يعرض 1 - 20 نتائج من 277 نتيجة بحث عن '"Duque Pérez, Óscar"', وقت الاستعلام: 0.61s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المساهمون: Giraldo-Sánchez, Carlos Eduardo, Universidad Católica de Oriente. Facultad de Ciencias Agropecuarias

    جغرافية الموضوع: Sudamérica, Colombia, Rionegro, Antioquia

    وصف الملف: 13p.; application/pdf

    Relation: https://repositorio.uco.edu.co; https://repositorio.uco.edu.co/jspui/handle/20.500.13064/1817; Henao Gallo, Julián Andrés; Duque Pérez, Oscar Mauricio. Efecto de la aspiración mecánica sobre minadores (Diptera: Agromyzidae) y sus enemigos naturales, en un cultivo de crisantemo del oriente antioqueño (Trabajo de grado) Rionegro, Antioquia: Universidad Católica de Oriente; 2022. 13p.

  6. 6
  7. 7
  8. 8
    Electronic Resource
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    وصف الملف: 14 páginas; application/pdf

    Relation: Sustainability; 1. IEA Tracking Buildings. 2021. Available online: https://www.iea.org/reports/tracking-buildings-2021 (accessed on 16 March 2022).; 2. Cholewa, T.; Siuta-Olcha, A.; Smolarz, A.; Muryjas, P.; Wolszczak, P.; Guz, Ł.; Bocian, M.; Balaras, C.A. An easy and widelapplicable forecast control for heating systems in existing and new buildings: First field experiences. J. Clean. Prod. 2022, 352, 131605. [CrossRef]; 3. Devagiri, V.M.; Boeva, V.; Abghari, S.; Basiri, F.; Lavesson, N. Multi-view data analysis techniques for monitoring smart building systems. Sensors 2021, 21, 6775. [CrossRef] [PubMed]; 4. Izidio, D.M.; de Mattos Neto, P.S.; Barbosa, L.; de Oliveira, J.F.; Marinho, M.H.D.N.; Rissi, G.F. Evolutionary hybrid system for energy consumption forecasting for smart meters. Energies 2021, 14, 1794. [CrossRef]; 5. Hong, T.; Wang, Z.; Luo, X.; Zhang, W. State-of-the-art on research and applications of machine learning in the building life cycle. Energy Build. 2020, 212, 109831. [CrossRef]; 6. Kim, J.Y.; Cho, S.B. Electric energy consumption prediction by deep learning with state explainable autoencoder. Energies 2019, 12, 739. [CrossRef]; 7. Zeng, A.; Ho, H.; Yu, Y. Prediction of building electricity usage using Gaussian Process Regression. J. Build. Eng. 2020, 28, 101054. [CrossRef]; 8. Xu, W.; Peng, H.; Zeng, X.; Zhou, F.; Tian, X.; Peng, X. A hybrid modelling method for time series forecasting based on a linear regression model and deep learning. Appl. Intell. 2019, 49, 3002–3015. [CrossRef]; 9. Cholewa, T.; Siuta-Olcha, A.; Smolarz, A.; Muryjas, P.; Wolszczak, P.; Anasiewicz, R.; Balaras, C.A. A simple building energy model in form of an equivalent outdoor temperature. Energy Build. 2021, 236, 110766. [CrossRef]; 11. Iwashita, A.S.; Papa, J.P. An Overview on Concept Drift Learning. IEEE Access 2019, 7, 1532–1547. [CrossRef]; 12. Baier, L.; Kühl, N.; Satzger, G.; Hofmann, M.; Mohr, M. Handling concept drifts in regression problems—the error intersection approach. In WI2020 Zentrale Tracks; GITO Verlag: Berlin, Germany, 2020; pp. 210–224.; 13. Kahraman, A.; Kantardzic, M.; Kahraman, M.; Kotan, M. A data-driven multi-regime approach for predicting energy consumption. Energies 2021, 14, 6763. [CrossRef]; 14. Webb, G.I.; Lee, L.K.; Goethals, B.; Petitjean, F. Analyzing concept drift and shift from sample data. Data Min. Knowl. Discov. 2018, 32, 1179–1199. [CrossRef]; 15. Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under Concept Drift: A Review. IEEE Trans. Knowl. Data Eng. 2019, 31, 2346–2363. [CrossRef]; 16. Brzezinski, D.; Stefanowski, J. Reacting to different types of concept drift: The accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 81–94. [CrossRef]; 17. Wadewale, K.; Desai, S.; Tennant, M.; Stahl, F.; Rana, O.; Gomes, J.B.; Thakre, A.A.; Redes, E.M.; Padmalatha, E.; Rani, P.; et al. Survey on Method of Drift Detection and Classification for time varying data set. Comput. Biol. Med. 2016, 32, 1–7.; 18. Khezri, S.; Tanha, J.; Ahmadi, A.; Sharifi, A. A novel semi-supervised ensemble algorithm using a performance-based selection metric to non-stationary data streams. Neurocomputing 2021, 442, 125–145. [CrossRef]; 19. Fekri, M.N.; Patel, H.; Grolinger, K.; Sharma, V. Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network. Appl. Energy 2021, 282, 116177. [CrossRef]; 20. Jagait, R.K.; Fekri, M.N.; Grolinger, K.; Mir, S. Load Forecasting Under Concept Drift: Online Ensemble Learning With Recurrent Neural Network and ARIMA. IEEE Access 2021, 9, 98992–99008. [CrossRef]; 21. Fenza, G.; Gallo, M.; Loia, V. Drift-aware methodology for anomaly detection in smart grid. IEEE Access 2019, 7, 9645–9657. [CrossRef]; 22. Mehmood, H.; Kostakos, P.; Cortes, M.; Anagnostopoulos, T.; Pirttikangas, S.; Gilman, E. Concept drift adaptation techniques in distributed environment for real-world data streams. Smart Cities 2021, 4, 349–371. [CrossRef]; 23. Ceci, M.; Corizzo, R.; Japkowicz, N.; Mignone, P.; Pio, G. ECHAD: Embedding-Based Change Detection from Multivariate Time Series in Smart Grids. IEEE Access 2020, 8, 156053–156066. [CrossRef]; 24. Yang, Z.; Al-Dahidi, S.; Baraldi, P.; Zio, E.; Montelatici, L. A Novel Concept Drift Detection Method for Incremental Learning in Nonstationary Environments. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 309–320. [CrossRef] [PubMed]; 25. Silva, R.P.; Zarpelão, B.B.; Cano, A.; Barbon Junior, S. Time series segmentation based on stationarity analysis to improve new samples prediction. Sensors 2021, 21, 7333. [CrossRef] [PubMed]; 26. Heusinger, M.; Raab, C.; Schleif, F.M. Passive concept drift handling via variations of learning vector quantization. Neural Comput. Appl. 2022, 34, 89–100. [CrossRef]; 27. Raab, C.; Heusinger, M.; Schleif, F.M. Reactive Soft Prototype Computing for Concept Drift Streams. Neurocomputing 2020, 416, 340–351. [CrossRef]; 28. Togbe, M.U.; Chabchoub, Y.; Boly, A.; Barry, M.; Chiky, R.; Bahri, M. Anomalies detection using isolation in concept-drifting data streams. Computers 2021, 10, 13. [CrossRef]; 29. Moon, J.; Park, S.; Rho, S.; Hwang, E. A comparative analysis of artificial neural network architectures for building energy consumption forecasting. Int. J. Distrib. Sens. Netw. 2019, 15, 155014771987761. [CrossRef]; 30. Kiprijanovska, I.; Stankoski, S.; Ilievski, I.; Jovanovski, S.; Gams, M.; Gjoreski, H. HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning. Energies 2020, 13, 2672. [CrossRef]; 31. Zor, K.; Çelik, Ö.; Timur, O.; Teke, A. Short-term building electrical energy consumption forecasting by employing gene expression programming and GMDH networks. Energies 2020, 13, 1102. [CrossRef]; 32. Li, Z.; Friedrich, D.; Harrison, G.P. Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model. Energies 2020, 13, 780. [CrossRef]; 33. Culaba, A.B.; Del Rosario, A.J.R.; Ubando, A.T.; Chang, J.-S. Machine learning-based energy consumption clustering and forecasting for mixed-use buildings. Int. J. Energy Res. 2020, 44, 9659–9673. [CrossRef]; 34. Wang, Z.; Wang, Y.; Zeng, R.; Srinivasan, R.S.; Ahrentzen, S. Random Forest based hourly building energy prediction. Energy Build. 