يعرض 1 - 20 نتائج من 78 نتيجة بحث عن '"Distributed loads"', وقت الاستعلام: 0.70s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Dissertation/ Thesis
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المؤلفون: Борисов, Віктор

    المصدر: MECHANICS OF GYROSCOPIC SYSTEMS; No. 46 (2023): Mechanics of gyroscopic systems; 125-138 ; Механика гироскопических систем; № 46 (2023): Механіка гіроскопічних систем; 125-138 ; Механіка гіроскопічних систем; № 46 (2023): Механіка гіроскопічних систем; 125-138 ; 2519-2272 ; 0203-3771

    وصف الملف: application/pdf

  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المساهمون: APPAVURAVTHER SUMICHRAST, Elif Tuba, Martins, Carlos, VANDOREN, Bram, Dias, Alfredo, GOUVEIA HENRIQUES, Jose

    وصف الملف: application/pdf

    Relation: ENGINEERING STRUCTURES, 303 (Art N° 117511); http://hdl.handle.net/1942/42675; 303; 001173512300001

  10. 10
  11. 11
    Academic Journal
  12. 12
  13. 13
  14. 14
    Academic Journal

    المصدر: Informes de la Construcción; Vol. 66 No. 535 (2014); e029 ; Informes de la Construcción; Vol. 66 Núm. 535 (2014); e029 ; 1988-3234 ; 0020-0883 ; 10.3989/ic.2014.v66.i535

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/3495/3944; https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/3495/3945; https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/3495/3946; Tong, P. (1969). Exact solution of certain problems by finite-element method. AIAA Journal, 7(1): 178-180. http://dx.doi.org/10.2514/3.5067; Filho, F. V. (1968). Comments on Computation of Streess Resultants from the Element Stiffness Matrices. AIAA Journal, 6(3): 571-572. http://dx.doi.org/10.2514/3.55382; Craig, A. P., June, C. D., Stricklin, J. A. (1966). Computation of Stress Resultants from the Element Stiffness Matrices, AIAA Journal, 4(6): 1095-1096. http://dx.doi.org/10.2514/3.3614; Barlow, J. (1976). Optimal Stress Locations in Finite Element Method. International Journal for Numerical Methods in Engineering, 10(2): 243–251. http://dx.doi.org/10.1002/nme.1620100202; Romero, J. L., Ortega, M. A. (1998). Acciones equivalentes y solución en desplazamientos interpolada en la viga de Benoulli-Euler. Informes de la Construcción, 49(454): 5-27. http://dx.doi.org/10.3989/ic.1998.v49.i454.907; Romero, J. L., Ortega, M. A. (1999). Splines generalizados y solución nodal exacta en el método de elementos finitos. Informes de la Construcción, 51(464): 41-85. http://dx.doi.org/10.3989/ic.1999.v51.i464.872; Romero, J. L., Ortega, M. A., Corrales, J. M. (2002, 3-6 de junio). Estudio y Resolución del Modelo de Viga de Timoshenko. Algoritmo de Acciones Equivalentes. En V Congreso de Métodos Numéricos en Ingeniería, Madrid.; Ortega, M. A. (2004). Análisis del pandeo de pilares en regimen no lineal mediante splines generalizados (Tesis Doctoral). Madrid: ETS Ingenieros de Caminos – Universidad Politécnica de Madrid.; Romero, J. L., Ortega, M. A, Navarro, F. J. (2005, 4-7 de julio). Método de acciones equivalentes en el análisis del pandeo de pilares con comportamiento lineal o no lineal del material. En VI Congreso de Métodos Numéricos en Ingeniería, Granada.; Reddy, J. N. (1997). On locking-free shear deformable beam finite elements. Comput. Methods Appl. Mech. Engrg., 149(1-4): 113-132. http://dx.doi.org/10.1016/S0045-7825(97)00075-3; Hlavacek, I., Krizek, M. (2001). On exact results in the finite element method. Applications of Mathematics, 46(6): 467-478. http://dx.doi.org/10.1023/A:1013716729409; Herrera, I. (2000). Trefftz Method: A General theory. Numer. Meth. Partial Differ. Eq., 16(6): 561-580. 3.0.CO;2-V" target="_blank">http://dx.doi.org/10.1002/1098-2426(200011)16:63.0.CO;2-V; Qing-Hua Qin. (2005). Trefftz Finite Element Method and Its Applications. Applied Mechanics Reviews, 58(5): 318-337. http://dx.doi.org/10.1115/1.1995716; Funaro, D. (1992). Polynomial Approximation of Differential Equations (Lecture Notes in Physics). Berlin: Springer-Verlag.; Guo, B., Babuška, I. (1986). The h-p version of finite element method, Part 1: The basic approximation result. Comput. Mech., 1(1): 21-41. http://dx.doi.org/10.1007/BF00298636; Babuška, I., Szabo, B. A., Katz, I. N. (1981). The p-Version of Finite Element Method. SIAM J. Numer. Anal, 18(3): 515-545. http://dx.doi.org/10.1137/0718033; Babuška, I., Szabo, B. A. (1983). Basic Mathematical Concepts. En Lecture notes on finite element analysis, vol. 2.; Likang, L. (1990). Discretization of the Timoshenko Beam Problem by the p and the h-p Versions of the Finite Element Method. Numer. Math., 57(1): 413-420. http://dx.doi.org/10.1007/BF01386420; Antes, H. (2003). Fundamental solution and integral equations for Timoshenko beams. Computer and Structures, 81(6): 383-396. http://dx.doi.org/10.1016/S0045-7949(02)00452-2; Reddy, J. N. (2007). Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 45(2-8): 288-307.; Felix, D. H., Rossi, R. E., Bambill D. V. (2009). Análisis de la vibración libre de una viga Timoshenko escalonada, centrífugamente rigidizada, mediante el método de cuadratura diferencial. Rev, Int. Mét. Num. Cálc. Dis. Ing, 25(2): 111-132.; Falsone, G., Settineri, D. (2011). An Euler-Bernoulli-like finite element method for Timoshenko beams. Mechanics Research Communications, 38(1): 12-16. http://dx.doi.org/10.1016/j.mechrescom.2010.10.009; Challamel, N. (2011). Higher-order shear beam theories and enriched continuum. Mechanics Research Communications, 38(5): 388-392. http://dx.doi.org/10.1016/j.mechrescom.2011.05.004; Ghugal Y. M., Sharma R. (2011). A refined shear deformation theory for flexure of thick beams. Latin American Journal of Solids and Structures, 8(2): 183-195.; Wang, X. D., Shi, G. (2012). Boundary Layer Solutions Induced by Displacement Boundary Conditions of Shear Deformable Beams and Accuracy Study of Several Higher-Order Beam Theories. Journal of Engineering Mechanics, 138(11): 1388-1399. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000440; Davis, P. J. (1975). Interpolation & Approximation. New York: Dover Publications, Inc.; Szego, G. (1975). Orthogonal Polynomials. Providence, Rhode Island: American Mathematical Society.; Freud, G. (1971). Orthogonal Polynomials. Oxford: Pergamon Press.; https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/3495

  15. 15
    Academic Journal

    المؤلفون: CASELLI, FEDERICA, BISEGNA, PAOLO

    المساهمون: Caselli, F, Bisegna, P

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000328942200003; volume:95; issue:6; firstpage:499; lastpage:528; journal:INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING; http://hdl.handle.net/2108/75517; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84880135769

  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
  20. 20
    Report

    المساهمون: Friedrich, C

    المصدر: Other Information: UNCL. Orig. Receipt Date: 31-DEC-69

    وصف الملف: Medium: ED; Size: Pages: 25