يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"Distribución normal multivariante"', وقت الاستعلام: 0.60s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Revista Colombiana de Estadística; Vol. 45 Núm. 1 (2022): Revista Colombiana de Estadística; 107-123 ; Revista Colombiana de Estadística; Vol. 45 No. 1 (2022): Revista Colombiana de Estadística; 107-123 ; 2389-8976 ; 0120-1751

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/estad/article/view/92037/82472; Cao, M. X. & He, D. (2017), ‘Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function’, Journal of Multivariate Analysis 153, 246–254.; Donoho, D. L. & Johnstone, I. M. (1994), ‘Ideal spatial adaptation by wavelet shrinkage’, Biometrika 81, 425–455.; Fourdrinier, D. & Strawderman, W. E. (2015), ‘Robust minimax stein estimation under invariant data-based loss for spherically and elliptically symmetric distributions’, Metrika 78(4), 461–484.; Guo, C., Ma, Y., Yang, B., S., J. C. & Kaul, M. (2012), ‘EcoMark: Evaluating models of vehicular environmental impact’, SIGSPATIAL/GIS pp. 269–278.; Huang, S. Y. (2002), ‘On a Bayesian aspect for soft wavelet shrinkage estimation under an asymmetric linex loss’, Statistics and Probability Letters 56, 171–175.; Jiang, W. & Zhang, C. H. (2009), ‘General maximum likelihood empirical Bayes estimation of normal means’, The Annals of Statistics 37(4), 1647–1684.; Joly, E. Lugosi, G. & Oliveira, R. I. (2017), ‘On the estimation of the mean of a random vector’, Electronic Journal of Statistics 11, 440–451.; Jozani, J. M., Leblanc, A. & Marchand, E. (2014), ‘On continuous distribution functions, minimax and best invariant estimators, and integrated balanced loss functions’, Canadian Journal of Statistics 42, 470–486.; Jozani, M. J., Marchand, É. & Parsian, A. (2006), ‘On estimation with weighted balanced-type loss function’, Statistics and Probability Letters 76, 733–780.; Jozani, M. J., Marchand, É. & Parsian, A. (2012), ‘Bayesian and Robust Bayesian analysis under a general class of balanced loss functions’, Statistical Papers 53, 51–60.; Karamikabir, H. & Afshari, M. (2019), ‘Wavelet Shrinkage Generalized Bayes Estimation for Elliptical Distribution Parameters under LINEX Loss’, International Journal of Wavelets, Multiresolution and Information Processing 14(1), 1950009.; Karamikabir, H. & Afshari, M. (2020), ‘Generalized Bayesian Shrinkage and Wavelet Estimation of Location Parameter for Spherical Distribution under Balance-type Loss: Minimaxity and Admissibility,’, Journal of Multivariate Analysis 177(1), 104583.; Karamikabir, H. & Afshari, M. (2021), ‘New wavelet SURE thresholds of elliptical distributions under the balance loss’, Statistica Sinica 31(4), 1829–1852.; Karamikabir, H. Afshari, M. & Arashi, M. (2018), ‘Shrinkage estimation of nonnegative mean vector with unknown covariance under balance loss’, Journal of Inequalities and Applications 2018, 331.; Karamikabir, H., Afshari, M. & Lak, F. (2020), ‘Wavelet threshold based on Stein’s unbiased risk estimators of restricted location parameter in multivariate normal’, Journal of Applied Statistics 48(10), 1712–1729.; Marchand, E. & Strawderman, W. E. (2020), ‘On shrinkage estimation for balanced loss functions’, Journal of Multivariate Analysis 175, 104558.; Pal, N., Sinha, B. K., Chaudhuri, G. & Chang, C. H. (2007), ‘Estimation Of A Multivariate Normal Mean Vector And Local Improvements’, Statistics 26(1), 1– 7.; Rencher, A. C. & Christensen, W. F. (2012), Methods of Multivariate Analysis, third edition edn, John Wiley & Sons.; Rudin, W. (1976), Principle of Mathematical Analysis, MacGraw-Hill.; Pal, N., Sinha, B. K., Chaudhuri, G. & Chang, C. H. (2007), ‘Estimation of A Multivariate Normal Mean Vector And Local Improvements’, Statistics 26(1), 1–17.; https://revistas.unal.edu.co/index.php/estad/article/view/92037