يعرض 1 - 20 نتائج من 189 نتيجة بحث عن '"Discrete Fracture Networks"', وقت الاستعلام: 0.66s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المساهمون: Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)] (ORCID:0000000211789647)

    المصدر: Physical Review E; 96; 1

    وصف الملف: Medium: ED; Size: 013304

  9. 9
    Academic Journal

    المساهمون: Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computational Earth Science Group, Earth and Environmental Sciences Div.]

    المصدر: Computers and Geosciences; 84; C

    وصف الملف: Medium: ED; Size: p. 10-19

  10. 10
    Academic Journal

    المساهمون: Karra, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)]

    المصدر: Water Resources Research; 51; 9; Conference: AGU Fall Meeting, San Fransisco, California, United States; 2014-12-15

    وصف الملف: Medium: ED; Size: p. 7289-7308

  11. 11
    Academic Journal

    المساهمون: Newell, Pania [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center]

    المصدر: International Journal for Multiscale Computational Engineering; 14; 4

    وصف الملف: Medium: ED; Size: p. 349-366

  12. 12
    Academic Journal

    المساهمون: Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)]

    المصدر: Advances in Water Resources; 94

    وصف الملف: Medium: ED; Size: 486-497

  13. 13
    Academic Journal
  14. 14
  15. 15
    Dissertation/ Thesis
  16. 16
    Academic Journal
  17. 17
  18. 18
    Academic Journal

    المصدر: Ingeniería e Investigación; Vol. 42 No. 1 (2022); e89889 ; Ingeniería e Investigación; Vol. 42 Núm. 1 (2022); e89889 ; 2248-8723 ; 0120-5609

