-
1Academic Journal
المؤلفون: Aleksandra A. Pachalieva, Jeffrey D. Hyman, Daniel O’Malley, Gowri Srinivasan, Hari Viswanathan
المصدر: Frontiers in Environmental Science, Vol 12 (2025)
مصطلحات موضوعية: discrete fracture networks, flow and reactive transport, geologic carbon sequestration, mineral dissolution, machine learning, regression model, Environmental sciences, GE1-350
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Jiang, Chuanyin, Chen, Guodong, Zhu, Weiwei, Liu, Jie
المصدر: Advances in Geo-Energy Research; Vol 16, No 1 (2025): April (In Progress); 1-3 ; 2208-598X ; 2207-9963
مصطلحات موضوعية: Discrete fracture networks, multi-fields coupling, machine learning, optimization
وصف الملف: application/pdf
-
3Academic Journal
المؤلفون: Bruno Maciel, Leidy Laura Alvarez, Nayara Torres Belfort, Leonardo José do Nascimento Guimarães, Leila Brunet de Sá Beserra
المصدر: Journal of Petroleum Exploration and Production Technology, Vol 14, Iss 3, Pp 665-691 (2023)
مصطلحات موضوعية: Naturally fractured reservoirs (NFRs), Discrete fracture networks (DFNs), Embedded strong discontinuities, Equivalent permeability, Petroleum refining. Petroleum products, TP690-692.5, Petrology, QE420-499
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Hu, Mengsu, Rutqvist, Jonny
المصدر: Rock Mechanics and Rock Engineering. 55(5)
مصطلحات موضوعية: Engineering, Resources Engineering and Extractive Metallurgy, Coupled processes, Rock images, Discrete fracture networks, Discontinuous asperities and granular systems, Friction and shear, Deformation band, zone, Civil Engineering, Geological & Geomatics Engineering, Civil engineering, Resources engineering and extractive metallurgy
وصف الملف: application/pdf
URL الوصول: https://escholarship.org/uc/item/7j4819bv
-
5Academic Journal
المؤلفون: Hu, M, Rutqvist, J
مصطلحات موضوعية: Coupled processes, Rock images, Discrete fracture networks, Discontinuous asperities and granular systems, Friction and shear, Deformation band, zone, Geological & Geomatics Engineering, Civil Engineering, Resources Engineering and Extractive Metallurgy
وصف الملف: application/pdf
URL الوصول: https://escholarship.org/uc/item/7j4819bv
-
6Academic Journal
المؤلفون: Jun Zheng, Jichao Guo, Jiongchao Wang, Honglei Sun, Jianhui Deng, Qing Lv
المصدر: International Journal of Mining Science and Technology, Vol 32, Iss 2, Pp 261-270 (2022)
مصطلحات موضوعية: Discrete fracture networks, Rock mass, Discontinuity, Elliptical disc model, Fisher distribution, Monte Carlo simulation, Mining engineering. Metallurgy, TN1-997
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Tingchang Yin, Teng Man, Ling Li, Sergio Andres Galindo‐Torres
المصدر: Geophysical Research Letters, Vol 50, Iss 6, Pp n/a-n/a (2023)
مصطلحات موضوعية: discrete fracture networks, permeability, scaling, percolation, Geophysics. Cosmic physics, QC801-809
وصف الملف: electronic resource
-
8Academic JournalPredictions of first passage times in sparse discrete fracture networks using graph-based reductions
المساهمون: Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)] (ORCID:0000000211789647)
المصدر: Physical Review E; 96; 1
وصف الملف: Medium: ED; Size: 013304
-
9Academic Journal
المساهمون: Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computational Earth Science Group, Earth and Environmental Sciences Div.]
