-
1Academic Journal
المؤلفون: Castañeda Ramírez, Sergio
المساهمون: Ribadeneira Paz, Rafael Esteban, Universidad Nacional de Colombia - Sede Medellín, Grupo Kimera
مصطلحات موضوعية: 660 - Ingeniería química, Fuel Cell, Anion-Exchange Membrane, Ionic Conductivity, Structural Diffusion, Density Functional Theory, ab initio Molecular Dynamics, Celda de combustible, Membrana de intercambio aniónico, Conductividad iónica, Difusión estructural, Teoría de funcionales de densidad, Dinámica molecular ab-initio
وصف الملف: application/pdf
Relation: Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy. 88 (2011) 981–1007. https://doi.org/10.1016/j.apenergy.2010.09.030.; X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Part I. Physico-chemical and electronic interactions between Pt and carbon support, and activity enhancement of Pt/C catalyst, J. Power Sources. 172 (2007) 133–144. https://doi.org/10.1016/j.jpowsour.2007.07.049.; G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J. Memb. Sci. 377 (2011) 1–35. https://doi.org/10.1016/j.memsci.2011.04.043.; K.N. Grew, W.K.S. Chiu, A Dusty Fluid Model for Predicting Hydroxyl Anion Conductivity in Alkaline Anion Exchange Membranes, J. Electrochem. Soc. 157 (2010) B327. https://doi.org/10.1149/1.3273200.; E. Antolini, E.R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources. 195 (2010) 3431–3450. https://doi.org/10.1016/j.jpowsour.2009.11.145.; Q.H. Zeng, Q.L. Liu, I. Broadwell, A.M. Zhu, Y. Xiong, X.P. Tu, Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells, J. Memb. Sci. 349 (2010) 237–243. https://doi.org/10.1016/j.memsci.2009.11.051.; L. Sun, J. Guo, J. Zhou, Q. Xu, D. Chu, R. Chen, Novel nanostructured high-performance anion exchange ionomers for anion exchange membrane fuel cells, J. Power Sources. 202 (2012) 70–77. https://doi.org/10.1016/j.jpowsour.2011.11.023.; A.D. Mohanty, C.Y. Ryu, Y.S. Kim, C. Bae, Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers, Macromolecules. 48 (2015) 7085–7095. https://doi.org/10.1021/acs.macromol.5b01382.; P. Dai, Z.H. Mo, R.W. Xu, S. Zhang, Y.X. Wu, Cross-Linked Quaternized Poly(styrene-b-(ethylene-co-butylene)-b-styrene) for Anion Exchange Membrane: Synthesis, Characterization and Properties, ACS Appl. Mater. Interfaces. 8 (2016) 20329–20341. https://doi.org/10.1021/acsami.6b04590.; S. Castañeda, C.I. Sánchez, Modeling and analysis of ion transport through anion exchange membranes used in alkaline fuel cells, ECS Trans. 50 (2012) 2091–2107.; J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M. a. Hickner, P. a. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T. Xu, L. Zhuang, Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci. 7 (2014) 3135–3191. https://doi.org/10.1039/b000000x.; Z.F. Pan, L. An, T.S. Zhao, Z.K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Prog. Energy Combust. Sci. 66 (2018) 141–175. https://doi.org/10.1016/j.pecs.2018.01.001.; V. Vijayakumar, S.Y. Nam, Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells, J. Ind. Eng. Chem. 70 (2019) 70–86. https://doi.org/10.1016/j.jiec.2018.10.026.; K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, Alkaline direct alcohol fuel cells using an anion exchange membrane, J. Power Sources. 