, M.; Loia, V. Drift-aware methodology for anomaly detection in smart grid. IEEE Access 2019, 7, 9645–9657. [CrossRef]; 22. Mehmood, H.; Kostakos, P.; Cortes, M.; Anagnostopoulos, T.; Pirttikangas, S.; Gilman, E. Concept drift adaptation techniques in distributed environment for real-world data streams. Smart Cities 2021, 4, 349–371. [CrossRef]; 23. Ceci, M.; Corizzo, R.; Japkowicz, N.; Mignone, P.; Pio, G. ECHAD: Embedding-Based Change Detection from Multivariate Time Series in Smart Grids. IEEE Access 2020, 8, 156053–156066. [CrossRef]; 24. Yang, Z.; Al-Dahidi, S.; Baraldi, P.; Zio, E.; Montelatici, L. A Novel Concept Drift Detection Method for Incremental Learning in Nonstationary Environments. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 309–320. [CrossRef] [PubMed]; 25. Silva, R.P.; Zarpelão, B.B.; Cano, A.; Barbon Junior, S. Time series segmentation based on stationarity analysis to improve new samples prediction. Sensors 2021, 21, 7333. [CrossRef] [PubMed]; 26. Heusinger, M.; Raab, C.; Schleif, F.M. Passive concept drift handling via variations of learning vector quantization. Neural Comput. Appl. 2022, 34, 89–100. [CrossRef]; 27. Raab, C.; Heusinger, M.; Schleif, F.M. Reactive Soft Prototype Computing for Concept Drift Streams. Neurocomputing 2020, 416, 340–351. [CrossRef]; 28. Togbe, M.U.; Chabchoub, Y.; Boly, A.; Barry, M.; Chiky, R.; Bahri, M. Anomalies detection using isolation in concept-drifting data streams. Computers 2021, 10, 13. [CrossRef]; 29. Moon, J.; Park, S.; Rho, S.; Hwang, E. A comparative analysis of artificial neural network architectures for building energy consumption forecasting. Int. J. Distrib. Sens. Netw. 2019, 15, 155014771987761. [CrossRef]; 30. Kiprijanovska, I.; Stankoski, S.; Ilievski, I.; Jovanovski, S.; Gams, M.; Gjoreski, H. HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning. Energies 2020, 13, 2672. [CrossRef]; 31. Zor, K.; Çelik, Ö.; Timur, O.; Teke, A. Short-term building electrical energy consumption forecasting by employing gene expression programming and GMDH networks. Energies 2020, 13, 1102. [CrossRef]; 32. Li, Z.; Friedrich, D.; Harrison, G.P. Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model. Energies 2020, 13, 780. [CrossRef]; 33. Culaba, A.B.; Del Rosario, A.J.R.; Ubando, A.T.; Chang, J.-S. Machine learning-based energy consumption clustering and forecasting for mixed-use buildings. Int. J. Energy Res. 2020, 44, 9659–9673. [CrossRef]; 34. Wang, Z.; Wang, Y.; Zeng, R.; Srinivasan, R.S.; Ahrentzen, S. Random Forest based hourly building energy prediction. Energy Build. 2018, 171, 11–25. [CrossRef]; 35. Sauer, J.; Mariani, V.C.; dos Santos Coelho, L.; Ribeiro, M.H.D.M.; Rampazzo, M. Extreme gradient boosting model based on improved Jaya optimizer applied to forecasting energy consumption in residential buildings. Evol. Syst. 2021, 1–12. [CrossRef]; 36. Bassi, A.; Shenoy, A.; Sharma, A.; Sigurdson, H.; Glossop, C.; Chan, J.H. Building energy consumption forecasting: A comparison of gradient boosting models. In Proceedings of the 12th International Conference on Advances in Information Technology, Bangkok, Thailand, 29 June–1 July 2021. [CrossRef]; 37. Mariano-Hernández, D.; Hernández-Callejo, L.; Solís, M.; Zorita-Lamadrid, A.; Duque-Perez, O.; Gonzalez-Morales, L.; SantosGarcía, F. A Data-Driven Forecasting Strategy to Predict Continuous Hourly Energy Demand in Smart Buildings. Appl. Sci. 2021, 11, 7886. [CrossRef]; 38. Olu-Ajayi, R.; Alaka, H.; Sulaimon, I.; Sunmola, F.; Ajayi, S. Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques. J. Build. Eng. 2022, 45, 103406. [CrossRef]; 39. Lemos, V.H.B.; Almeida, J.D.S.; Paiva, A.C.; Junior, G.B.; Silva, A.C.; Neto, S.M.B.; Lima, A.C.M.; Cipriano, C.L.S.; Fernandes, E.C.; Silva, M.I.A. Temporal convolutional network applied for forecasting individual monthly electric energy consumption. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 2002–2007.; 40. Bendaoud, N.M.M.; Farah, N. Using deep learning for short-term load forecasting. Neural Comput. Appl. 2020, 32, 15029–15041. [CrossRef]; 41. Gao, Y.; Ruan, Y.; Fang, C.; Yin, S. Deep learning and transfer learning models of energy consumption forecasting for a building with poor information data. Energy Build. 2020, 223, 110156. [CrossRef]; 42. Bifet, A.; Gavaldà, R. Learning from time-changing data with adaptive windowing. In Proceedings of the 7th SIAM International Conference on Data Mining, Minneapolis, MN, USA, 26–28 April 2007; pp. 443–448.; 43. Moon, J.; Kim, Y.; Son, M.; Hwang, E. Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron. Energies 2018, 11, 3283. [CrossRef]; 44. Khosravani, H.; Castilla, M.; Berenguel, M.; Ruano, A.; Ferreira, P. A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building. Energies 2016, 9, 57. [CrossRef]; 45. Ali, U.; Shamsi, M.H.; Bohacek, M.; Hoare, C.; Purcell, K.; Mangina, E.; O’Donnell, J. A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings. Appl. Energy 2020, 267, 114861. [CrossRef]; 46. Andelkovi´c, A.S.; Bajatovi´c, D. Integration of weather forecast and artificial intelligence for a short-term city-scale natural gas ¯ consumption prediction. J. Clean. Prod. 2020, 266, 122096. [CrossRef]; 14; 10; Mariano-Hernández, D.; Hernández-Callejo, L.; Solís, M.; Zorita-Lamadrid, A.; Duque-Pérez, O.; Gonzalez-Morales, L.; García, F.S.; Jaramillo-Duque, A.; Ospino-Castro, A.; Alonso-Gómez, V.; et al. Analysis of the Integration of Drift Detection Methods in Learning Algorithms for Electrical Consumption Forecasting in Smart Buildings. Sustainability 2022, 14, 5857. https://doi.org/10.3390/su14105857; https://hdl.handle.net/11323/9472; https://doi.org/10.3390/su14105857; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
13Conference
المؤلفون: De Boni, Gabriele, Fernandez-Cavero, Vanesa, Frosini, Lucia, Duque-Perez, Oscar, Morinigo-Sotelo, Daniel
المساهمون: De Boni, Gabriele, Fernandez-Cavero, Vanesa, Frosini, Lucia, Duque-Perez, Oscar, Morinigo-Sotelo, Daniel
مصطلحات موضوعية: induction motor, closed-loop control, inverter, fault detection, misalignment
وصف الملف: ELETTRONICO
Relation: info:eu-repo/semantics/altIdentifier/isbn/979-8-3503-2077-0; ispartofbook:2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED); 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED); firstpage:443; lastpage:449; numberofpages:7; https://hdl.handle.net/11571/1489876; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85175252847
-
14Academic Journal
المؤلفون: Fernandez-Cavero, Vanesa, García Escudero, Luis Ángel, Pons-Llinares, Joan, Fernández Temprano, Miguel Alejandro, Duque Pérez, Óscar, Moríñigo Sotelo, Daniel
مصطلحات موضوعية: induction motors, transient analysis, fault diagnosis, functional ANOVA
وصف الملف: application/pdf
Relation: https://www.mdpi.com/2076-3417/11/9/3769; https://doi.org/10.3390/app11093769; https://uvadoc.uva.es/handle/10324/65692; 11; 12; Applied Sciences
-
15Academic Journal