المصدر: Computers and Geosciences; 84; C
وصف الملف: Medium: ED; Size: p. 10-19
-
10Academic Journal
المساهمون: Karra, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)]
المصدر: Water Resources Research; 51; 9; Conference: AGU Fall Meeting, San Fransisco, California, United States; 2014-12-15
وصف الملف: Medium: ED; Size: p. 7289-7308
-
11Academic Journal
المساهمون: Newell, Pania [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center]
المصدر: International Journal for Multiscale Computational Engineering; 14; 4
وصف الملف: Medium: ED; Size: p. 349-366
-
12Academic Journal
المساهمون: Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)]
المصدر: Advances in Water Resources; 94
وصف الملف: Medium: ED; Size: 486-497
-
13Academic Journal
المؤلفون: Saeed Mahmoodpour, Mrityunjay Singh, Kristian Bär, Ingo Sass
المصدر: Geosciences; Volume 12; Issue 1; Pages: 19
مصطلحات موضوعية: well placement, CO 2 -EGS, water-EGS, discrete fracture networks, THM modeling
جغرافية الموضوع: agris
وصف الملف: application/pdf
-
14
المؤلفون: Wang, Liang, Lei, Qinghua
المصدر: Computers and geotechnics. 138
مصطلحات موضوعية: Hierarchical fracture systems, Discrete fracture networks, Permeability, Deformation, Crack tensor
وصف الملف: electronic
-
15Dissertation/ Thesis
المؤلفون: Seers, Thomas Daniel
المساهمون: Hodgetts, David, Redfern, Jonathan
-
16Academic Journal
المؤلفون: Adriana Piña, Diego Cortes, Leonardo David Donado, Daniela Blessent
المصدر: Ingeniería e Investigación, Vol 42, Iss 1, Pp e89889-e89889 (2021)
مصطلحات موضوعية: discrete fracture networks, groundwater inflows, numerical model, tunnel., Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
17
المؤلفون: Zou, Liangchao, 1987, Cvetkovic, Vladimir
المصدر: Water resources research. 56(8)
مصطلحات موضوعية: crystalline rock, discrete fracture networks, flow logs, fracture roughness, pumping test, transmissivity inference, Rocks, Water resources, Discrete fracture network, Fracture heterogeneities, Hydraulic characterization, Pumping condition, Scale heterogeneities, Three dimensional fracture network, Three dimensions, Fracture, fracture mechanics, fracture network, heterogeneity, pumping, steady-state equilibrium, three-dimensional modeling, transmissivity, waterlogging
وصف الملف: print
-
18Academic Journal
المصدر: Ingeniería e Investigación; Vol. 42 No. 1 (2022); e89889 ; Ingeniería e Investigación; Vol. 42 Núm. 1 (2022); e89889 ; 2248-8723 ; 0120-5609
مصطلحات موضوعية: Discrete Fracture Networks, Groundwater Inflows, Numerical Model, Tunnel, Civil Engineering, Redes de Fracturas Discretas, Flujo de agua subterranea, Modelacion numerica, Tunel, Ingeniería Civil
وصف الملف: application/pdf; text/xml
Relation: https://revistas.unal.edu.co/index.php/ingeinv/article/view/89889/80909; https://revistas.unal.edu.co/index.php/ingeinv/article/view/89889/82298; Adler, P., Thovert, J.-F., and Mourzenko, V. (2012). Fractured Porous Media (1st ed.). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199666515.003.0001; Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705; Anderson, M., Woessner, W., and Hunt, R. (2015). Applied Groundwater Modeling Simulation of Flow and Advective Transport (2nd ed.). Elsevier.; Aquanty Inc. (2013). HydroGeoSphere user manual. https://www.aquanty.com/hydrogeosphere; Attanayake, P. M. and Waterman, M. K. (2006). Identifying environmental impacts of underground construction. Hydrogeology Journal, 14, 1160-1170. https://doi.org/10.1007/s10040-006-0037-0; Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B. (2001). Scaling of fracture systems in geological media. Reviews of Geophysics, 39(3), 347-383. https://doi.org/10.1029/1999RG000074; Butscher, C., Einstein, H. H., and Huggenberger, P. (2011). Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks. Water Resources Research, 47(11), 1-17. https://doi.org/10.1029/2011WR011023; Butscher, C. (2012). Steady-state groundwater inflow into a circular tunnel. Tunnelling and Underground Space Technology, 32, 158-167. https://doi.org/10.1016/j.tust.2012.06.007; Cavanaugh, J. E. (1997). Unifying the derivations for the Akaike and corrected Akaike information criteria. Statistics & Probability Letters, 33(2), 201-208. https://doi.org/10.1016/S0167-7152(96)00128-9; Chiu, Y.-C. and Chia, Y. (2012). The impact of groundwater discharge to the Hsueh-Shan tunnel on the water resources in northern Taiwan. Hydrogeology Journal, 20, 1599-1611. https://doi.org/10.1007/s10040-012-0895-6; Celico, P., Fabbrocino, S., Petitta, M., and Tallini, M. (2005). Hydrogeological impact of the Gran Sasso motor-way tunnels (Central Italy). Giornale di Geologia Applicata, 1, 157-165.; Davy, P., Le Goc, R., Darcel, C., Bour, O., de Dreuzy, J.-R., and Munier, R. (2010). A likely universal model of fracture scaling and its consequence for crustal hydromechanics. Journal of Geophysical Research: Solid Earth, 115(B10), 1-13. https://doi.org/10.1029/2009JB007043; de Dreuzy, J.-R., Davy, P., and Bour, O. (2001a). Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. Effective connectivity. Water Resources Research, 37(8), 2065-2078. https://doi.org/10.1029/2001WR900011; de Dreuzy, J.-R., Davy, P., and Bour, O. (2001b). Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture. Water Resources Research, 38(12), 12-1-12-9. https://doi.org/10.1029/2001WR001009; El Tani, M. (2003). Circular tunnel in a semi-infinite aquifer. Tunnelling and Underground Space Technology, 18(1), 49-55. https://doi.org/10.1016/S0886-7798(02)00102-5; Escobar, G. (2017). Manual de geología para ingenieros. Universidad Nacional de Colombia – Sede Manizales. https://repositorio.unal.edu.co/handle/unal/3145; Evans, D. D., Nicholson, T. J., and Rasmussen, T. C. (Eds.) (2001). Flow and Transport Through Unsaturated Fractured Rock. American Geophysical Union. https://doi.org/10.1029/GM042; Fadakar Alghalandis, Y. (2017). ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications. Computers and Geosciences, 102, 1-11. https://doi.org/10.1016/j.cageo.2017.02.002; Farhadian, H., Katibeh, H., Huggenberger, P., and Butscher, C. (2016). Optimum model extent for numerical simulation of tunnel inflow in fractured rock. Tunnelling and Underground Space Technology, 60, 21–29. https://doi.org/10.1016/j.tust.2016.07.014; Font-Capó, J., Vázquez-suñé, E., Carrera, J., and Martí, D. (2011). Groundwater in flow prediction in urban tunneling with a tunnel boring machine (TBM). Engineering Geology, 121(1-2), 46-54. https://doi.org/10.1016/j.enggeo.2011.04.012 Golder Associates Inc. (2018) FracMan. https://www.golder.com/fracman/; Golian, M., Teshnizi, E. S., and Nakhaei, M. (2018). Prediction of water inflow to mechanized tunnels during tunnel-boring-machine advance using numerical simulation. Hydrogeology Journal, 26, 2827-2851. https://doi.org/10.1007/s10040-018-1835-x; Goodman, R., Moye, D., Schalkwyk, A., and Javandel, I. (1965). Groundwater inflows during tunnel driving. Bulletin of the International Association of Geologists, 2, 35-56.; Hartley, L., and Joyce, S. (2013). Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden. Journal of Hydrology, 500, 200-216. https://doi.org/10.1016/j.jhydrol.2013.07.031; Hawkins, I. R. and Swift, B. T., Hoch, a. R., and Wendling, J. (2011). Comparing flows to a tunnel for single porosity, double porosity and discrete fracture representations of the EDZ. Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), 1990-2002. https://doi.org/10.1016/j.pce.2011.07.029; Hernández, F. and Kammer, A. (2016). Caracterización estructural de los complejos Cajamarca y Quebradagrande en la zona del túnel de la línea, con implicaciones hidrogeológicas [Undergraduate thesis].; Heuer, R. (1995). Estimating rock-tunnel water inflow. In G. E. Williamson (Ed.) Proceedings of the Rapid Excavation and Tunneling Conference (pp. 41-60). SME.; Hokr, M., Škarydová, I., and Frydrych, D. (2012). Modelling of tunnel inflow with combination of discrete fractures and continuum. Computing and Visualization in Science, 15, 21-28. https://doi.org/10.1007/s00791-013-0194-3; Hokr, M., Shao, H., Gardner, W. P., Balvín, A., Kunz, H., Wang, Y., and Vencl, M. (2016). Real-case benchmark for flow and tracer transport in the fractured rock. Environmental Earth Sciences, 75(18), 1273. https://doi.org/10.1007/s12665-016-6061-z; Hu, L. T. and Chen, C. X. (2008). Analytical methods for transient flow to a well in a confined- unconfined aquifer. Ground Water, 46(4), 642-646. https://doi.org/10.1111/j.1745-6584.2008.00436.x; Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., and Viswanathan, H. S. (2015). DFN WORKS: A discrete fracture network framework for modeling subsurface flow and transport. Computers and Geosciences, 84, 10-19. https://doi.org/10.1016/j.cageo.2015.08.001; IRENA (2007). Estudios hidrogeológicos e hidrológicos en el área de influencia del túnel piloto de la línea, enmarcado dentro de la gestión ambiental. IRENA.; IRENA (2010). Actualización a 2009 del modelo hidrogeológico del Túnel de la Línea. INIVIAS - Ministerio del Transporte.; Karlsrud, K. (2003). Water control when tunneling under urban areas in the Olso region. NFF publication, 12, 27-33.; Kashyap, R. L. (1982). Optimal Choice of AR and MA Parts in Autoregressive Moving Average Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(2), 99-104. https://doi.org/10.1109/TPAMI.1982.4767213; Lee, H., Son, B., Kim, Y., and Jeon, S. (2006). Discrete fracture network and equivalent hydraulic conductivity for tunnel seepage analysis in rock mass. Tunnelling and Underground Space Technology, 21(3-4), 403. https://doi.org/10.1016/j.tust.2005.12.212; Leung, C. T. O. and Zimmerman, R. W. (2012). Estimating the Hydraulic Conductivity of Two-Dimensional Fracture Networks Using Network Geometric Properties. Transport in Porous Media, 93, 777-797. https://doi.org/10.1007/s11242-012-9982-3; Liu, R., Li, B., and Jiang, Y. (2016). A fractal model based on a new governing equation of fluid flow in fractures for characterizing hydraulic properties of rock fracture networks. Computers and Geotechnics, 75, 57-68. https://doi.org/10.1016/j.compgeo.2016.01.025; Liu, R., Yu, L., Jiang, Y., Wang, Y., and Li, B. (2017). Recent developments on relationships between the equivalent permeability and fractal dimension of two-dimensional rock fracture networks. Journal of Natural Gas Science and Engineering, 45, 771–785. https://doi.org/10.1016/j.jngse.2017.06.013; Loew, S., Lutzenkirchen, V., Hansmann, J., Ryf, A., and Guntli, P. (2015). Transient surface deformations caused by the Gotthard Base Tunnel. International Journal of Rock Mechanics and Mining Sciences, 75, 82-101. https://doi.org/10.1016/j.ijrmms.2014.12.009; Maillot, J., Davy, P., Le Goc, R., Darcel, C., and de Dreuzy, J.-R. (2016). Connectivity, permeability and channeling in randomly-distributed and kinematically-defined discrete fracture network models. Water Resources Research, 52(11), 613-615. https://doi.org/10.1002/2016WR018973; Maréchal, J.