150 (2005) 27–31. https://doi.org/10.1016/j.jpowsour.2005.02.020.; M. Cifrain, K. Kordesch, Advances, aging mechanism and lifetime in AFCs with circulating electrolytes, J. Power Sources. 127 (2004) 234–242. https://doi.org/10.1016/j.jpowsour.2003.09.019.; B. Pivovar, 2011 Alkaline Membrane Fuel Cell Workshop Final Report, in: Alkaline Membr. Fuel Cell Work., Arlington, 2011: pp. 1–24.; J. Cheng, G. He, F. Zhang, A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies, Int. J. Hydrogen Energy. 40 (2015) 7348–7360. https://doi.org/10.1016/j.ijhydene.2015.04.040.; M.A. Hickner, A.M. Herring, E.B. Coughlin, Anion exchange membranes: Current status and moving forward, J. Polym. Sci. Part B Polym. Phys. 51 (2013) 1727–1735. https://doi.org/10.1002/polb.23395.; S. Maurya, S.-H. Shin, Y. Kim, S.-H. Moon, A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries, RSC Adv. 5 (2015) 37206–37230. https://doi.org/10.1039/C5RA04741B.; S. Gottesfeld, D.R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, Y.S. Kim, Anion exchange membrane fuel cells: Current status and remaining challenges, J. Power Sources. 375 (2018) 170–184. https://doi.org/10.1016/j.jpowsour.2017.08.010.; D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources. 375 (2018) 158–169. https://doi.org/10.1016/j.jpowsour.2017.07.117.; A.Z. Weber, J. Newman, Transport in Polymer-Electrolyte Membranes I. Physical Model, J. Electrochem. Soc. 150 (2003) A1008. https://doi.org/10.1149/1.1580822.; A.Z. Weber, J. Newman, Transport in Polymer-Electrolyte Membranes II. Mathematical Model, J. Electrochem. Soc. 151 (2004) A311. https://doi.org/10.1149/1.1639157.; A.Z. Weber, J. Newman, Transport in Polymer-Electrolyte Membranes III. Model Validation in a Simple Fuel-Cell Model, J. Electrochem. Soc. 151 (2004) A326. https://doi.org/10.1149/1.1639158.; S. Castañeda Ramírez, R. Ribadeneira, Hydroxide Transport in Anion-Exchange Membranes for Alkaline Fuel Cells, in: S. Karakus (Ed.), New Trends Ion Exch. Stud., First, IntechOpen, Croatia, 2018: pp. 51–69. https://doi.org/10.5772/intechopen.77148.; M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution, Nature. 417 (2002) 925–929. https://doi.org/10.1038/nature00794.1.; M.E. Tuckerman, A. Chandra, D. Marx, Structure and dynamics of OH-(aq)., Acc. Chem. Res. 39 (2006) 151–8. https://doi.org/10.1021/ar040207n.; D. Marx, A. Chandra, M.E. Tuckerman, Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton., Chem. Rev. 110 (2010) 2174–2216. https://doi.org/10.1021/cr900233f.; P. Atkins, J. De Paula, Atkins’ Physical Chemistry, 8th ed., Oxford University Press, New York, 2006. https://doi.org/10.1039/c1cs15191f.; A. Botti, F. Bruni, S. Imberti, M. a Ricci, a K. Soper, Ions in water: the microscopic structure of concentrated NaOH solutions., J. Chem. Phys. 120 (2004) 10154–62. https://doi.org/10.1063/1.1705572.; S. McLain, S. Imberti, A. Soper, A. Botti, F. Bruni, M. Ricci, Structure of 2 molar NaOH in aqueous solution from neutron diffraction and empirical potential structure refinement, Phys. Rev. B. 74 (2006) 094201. https://doi.org/10.1103/PhysRevB.74.094201.; M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water, J. Chem. Phys. 103 (1995) 150–161. https://doi.org/10.1063/1.469654.; P. Choi, N.H. Jalani, R. Datta, Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity, J. Electrochem. Soc. 152 (2005) E123. https://doi.org/10.1149/1.1859814.; G.S. Hwang, M. Kaviany, J.T. Gostick, B. Kientiz, A.Z. Weber, M.H. Kim, Role of water states on water uptake and proton transport in Nafion using molecular simulations and bimodal network, Polymer (Guildf). 