-
1Dissertation/ Thesis
المؤلفون: Penagos Orjuela, Angie Tatiana
المساهمون: Baquero, Gustavo Andrés
مصطلحات موضوعية: HUMEDALES, AGUAS RESIDUALES, TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES, Fine bubble diffusers, fouling, wetlands, Difusores de burbuja fina, ensuciamiento
جغرافية الموضوع: Campus UMNG
وصف الملف: applicaction/pdf; application/pdf
Relation: Banco Internacional de Reconstrucción y Fomento/Banco Mundial. (2020). De residuo a recurso. https://documents1.worldbank.org/curated/en/389711595408950383/pdf/From Waste-to-Resource-Shifting-Paradigms-for-Smarter-Wastewater-Interventions-in-Latin America-and-the-Caribbean.pdf; Boog, J., Kalbacher, T., Nivala, J., Forquet, N., van Afferden, M., & Müller, R. (2019). Modeling the relationship of aeration, oxygen transfer and treatment performance in aerated horizontal flow wetlands. Water Research. https://doi.org/10.1016/j.watres.2019.03.062; Cabrera, D. C., Wang, Q., Martín, M., Rajadel, N. O., Rousseau, D. P. L., & Hernández Crespo, C. (2023). Microplastics occurrence and fate in full-scale treatment wetlands. Water Research, 240, 120106. https://doi.org/10.1016/j.watres.2023.120106; Campos, I. E. (2011). Proyecto: desarrollo de capacidades en el uso seguro de aguas residuales para agricultura. República de Colombia, Ministerio de Ambiente y Desarrollo Sostenible.; Castañeta, G., Gutiérrez, A. F., Nacaratte, F., & Manzano, C. A. (2020). Microplásticos: Un Contaminante Que Crece En Todas Las Esferas Ambientales, Sus Características Y Posibles Riesgos Para La Salud Pública Por Exposición. Revista Boliviana de Química, 37(3), 160-175.; Cervantes, S. P., Londoño, Y. A., Roa Gutiérrez, F., Peñuela, G. A., Cervantes, S. P., Londoño, Y. A., Roa Gutiérrez, F., & Peñuela, G. A. (2017). Evaluación de humedales artificiales de flujo subsuperficial en la remoción de diferentes concentraciones de ibuprofeno empleando Cyperus papyrus. Tecnología y ciencias del agua, 8(5), 105-116. https://doi.org/10.24850/j-tyca-2017-05-07; Dotro, G., Langergraber, G., Molle, P., Nivala, J., Puigagut, J., Stein, O., & Von Sperling, M. (Eds.). (2021). Humedales para Tratamiento (1.a ed.). IWA Publishing. https://doi.org/10.2166/9781789062526; García-Ávila, F. (2020). Treatment of municipal wastewater by vertical subsurface flow constructed wetland: Data collection on removal efficiency using Phragmites Australis and Cyperus Papyrus. Data in Brief, 30, 105584. https://doi.org/10.1016/j.dib.2020.105584; González-Pereyra, D., Cisneros-Almazán, R., Cisneros-Pérez, R., Guadiana-Alvarado, Z. A., & Soto-Peña, G. A. (2022). Tratamiento de aguas residuales de la industria galvanoplástica mediante humedales intensificados a nivel microcosmos. Revista AIDIS de Ingeniería y Ciencias Ambientales. Investigación, desarrollo y práctica, 1080-1094. https://doi.org/10.22201/iingen.0718378xe.2022.15.3.80492; Herrera, E. D. (2006). Efecto de contaminantes sobre la transferencia de oxígeno en sistemas de aeración analizado mediante un modelo de dos zonas simplificado. Ciencia y Tecnología, 24(2): 129-150; iAgua, redaccion. (2017, noviembre 27). Nuevas tecnologías en aguas residuales. iAgua; iAgua. https://www.iagua.es/noticias/almar-water-solutions/nuevas-tecnologias-aguas residuales; Isaza, C. A. A. (2005). Humedales Artificiales Para el Tratamiento de Aguas Residuales. Revista Científica General José María Córdova, 3(3): 40-44.; Ivailova, I., Solís, J. J., Bes-Pia, A., & Aguado, D. (2020). Evaluación