-C., Perrochet, P., and Tacher, L. (1999). Long-term simulations of thermal and hydraulic characteristics in a mountain massif: The Mont Blanc case study, French and Italian Alps. Hydrogeology Journal, 7, 341-354. https://doi.org/10.1007/s100400050207; Maréchal, J.-C. and Etcheverry, J. (2003). The use of 3H and 18O tracers to characterize water inflows in Alpine tunnels. Applied Geochemistry, 18(3), 339-351. https://doi.org/10.1016/S0883-2927(02)00101-4; Maréchal, J.-C., Lanini, S., Aunay, B., and Perrochet, P. (2014). Analytical solution for modeling discharge into a tunnel drilled in a heterogeneous unconfined aquifer, Ground Water, 52(4), 597-605. https://doi.org/10.1111/gwat.12087; Mirarco (2018). MoFrac: Discrete fracture network modeling. https://mofrac.com; Molinero, J., Samper, J., and Juanes, R. (2002). Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Engineering Geology, 64(4), 369-386. https://doi.org/10.1016/S0013-7952(01)00099-0; Moon, J. and Fernandez, G. (2010) Effect of Excavation-Induced Groundwater Level Drawdown on Tunnel Inflow in a Jointed Rock Mass. Engineering Geology, 110(3-4), 33-42. https://doi.org/10.1016/j.enggeo.2009.09.002; Nikvar Hassani, A., Farhadian, H., and Katibeh, H. (2018). A comparative study on evaluation of steady-state groundwater inflow into a circular shallow tunnel. Tunnelling and Underground Space Technology, 73, 15-25. https://doi.org/10.1016/j.tust.2017.11.019; Perrochet, P. (2005). Confined flow into a tunnel during progressive drilling: An analytical solution. Ground Water, 43(6), 943-946. https://doi.org/10.1111/j.1745-6584.2005.00108.x; Perrochet, P. and Dematteis, A. (2007). Modeling transient discharge into a tunnel drilled in a heterogeneous formation. Ground Water, 45(6), 786-790. https://doi.org/10.1111/j.1745-6584.2007.00355.x; Preisig, G. (2013). Regional simulation of coupled hydromechanical processes in fractured and granular porous aquifer using effective stress-dependent parameters. [Doctoral thesis, University of Neuchâtel].; Preisig, G., Dematteis, A., Torri, R., Monin, N., Milnes, E., and Perrochet, P. (2014). Modelling discharge rates and ground settlement induced by tunnel excavation. Rock Mechanics and Rock Engineering, 47, 869-884. https://doi.org/10.1007/s00603-012-0357-4; Rizzo, R. E., Healy, D., and de Siena, L. (2017). Benefits of maximum likelihood estimators for fracture attribute analysis: Implications for permeability and up-scaling, Journal of Structural Geology, 95, 17-31. https://doi.org/10.1016/j.jsg.2016.12.005; Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136; Shen, S.-L., Wu, H.-N., Cui, Y.-J., and Yin, Z.-Y. (2014). Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunnelling and Underground Space Technology, 40, 309-323. https://doi.org/10.1016/j.tust.2013.10.013; Siena, M., Riva, M., Giamberini, M., Gouze, P., and Guadagnini, A. (2017). Statistical modeling of gas-permeability spatial variability along a limestone core. Spatial Statistics, 34, 100249. https://doi.org/10.1016/j.spasta.2017.07.007; Singhal, B. B. S. and Gupta, R. (2010). Applied Hydrogeology of Fractured Rocks. Springer. https://doi.org/10.1007/978-90-481-8799-7; Somogyvári, M., Jalali, M., Jiménez-Parras, S., and Bayer, P. (2017). Synthetic fracture network characterization with transdimensional inversion. Water Resources Research, 53(6), 5104-5123. https://doi.org/10.1002/2016WR020293; Su, K., Zhou, Y., Wu, H., Shi, C., and Zhou L. (2017). An Analytical Method for Groundwater Inflow into a Drained Circular Tunnel. Ground