52 (2011) 2584–2593. https://doi.org/10.1016/j.polymer.2011.03.056.; M. Eikerling, A.A. Kornyshev, A.M. Kuznetsov, J. Ulstrup, S. Walbran, Mechanisms of Proton Conductance in Polymer Electrolyte Membranes, J. Phys. Chem. B. 105 (2001) 3646–3662. https://doi.org/10.1021/jp003182s.; D. Marx, Throwing Tetrahedral Dice, Science (80-. ). 303 (2004) 634–636.; Z. Ma, M.E. Tuckerman, On the connection between proton transport, structural diffusion, and reorientation of the hydrated hydroxide ion as a function of temperature, Chem. Phys. Lett. 511 (2011) 177–182. https://doi.org/10.1016/j.cplett.2011.05.066.; D. Marx, Proton transfer 200 years after von Grotthuss: insights from ab initio simulations., Chemphyschem. 7 (2006) 1848–70. https://doi.org/10.1002/cphc.200600128.; G. Yang, J. Hao, J. Cheng, N. Zhang, G. He, F. Zhang, C. Hao, Hydroxide ion transfer in anion exchange membrane: A density functional theory study, Int. J. Hydrogen Energy. 41 (2016) 6877–6884. https://doi.org/10.1016/j.ijhydene.2016.03.067.; C. Chen, Y.L.S. Tse, G.E. Lindberg, C. Knight, G.A. Voth, Hydroxide Solvation and Transport in Anion Exchange Membranes, J. Am. Chem. Soc. 138 (2016) 991–1000. https://doi.org/10.1021/jacs.5b11951.; W. Zhang, A.C.T. Van Duin, ReaxFF Reactive Molecular Dynamics Simulation of Functionalized Poly(phenylene oxide) Anion Exchange Membrane, J. Phys. Chem. C. 119 (2015) 27727–27736. https://doi.org/10.1021/acs.jpcc.5b07271.; D. Dong, W. Zhang, A.C.T. Van Duin, D. Bedrov, Grotthuss versus Vehicular Transport of Hydroxide in Anion-Exchange Membranes: Insight from Combined Reactive and Nonreactive Molecular Simulations, J. Phys. Chem. Lett. 9 (2018) 825–829. https://doi.org/10.1021/acs.jpclett.8b00004.; W. Zhang, D. Dong, D. Bedrov, A.C.T. Van Duin, Hydroxide transport and chemical degradation in anion exchange membranes: A combined reactive and non-reactive molecular simulation study, J. Mater. Chem. A. 7 (2019) 5442–5452. https://doi.org/10.1039/c8ta10651g.; D. Muñoz-Santiburcio, D. Marx, On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores, Nat. Commun. 7 (2016) 1–9. https://doi.org/10.1038/ncomms12625.; T. Zelovich, Z. Long, M. Hickner, S.J. Paddison, C. Bae, M.E. Tuckerman, Ab Initio Molecular Dynamics Study of Hydroxide Diffusion Mechanisms in Nanoconfined Structural Mimics of Anion Exchange Membranes, J. Phys. Chem. C. 123 (2019) 4638–4653. https://doi.org/10.1021/acs.jpcc.8b10298.; T. Zelovich, L. Vogt-Maranto, M.A. Hickner, S.J. Paddison, C. Bae, D.R. Dekel, M.E. Tuckerman, Hydroxide Ion Diffusion in Anion-Exchange Membranes at Low Hydration: Insights from Ab Initio Molecular Dynamics, Chem. Mater. 31 (2019) 5778–5787. https://doi.org/10.1021/acs.chemmater.9b01824.; D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, 2009. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed October 7, 2013).; K.