    وصف الملف: application/pdf; text/xml

    Relation: https://revistas.unal.edu.co/index.php/ingeinv/article/view/89889/80909; https://revistas.unal.edu.co/index.php/ingeinv/article/view/89889/82298; Adler, P., Thovert, J.-F., and Mourzenko, V. (2012). Fractured Porous Media (1st ed.). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199666515.003.0001; Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705; Anderson, M., Woessner, W., and Hunt, R. (2015). Applied Groundwater Modeling Simulation of Flow and Advective Transport (2nd ed.). Elsevier.; Aquanty Inc. (2013). HydroGeoSphere user manual. https://www.aquanty.com/hydrogeosphere; Attanayake, P. M. and Waterman, M. K. (2006). Identifying environmental impacts of underground construction. Hydrogeology Journal, 14, 1160-1170. https://doi.org/10.1007/s10040-006-0037-0; Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B. (2001). Scaling of fracture systems in geological media. Reviews of Geophysics, 39(3), 347-383. https://doi.org/10.1029/1999RG000074; Butscher, C., Einstein, H. H., and Huggenberger, P. (2011). Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks. Water Resources Research, 47(11), 1-17. https://doi.org/10.1029/2011WR011023; Butscher, C. (2012). Steady-state groundwater inflow into a circular tunnel. Tunnelling and Underground Space Technology, 32, 158-167. https://doi.org/10.1016/j.tust.2012.06.007; Cavanaugh, J. E. (1997). Unifying the derivations for the Akaike and corrected Akaike information criteria. Statistics & Probability Letters, 33(2), 201-208. https://doi.org/10.1016/S0167-7152(96)00128-9; Chiu, Y.-C. and Chia, Y. (2012). The impact of groundwater discharge to the Hsueh-Shan tunnel on the water resources in northern Taiwan. Hydrogeology Journal, 20, 1599-1611. https://doi.org/10.1007/s10040-012-0895-6; Celico, P., Fabbrocino, S., Petitta, M., and Tallini, M. (2005). Hydrogeological impact of the Gran Sasso motor-way tunnels (Central Italy). Giornale di Geologia Applicata, 1, 157-165.; Davy, P., Le Goc, R., Darcel, C., Bour, O., de Dreuzy, J.-R., and Munier, R. (2010). A likely universal model of fracture scaling and its consequence for crustal hydromechanics. Journal of Geophysical Research: Solid Earth, 115(B10), 1-13. https://doi.org/10.1029/2009JB007043; de Dreuzy, J.-R., Davy, P., and Bour, O. (2001a). Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. Effective connectivity. Water Resources Research, 37(8), 2065-2078. https://doi.org/10.1029/2001WR900011; de Dreuzy, J.-R., Davy, P., and Bour, O. (2001b). Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture. Water Resources Research, 38(12), 12-1-12-9. https://doi.org/10.1029/2001WR001009; El Tani, M. (2003). Circular tunnel in a semi-infinite aquifer. Tunnelling and Underground Space Technology, 18(1), 49-55. https://doi.org/10.1016/S0886-7798(02)00102-5; Escobar, G. (2017). Manual de geología para ingenieros. Universidad Nacional de Colombia – Sede Manizales. https://repositorio.unal.edu.co/handle/unal/3145; Evans, D. D., Nicholson, T. J., and Rasmussen, T. C. (Eds.) (2001). Flow and Transport Through Unsaturated Fractured Rock. American Geophysical Union. https://doi.org/10.1029/GM042; Fadakar Alghalandis, Y. (2017). ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications. Computers and Geosciences, 102, 1-11. https://doi.org/10.1016/j.cageo.2017.02.002; Farhadian, H., Katibeh, H., Huggenberger, P., and Butscher, C. (2016). Optimum model extent for numerical simulation of tunnel inflow in fractured rock. Tunnelling and Underground Space Technology, 60, 21–29. https://doi.org/10.1016/j.tust.2016.07.014; Font-Capó, J., Vázquez-suñé, E., Carrera, J., and Martí, D. (2011). Groundwater in flow prediction in urban tunneling with a tunnel boring machine (TBM). Engineering Geology, 121(1-2), 46-54. https://doi.org/10.1016/j.enggeo.2011.04.012 Golder Associates Inc. (2018) FracMan. https://www.golder.com/fracman/; Golian, M., Teshnizi, E. S., and Nakhaei, M. (2018). Prediction of water inflow to mechanized tunnels during tunnel-boring-machine advance using numerical simulation. Hydrogeology Journal, 26, 2827-2851. https://doi.org/10.1007/s10040-018-1835-x; Goodman, R., Moye, D., Schalkwyk, A., and Javandel, I. (1965). Groundwater inflows during tunnel driving. Bulletin of the International Association of Geologists, 2, 35-56.; Hartley, L., and Joyce, S. (2013). Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden. Journal of Hydrology, 500, 200-216. https://doi.org/10.1016/j.jhydrol.2013.07.031; Hawkins, I. R. and Swift, B. T., Hoch, a. R., and Wendling, J. (2011). Comparing flows to a tunnel for single porosity, double porosity and discrete fracture representations of the EDZ. Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), 1990-2002. https://doi.org/10.1016/j.pce.2011.07.029; Hernández, F. and Kammer, A. (2016). Caracterización estructural de los complejos Cajamarca y Quebradagrande en la zona del túnel de la línea, con implicaciones hidrogeológicas [Undergraduate thesis].; Heuer, R. (1995). Estimating rock-tunnel water inflow. In G. E. Williamson (Ed.) Proceedings of the Rapid Excavation and Tunneling Conference (pp. 41-60). SME.; Hokr, M., Škarydová, I., and Frydrych, D. (2012). Modelling of tunnel inflow with combination of discrete fractures and continuum. Computing and Visualization in Science, 15, 21-28. https://doi.org/10.1007/s00791-013-0194-3; Hokr, M., Shao, H., Gardner, W. P., Balvín, A., Kunz, H., Wang, Y., and Vencl, M. (2016). Real-case benchmark for flow and tracer transport in the fractured rock. Environmental Earth Sciences, 75(18), 1273. https://doi.org/10.1007/s12665-016-6061-z; Hu, L. T. and Chen, C. X. (2008). Analytical methods for transient flow to a well in a confined- unconfined aquifer. Ground Water, 46(4), 642-646. https://doi.org/10.1111/j.1745-6584.2008.00436.x; Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., and Viswanathan, H. S. (2015). DFN WORKS: A discrete fracture network framework for modeling subsurface flow and transport. Computers and Geosciences, 84, 10-19. https://doi.org/10.1016/j.cageo.2015.08.001; IRENA (2007). Estudios hidrogeológicos e hidrológicos en el área de influencia del túnel piloto de la línea, enmarcado dentro de la gestión ambiental. IRENA.; IRENA (2010). Actualización a 2009 del modelo hidrogeológico del Túnel de la Línea. INIVIAS - Ministerio del Transporte.; Karlsrud, K. (2003). Water control when tunneling under urban areas in the Olso region. NFF publication, 12, 27-33.; Kashyap, R. L. (1982). Optimal Choice of AR and MA Parts in Autoregressive Moving Average Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(2), 99-104. https://doi.org/10.1109/TPAMI.1982.4767213; Lee, H., Son, B., Kim, Y., and Jeon, S. (2006). Discrete fracture network and equivalent hydraulic conductivity for tunnel seepage analysis in rock mass. Tunnelling and Underground Space Technology, 21(3-4), 403. https://doi.org/10.1016/j.tust.2005.12.212; Leung, C. T. O. and Zimmerman, R. W. (2012). Estimating the Hydraulic Conductivity of Two-Dimensional Fracture Networks Using Network Geometric Properties. Transport in Porous Media, 93, 777-797. https://doi.org/10.1007/s11242-012-9982-3; Liu, R., Li, B., and Jiang, Y. (2016). A fractal model based on a new governing equation of fluid flow in fractures for characterizing hydraulic properties of rock fracture networks. Computers and Geotechnics, 75, 57-68. https://doi.org/10.1016/j.compgeo.2016.01.025; Liu, R., Yu, L., Jiang, Y., Wang, Y., and Li, B. (2017). Recent developments on relationships between the equivalent permeability and fractal dimension of two-dimensional rock fracture networks. Journal of Natural Gas Science and Engineering, 45, 771–785. https://doi.org/10.1016/j.jngse.2017.06.013; Loew, S., Lutzenkirchen, V., Hansmann, J., Ryf, A., and Guntli, P. (2015). Transient surface deformations caused by the Gotthard Base Tunnel. International Journal of Rock Mechanics and Mining Sciences, 75, 82-101. https://doi.org/10.1016/j.ijrmms.2014.12.009; Maillot, J., Davy, P., Le Goc, R., Darcel, C., and de Dreuzy, J.-R. (2016). Connectivity, permeability and channeling in randomly-distributed and kinematically-defined discrete fracture network models. Water Resources Research, 52(11), 613-615. https://doi.org/10.1002/2016WR018973; Maréchal, J.-C., Perrochet, P., and Tacher, L. (1999). Long-term simulations of thermal and hydraulic characteristics in a mountain massif: The Mont Blanc case study, French and Italian Alps. Hydrogeology Journal, 7, 341-354. https://doi.org/10.1007/s100400050207; Maréchal, J.-C. and Etcheverry, J. (2003). The use of 3H and 18O tracers to characterize water inflows in Alpine tunnels. Applied Geochemistry, 18(3), 339-351. https://doi.org/10.1016/S0883-2927(02)00101-4; Maréchal, J.-C., Lanini, S., Aunay, B., and Perrochet, P. (2014). Analytical solution for modeling discharge into a tunnel drilled in a heterogeneous unconfined aquifer, Ground Water, 52(4), 597-605. https://doi.org/10.1111/gwat.12087; Mirarco (2018). MoFrac: Discrete fracture network modeling. https://mofrac.com; Molinero, J., Samper, J., and Juanes, R. (2002). Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Engineering Geology, 64(4), 369-386. https://doi.org/10.1016/S0013-7952(01)00099-0; Moon, J. and Fernandez, G. (2010) Effect of Excavation-Induced Groundwater Level Drawdown on Tunnel Inflow in a Jointed Rock Mass. Engineering Geology, 110(3-4), 33-42. https://doi.org/10.1016/j.enggeo.2009.09.002; Nikvar Hassani, A., Farhadian, H., and Katibeh, H. (2018). A comparative study on evaluation of steady-state groundwater inflow into a circular shallow tunnel. Tunnelling and Underground Space Technology, 73, 15-25. https://doi.org/10.1016/j.tust.2017.11.019; Perrochet, P. (2005). Confined flow into a tunnel during progressive drilling: An analytical solution. Ground Water, 43(6), 943-946. https://doi.org/10.1111/j.1745-6584.2005.00108.x; Perrochet, P. and