المؤلفون: Mariano-Hernández, Deyslen, Hernández Callejo, Luis, Solis, Martín, Zorita Lamadrid, Ángel Luis, Duque Pérez, Óscar, González-Morales, Luis, Santos García, Félix
مصطلحات موضوعية: Ingeniería Eléctrica, Modelos de previsión. Consumo de energía eléctrica. Previsión a corto plazo. Edificio inteligente, Forecasting models, energy consumption, multi-step forecasting, short-term forecasting, smart building, 3306 Ingeniería y Tecnología Eléctricas
وصف الملف: application/pdf
Relation: https://www.mdpi.com/2076-3417/11/17/7886; https://doi.org/10.3390/app11177886; Applied Sciences, vol 11, n 17, Agosto 2021; https://uvadoc.uva.es/handle/10324/64657; 17; 11
-
16Academic Journal
المؤلفون: Fernández Cavero, Vanessa, Pons Llinares, Joan, Duque Pérez, Óscar, Moríñigo Sotelo, Daniel
مصطلحات موضوعية: time-frequency analysis, transient analysis, fault diagnosis, broken rotor bar, induction motors, inverters
وصف الملف: application/pdf
Relation: https://www.sciencedirect.com/science/article/pii/S0019057820304158?via%3Dihub; https://doi.org/10.1016/j.isatra.2020.10.020; ISA Transactions, vol. 109, 2021, Pages 352-367; https://uvadoc.uva.es/handle/10324/64562; ISA Transactions; 109
-
17Academic Journal
مصطلحات موضوعية: Ingeniería eléctrica, Motores de inducción, Multi-fault diagnosis, Principal component analysis, Pattern recognition, Diagnóstico multifallo, Análisis de componentes principales, Reconocimiento de patrones, 3306 Ingeniería y Tecnología Eléctricas
وصف الملف: application/pdf
Relation: https://www.mdpi.com/2079-9292/10/12/1462; https://doi.org/10.3390/electronics10121462; Electronics, 2021, vol. 10, n. 12, 1462; https://uvadoc.uva.es/handle/10324/59546; 1462; 12; Electronics; 10
-
18Academic Journal
المؤلفون: Merizalde Zamora, Yury Humberto, Hernández Callejo, Luis, Duque Pérez, Óscar, Alonso Gómez, Víctor
مصطلحات موضوعية: Wind turbines, Artificial intelligence, Inteligencia artificial, Motores de inducción, Faults diagnostic, Synthetic data, 3313.30 Turbinas
وصف الملف: application/pdf
Relation: https://www.mdpi.com/2076-3417/11/15/6942; https://doi.org/10.3390/app11156942; Applied Sciences, 2021, Vol. 11, Nº. 15, 6942; https://uvadoc.uva.es/handle/10324/59537; 6942; 15; Applied Sciences; 11
-
19Academic Journal
المؤلفون: Rubia Herrera, Antonio de la, Zorita Lamadrid, Ángel Luis, Duque Pérez, Óscar, Moríñigo Sotelo, Daniel
مصطلحات موضوعية: Scontrol strategies, Medium voltage direct current (MVDC), Optimize power grid, Three-phase short-circuit, Unified power flow converter (UPFC), Voltage sourced converter (VSC), 33 Ciencias Tecnológicas
وصف الملف: application/pdf
Relation: https://doi.org/10.1002/2050-7038.13038; International Transactions on Electrical Energy Systems, 2021, e13038.; https://uvadoc.uva.es/handle/10324/48145; International Transactions on Electrical Energy Systems
-
20Academic Journal
المؤلفون: Izquierdo Monge, Óscar, Peña Carro, Paula, Villafafila Robles, Roberto, Duque Pérez, Óscar, Zorita Lamadrid, Ángel Luis, Hernández Callejo, Luis
مصطلحات موضوعية: Microgrids (Smart power grids), Redes eléctricas (Energía), Electric power systems - Control, Control automático, Renewable energy resources, Home Assistant, Asistente de hogar, 3306 Ingeniería y Tecnología Eléctricas
وصف الملف: application/pdf
Relation: https://www.mdpi.com/2076-3417/11/11/5012; https://doi.org/10.3390/app11115012; Applied Sciences, 2021, Vol. 11, Nº. 11, 5012; https://uvadoc.uva.es/handle/10324/59770; 5012; 11; Applied Sciences