-D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology., Chem. Rev. 104 (2004) 4637–78. http://www.ncbi.nlm.nih.gov/pubmed/15669165.; M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Second, Oxford University Press, Oxford, 2017.; F. Tassone, F. Mauri, R. Car, Acceleration schemes for ab initio molecular-dynamics simulations and electronic-structure calculations, Phys. Rev. B. 50 (1994) 10561–10573. https://doi.org/10.1103/PhysRevB.50.10561.; P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials., J. Phys. Condens. Matter. 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502.; F. Sepehr, H. Liu, X. Luo, C. Bae, M.E. Tuckerman, M.A. Hickner, S.J. Paddison, Mesoscale Simulations of Anion Exchange Membranes Based on Quaternary Ammonium Tethered Triblock Copolymers, Macromolecules. 50 (2017) 4397−4405. https://doi.org/10.1021/acs.macromol.7b00082.; B. Abu-Sharkh, A. Alsunaidi, Morphology and conformation analysis of self-assembled triblock copolymer melts, Macromol. Theory Simulations. 15 (2006) 507–515. https://doi.org/10.1002/mats.200600014; T.L. Chantawansri, T.W. Sirk, Y.R. Sliozberg, Entangled triblock copolymer gel: Morphological and mechanical properties, J. Chem. Phys. 138 (2013) 1–11. https://doi.org/10.1063/1.4774373.; S.S. Tallury, R.J. Spontak, M. a Pasquinelli, Dissipative particle dynamics of triblock copolymer melts: A midblock conformational study at moderate segregation., J. Chem. Phys. 141 (2014) 244911. https://doi.org/10.1063/1.4904388.; J.A. Morrone, K.E. Haslinger, M.E. Tuckerman, Ab initio molecular dynamics simulation of the structure and proton transport dynamics of methanol-water solutions, J. Phys. Chem. B. 110 (2006) 3712–3720. https://doi.org/10.1021/jp0554036.; A. Chandra, M.E. Tuckerman, D. Marx, Connecting solvation shell structure to proton transport kinetics in hydrogen-bonded networks via population correlation functions, Phys. Rev. Lett. 99 (2007) 1–4. https://doi.org/10.1103/PhysRevLett.99.145901.; M.E. Tuckerman, A. Chandra, D. Marx, A statistical mechanical theory of proton transport kinetics in hydrogen-bonded networks based on population correlation functions with applications to acids and bases, J. Chem. Phys. 133 (2010). https://doi.org/10.1063/1.3474625.; B. V. Merinov, W.A. Goddard, Computational modeling of structure and OH-anion diffusion in quaternary ammonium polysulfone hydroxide – Polymer electrolyte for application in electrochemical devices, J. Memb. Sci. 431 (2013) 79–85. https://doi.org/10.1016/j.memsci.2012.12.010.; H.N. Sarode, G.E. Lindberg, Y. Yang, L.E. Felberg, G. a. Voth, A.M. Herring, Insights into the transport of aqueous quaternary ammonium cations: A combined experimental and computational study, J. Phys. Chem. B. 118 (2014) 1363–1372. https://doi.org/10.1021/jp4085662.; S. Chempath, B.R. Einsla, L.R. Pratt, C.S. Macomber, J.M. Boncella, J.A. Rau, B.S. Pivovar, Mechanism of Tetraalkylammonium Headgroup Degradation in Alkaline Fuel Cell Membranes, J. Phys. Chem. C. 112 (2008) 3179–3182. https://doi.org/10.1021/jp7115577.; S. Chempath, J.M. Boncella, L.R. Pratt, N. Henson, B.S. Pivovar, Density Functional Theory Study of Degradation of Tetraalkylammonium Hydroxides, J. Phys. Chem. C. 114 (2010) 11977–11983. https://doi.org/10.1021/jp9122198.; H. Long, K. Kim, B.S. Pivovar, Hydroxide Degradation Pathways for Substituted Trimethylammonium Cations: A DFT Study, J. Phys. Chem. C. 116 (2012) 