Water, 55(5), 1-10. https://doi.org/10.1111/gwat.12513; Universidad Nacional de Colombia (UNAL) (2010). Evaluación del impacto de la construcción de los túneles viales del Sumpaz y de La Línea en los hidrosistemas circunvecinos [Doctoral thesis, Universidad Nacional de Colombia]. Grupo de Investigación en Ingeniería de Recursos Hídricos. https://repositorio.unal.edu.co/handle/unal/68766; Universidad Nacional de Colombia (UNAL) (2015). Informe Final Ensayos Hidráulicos Especiales en el Macizo Fracturado de La Línea. Grupo de Investigación en Ingeniería de Recursos Hídricos, 2015.; Valenzuela, P., Domínguez-Cuesta, M. J., Meléndez-Asensio, M. J., Jiménez-Sánchez, M., and de Santa María, J. A. S. (2015). Active sinkholes: A geomorphological impact of the Pajares Tunnels (Cantabrian Range, NW Spain). Engineering Geology, 196, 158-170. https://doi.org/10.1016/j.enggeo.2015.07.007; Vincenzi, V., Gargini, A., and Goldscheider, N. (2009). Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the Northern Apennines (Italy). Hydrogeology Journal, 17, 135-150. https://doi.org/10.1007/s10040-008-0371-5; Wang, X. and Cai, M. (2020). A DFNDEM Multi-scale Modeling Approach for Simulating Tunnel Excavation Response in Jointed Rock Masses. Rock Mechanics and Rock Engineering, 53, 1053-1077. https://doi.org/10.1007/s00603-019-01957-8; Woods, J. A., Teubner, M. D., Simmons, C. T., Narayan, K. A. (2003). Numerical error in groundwater flow and solute transport simulation. Water Resources Research, 39(6). https://doi.org/10.1029/2001WR000586; Xia, Q., Xu, M., Zhang, H., Zhang, Q. and Xiao, X. (2018). A dynamic modeling approach to simulate groundwater discharges into a tunnel from typical heterogenous geological media during continuing excavation. KSCE Journal of Civil Engineering, 22, 341-350. https://doi.org/10.1007/s12205-017-0668-9; Yang, F.-R., Lee, C.-H., Kung, W.-J., and Yeh, H.-F. (2009). The impact of tunneling construction on the hydrogeological environment of “Tseng-Wen Reservoir Transbasin Diversion Project" in Taiwan. Engineering Geology, 103(1-2), 39-58. https://doi.org/10.1016/j.enggeo.2008.07.012; Ye, M., Meyer, P. D., and Neuman, S. P. (2008). On model selection criteria in multimodel analysis. Water Resources Research, 44(3), 1-12. https://doi.org/10.1029/2008WR006803; Zarei, H. R., Uromeihy, A., and Sharifzadeh, M. (2011). Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features. Tunnelling and Underground Space Technology, 26(2), 364-373. https://doi.org/10.1016/j.tust.2010.11.007; https://revistas.unal.edu.co/index.php/ingeinv/article/view/89889
-
19Academic Journal
المؤلفون: Berrone, Stefano, Della Santa, Francesco, Mastropietro, Antonio, Pieraccini, Sandra, Vaccarino, Francesco
المساهمون: Berrone, Stefano, Della Santa, Francesco, Mastropietro, Antonio, Pieraccini, Sandra, Vaccarino, Francesco
مصطلحات موضوعية: Discrete Fracture Networks, Neural Networks, Deep Learning, Layer-wise Relevance Propagation, Feature Selection
وصف الملف: ELETTRONICO
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000707036500002; volume:55; firstpage:101458; numberofpages:16; journal:JOURNAL OF COMPUTATIONAL SCIENCE; http://hdl.handle.net/11583/2844659; https://doi.org/10.1016/j.jocs.2021.101458
-
20Academic Journal
المؤلفون: Stefano Berrone, Francesco Della Santa
المصدر: Geosciences, Vol 11, Iss 131, p 131 (2021)
مصطلحات موضوعية: discrete fracture networks, neural networks, deep learning, uncertainty quantification, Geology, QE1-996.5
Relation: https://www.mdpi.com/2076-3263/11/3/131; https://doaj.org/toc/2076-3263; https://doaj.org/article/50210fbb44eb41f1ab5d6a87dc2de29b