2018, 171, 11–25. [CrossRef]; 35. Sauer, J.; Mariani, V.C.; dos Santos Coelho, L.; Ribeiro, M.H.D.M.; Rampazzo, M. Extreme gradient boosting model based on improved Jaya optimizer applied to forecasting energy consumption in residential buildings. Evol. Syst. 2021, 1–12. [CrossRef]; 36. Bassi, A.; Shenoy, A.; Sharma, A.; Sigurdson, H.; Glossop, C.; Chan, J.H. Building energy consumption forecasting: A comparison of gradient boosting models. In Proceedings of the 12th International Conference on Advances in Information Technology, Bangkok, Thailand, 29 June–1 July 2021. [CrossRef]; 37. Mariano-Hernández, D.; Hernández-Callejo, L.; Solís, M.; Zorita-Lamadrid, A.; Duque-Perez, O.; Gonzalez-Morales, L.; SantosGarcía, F. A Data-Driven Forecasting Strategy to Predict Continuous Hourly Energy Demand in Smart Buildings. Appl. Sci. 2021, 11, 7886. [CrossRef]; 38. Olu-Ajayi, R.; Alaka, H.; Sulaimon, I.; Sunmola, F.; Ajayi, S. Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques. J. Build. Eng. 2022, 45, 103406. [CrossRef]; 39. Lemos, V.H.B.; Almeida, J.D.S.; Paiva, A.C.; Junior, G.B.; Silva, A.C.; Neto, S.M.B.; Lima, A.C.M.; Cipriano, C.L.S.; Fernandes, E.C.; Silva, M.I.A. Temporal convolutional network applied for forecasting individual monthly electric energy consumption. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 2002–2007.; 40. Bendaoud, N.M.M.; Farah, N. Using deep learning for short-term load forecasting. Neural Comput. Appl. 2020, 32, 15029–15041. [CrossRef]; 41. Gao, Y.; Ruan, Y.; Fang, C.; Yin, S. Deep learning and transfer learning models of energy consumption forecasting for a building with poor information data. Energy Build. 2020, 223, 110156. [CrossRef]; 42. Bifet, A.; Gavaldà, R. Learning from time-changing data with adaptive windowing. In Proceedings of the 7th SIAM International Conference on Data Mining, Minneapolis, MN, USA, 26–28 April 2007; pp. 443–448.; 43. Moon, J.; Kim, Y.; Son, M.; Hwang, E. Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron. Energies 2018, 11, 3283. [CrossRef]; 44. Khosravani, H.; Castilla, M.; Berenguel, M.; Ruano, A.; Ferreira, P. A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building. Energies 2016, 9, 57. [CrossRef]; 45. Ali, U.; Shamsi, M.H.; Bohacek, M.; Hoare, C.; Purcell, K.; Mangina, E.; O’Donnell, J. A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings. Appl. Energy 2020, 267, 114861. [CrossRef]; 46. Andelkovi´c, A.S.; Bajatovi´c, D. Integration of weather forecast and artificial intelligence for a short-term city-scale natural gas ¯ consumption prediction. J. Clean. Prod. 2020, 266, 122096. [CrossRef]; 14; 10; Mariano-Hernández, D.; Hernández-Callejo, L.; Solís, M.; Zorita-Lamadrid, A.; Duque-Pérez, O.; Gonzalez-Morales, L.; García, F.S.; Jaramillo-Duque, A.; Ospino-Castro, A.; Alonso-Gómez, V.; et al. Analysis of the Integration of Drift Detection Methods in Learning Algorithms for Electrical Consumption Forecasting in Smart Buildings. Sustainability 2022, 14, 5857. https://doi.org/10.3390/su14105857; https://hdl.handle.net/11323/9472; https://doi.org/10.3390/su14105857; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  13. 13
    Conference

    المساهمون: De Boni, Gabriele, Fernandez-Cavero, Vanesa, Frosini, Lucia, Duque-Perez, Oscar, Morinigo-Sotelo, Daniel

    وصف الملف: ELETTRONICO

    Relation: info:eu-repo/semantics/altIdentifier/isbn/979-8-3503-2077-0; ispartofbook:2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED); 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED); firstpage:443; lastpage:449; numberofpages:7; https://hdl.handle.net/11571/1489876; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85175252847

  14. 14
    Academic Journal
  15. 15
  16. 16
    Academic Journal
  17. 17
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20