Dematteis, A. (2007). Modeling transient discharge into a tunnel drilled in a heterogeneous formation. Ground Water, 45(6), 786-790. https://doi.org/10.1111/j.1745-6584.2007.00355.x; Preisig, G. (2013). Regional simulation of coupled hydromechanical processes in fractured and granular porous aquifer using effective stress-dependent parameters. [Doctoral thesis, University of Neuchâtel].; Preisig, G., Dematteis, A., Torri, R., Monin, N., Milnes, E., and Perrochet, P. (2014). Modelling discharge rates and ground settlement induced by tunnel excavation. Rock Mechanics and Rock Engineering, 47, 869-884. https://doi.org/10.1007/s00603-012-0357-4; Rizzo, R. E., Healy, D., and de Siena, L. (2017). Benefits of maximum likelihood estimators for fracture attribute analysis: Implications for permeability and up-scaling, Journal of Structural Geology, 95, 17-31. https://doi.org/10.1016/j.jsg.2016.12.005; Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136; Shen, S.-L., Wu, H.-N., Cui, Y.-J., and Yin, Z.-Y. (2014). Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunnelling and Underground Space Technology, 40, 309-323. https://doi.org/10.1016/j.tust.2013.10.013; Siena, M., Riva, M., Giamberini, M., Gouze, P., and Guadagnini, A. (2017). Statistical modeling of gas-permeability spatial variability along a limestone core. Spatial Statistics, 34, 100249. https://doi.org/10.1016/j.spasta.2017.07.007; Singhal, B. B. S. and Gupta, R. (2010). Applied Hydrogeology of Fractured Rocks. Springer. https://doi.org/10.1007/978-90-481-8799-7; Somogyvári, M., Jalali, M., Jiménez-Parras, S., and Bayer, P. (2017). Synthetic fracture network characterization with transdimensional inversion. Water Resources Research, 53(6), 5104-5123. https://doi.org/10.1002/2016WR020293; Su, K., Zhou, Y., Wu, H., Shi, C., and Zhou L. (2017). An Analytical Method for Groundwater Inflow into a Drained Circular Tunnel. Ground Water, 55(5), 1-10. https://doi.org/10.1111/gwat.12513; Universidad Nacional de Colombia (UNAL) (2010). Evaluación del impacto de la construcción de los túneles viales del Sumpaz y de La Línea en los hidrosistemas circunvecinos [Doctoral thesis, Universidad Nacional de Colombia]. Grupo de Investigación en Ingeniería de Recursos Hídricos. https://repositorio.unal.edu.co/handle/unal/68766; Universidad Nacional de Colombia (UNAL) (2015). Informe Final Ensayos Hidráulicos Especiales en el Macizo Fracturado de La Línea. Grupo de Investigación en Ingeniería de Recursos Hídricos, 2015.; Valenzuela, P., Domínguez-Cuesta, M. J., Meléndez-Asensio, M. J., Jiménez-Sánchez, M., and de Santa María, J. A. S. (2015). Active sinkholes: A geomorphological impact of the Pajares Tunnels (Cantabrian Range, NW Spain). Engineering Geology, 196, 158-170. https://doi.org/10.1016/j.enggeo.2015.07.007; Vincenzi, V., Gargini, A., and Goldscheider, N. (2009). Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the Northern Apennines (Italy). Hydrogeology Journal, 17, 135-150. https://doi.org/10.1007/s10040-008-0371-5; Wang, X. and Cai, M. (2020). A DFNDEM Multi-scale Modeling Approach for Simulating Tunnel Excavation Response in Jointed Rock Masses. Rock Mechanics and Rock Engineering, 53, 1053-1077. https://doi.org/10.1007/s00603-019-01957-8; Woods, J. A., Teubner, M. D., Simmons, C. T., Narayan, K. A. (2003). Numerical error in groundwater flow and solute transport simulation. Water Resources Research, 39(6). https://doi.org/10.1029/2001WR000586; Xia, Q., Xu, M., Zhang, H., Zhang, Q. and Xiao, X. (2018). A dynamic modeling approach to simulate groundwater discharges into a tunnel from typical heterogenous geological media during continuing excavation. KSCE Journal of Civil Engineering, 22, 341-350. https://doi.org/10.1007/s12205-017-0668-9; Yang, F.-R., Lee, C.-H., Kung, W.-J., and Yeh, H.-F. (2009). The impact of tunneling construction on the hydrogeological environment of “Tseng-Wen Reservoir Transbasin Diversion Project" in Taiwan. Engineering Geology, 103(1-2), 39-58. https://doi.org/10.1016/j.enggeo.2008.07.012; Ye, M., Meyer, P. D., and Neuman, S. P. (2008). On model selection criteria in multimodel analysis. Water Resources Research, 44(3), 1-12. https://doi.org/10.1029/2008WR006803; Zarei, H. R., Uromeihy, A., and Sharifzadeh, M. (2011). Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features. Tunnelling and Underground Space Technology, 26(2), 364-373. https://doi.org/10.1016/j.tust.2010.11.007; https://revistas.unal.edu.co/index.php/ingeinv/article/view/89889

  19. 19
    Academic Journal

    المساهمون: Berrone, Stefano, Della Santa, Francesco, Mastropietro, Antonio, Pieraccini, Sandra, Vaccarino, Francesco

    وصف الملف: ELETTRONICO

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000707036500002; volume:55; firstpage:101458; numberofpages:16; journal:JOURNAL OF COMPUTATIONAL SCIENCE; http://hdl.handle.net/11583/2844659; https://doi.org/10.1016/j.jocs.2021.101458

  20. 20
    Academic Journal