9419–9426. https://doi.org/10.1021/jp3014964.; A.S. Davies, W.O. George, S.T. Howard, Ab initio and DFT computer studies of complexes of quaternary nitrogen cations: trimethylammonium, tetramethylammonium, trimethylethylammonium, choline and acetylcholine with hydroxide, fluoride and chloride anions, Phys. Chem. Chem. Phys. 5 (2003) 4533. https://doi.org/10.1039/b307534f.; F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, Tables of Bond Lengths determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds, J. Chem. Soc. Perkin Trans. 2. (1987) 1–19.; P. Macchi, D.M. Proserpio, A. Sironi, Experimental electron density in a transition metal dimer: Metal-metal and metal-ligand bonds, J. Am. Chem. Soc. 120 (1998) 13429–13435. https://doi.org/10.1021/ja982903m.; P. Macchi, A. Sironi, Chemical bonding in transition metal carbonyl clusters: Complementary analysis of theoretical and experimental electron densities, Coord. Chem. Rev. 238–239 (2003) 383–412. https://doi.org/10.1016/S0010-8545(02)00252-7.; B. Silvi, R.J. Gillespie, C. Gatti, Electron Density Analysis, Elsevier Ltd., 2013. https://doi.org/10.1016/B978-0-08-097774-4.00227-8.; S.J. Paddison, J.A. Elliott, On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes., Phys. Chem. Chem. Phys. 8 (2006) 2193–203. https://doi.org/10.1039/b602188c.; P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.Å. Näslund, T.K. Hirsch, L. Ojamäe, P. Glatzel, L.G.M. Pettersson, A. Nilsson, The Structure of the First Coordination Shell in Liquid Water, Science (80-. ). 304 (2004) 995–999.; S. Castañeda, R. Ribadeneira, Theoretical Description of the Structural Characteristics of the Quaternized SEBS Anion-Exchange Membrane Using DFT, J. Phys. Chem. C. 119 (2015) 28235–28246. https://doi.org/10.1021/acs.jpcc.5b07166.; O. Poizat, G. Buntinx, Probing the Dynamics of Solvation and Structure of the OH- Ion in Aqueous Solution from Picosecond Transient Absorption Measurements, Molecules. 15 (2010) 3366–3377. https://doi.org/10.3390/molecules15053366.; W. Humphrey, A. Dalke, K. Schulten, VMD: Visual Molecular Dynamics, J. Mol. Graph. 14 (1996) 33–38.; B.N. Cassenti, K.N. Grew, W.K.S. Chiu, The Use of Statistical Mechanics for Hydroxyl Ion Transport in an Alkaline Anion-Exchange Membrane, ECS Trans. 33 (2010) 1875–1887.; W.Y. Hsu, T.D. Gierke, Ion transport and clustering in nafion perfluorinated membranes, J. Memb. Sci. 13 (1983) 307–326. https://doi.org/10.1016/S0376-7388(00)81563-X.; Castañeda, S. (2020). Theoretical study of the Grotthuss mechanism for hydroxide ions in a homogeneous membrane used in alkaline fuel cells. Universidad Nacional de Colombia, Medellín, Colombia; https://repositorio.unal.edu.co/handle/unal/78388
-
2Academic Journal
المؤلفون: da Silva, Cesar R. S.
المصدر: Horizonte Científico; VOL 4, Nº 2 (JAN 2010) ; 1808-3064
مصطلحات موضوعية: Dinâmica molecular ab-initio, Computação de materiais, Computação distribuida, Grids, SOA
وصف الملف: application/pdf
-
3Dissertation/ Thesis
المؤلفون: Penna, Tatiana Casselli
المساهمون: Ribeiro, Mauro Carlos Costa
مصطلحات موضوعية: Alta pressão, Dinâmica Molecular, Dinâmica Molecular ab initio, Espectroscopia vibracional, Líquidos iônicos, Ab initio Molecular Dynamics, Molecular Dynamics, Ionic liquids, High pressure, Vibrational spectroscopy
وصف الملف: application/pdf