del coeficiente de transferencia de oxígeno en procesos de fangos activados para optimizar la aireación. Ingeniería del agua, 24(3), 183. https://doi.org/10.4995/ia.2020.12877; Jehawi, O. H., Abdullah, S. R. S., Kurniawan, S. B., Ismail, N. ‘Izzati, Idris, M., Al Sbani, N. H., Muhamad, M. H., & Hasan, H. A. (2020). Performance of pilot Hybrid Reed Bed constructed wetland with aeration system on nutrient removal for domestic wastewater treatment. Environmental Technology & Innovation, 19, 100891. https://doi.org/10.1016/j.eti.2020.100891; Jiang, L.-M., Chen, L., Zhou, Z., Sun, D., Li, Y., Zhang, M., Liu, Y., Du, S., Chen, G., & Yao, J. (2020). Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant. Bioresource Technology, 307, 123197. https://doi.org/10.1016/j.biortech.2020.123197; Khalifa, M. E., El-Reash, Y. G. A., Ahmed, M. I., & Rizk, F. W. (2020). Effect of media variation on the removal efficiency of pollutants from domestic wastewater in constructed wetland systems. Ecological Engineering, 143, 105668. https://doi.org/10.1016/j.ecoleng.2019.105668; Langergraber, G., Dotro, G., Nivala, J., Rizzo, A., Stein, O., Arias, C., & Lara-Borrero, J. (2021). Tecnología de humedales para tratamiento. IWA Publishing https://doi.org/10.2166/9781789062342; Ministerio de Ambiente y Desarrollo Sostenible. (2022, febrero 2). En 2022, Colombia aspira a tratar el 54 % de las aguas residuales urbanas. Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/en-2022-colombia-aspira-a-tratar el-54-de-las-aguas-residuales-urbanas/; Mosquera, Y. N. (2012). Tratamiento de lixiviados mediante humedales artificiales: Revisión del estado del arte. Revista Tumbaga, 1(7), Article 7. https://revistas.ut.edu.co/index.php/tumbaga/article/view/377; Parlar, İ., Jarma, Y. A., Pek, T. O., Kabay, N., Kitis, M., Yigit, N. O., & Yuksel, M. (2023). Effect of Antiscalant Usage and Air Diffuser Perforation Diameter on Filtration Performance of Submerged Flat Sheet MBR for Treatment of High Salinity and Scaling Propensity Wastewater. Water, 15(6), 1191. https://doi.org/10.3390/w15061191; Pérez-López, M. E., González-Elizondo, M. del S., López-González, C., Martínez-Prado, A., & Cuevas-Rodríguez, G. (2009). Aquatic macrophytes tolerance to domestic 39 wastewater and their efficiency in artificial wetlands under greenhouse conditions. Hidrobiológica, 19(3), 233-244.; Rosso, D. (2018). Aeration, Mixing, and Energy: Bubbles and Sparks. IWA Publishing.; Rosso, D., Libra, J. A., Wiehe, W., & Stenstrom, M. K. (2008). Membrane properties change in fine-pore aeration diffusers: Full-scale variations of transfer efficiency and headloss. Water Research, 42(10-11), 2640-2648. https://doi.org/10.1016/j.watres.2008.01.014; Ruiz, A. F. F., & Rojas, C. J. U. (2016). Modelamiento de un humedal artificial para el tratamiento de aguas residuales del barrio fontanar de suba. Trabajo de grado para optar al título de Ingeniero Civil.; Saeed, T., Miah, M. J., & Kumar Yadav, A. (2022). Free-draining two-stage microbial fuel cell integrated constructed wetlands development using biomass, construction, and industrial wastes as filter materials: Performance assessment. Chemical Engineering Journal, 437, 135433. https://doi.org/10.1016/j.cej.2022.135433; Saenz-Reyes, L.-M., Agudelo-Valencia, R.-N., Ortiz-de-la-Hoz, S.-R., & Garcés-Polo, S.-I. (2022). Impact of Planting Density on the Effectiveness of Laboratory-Scale Artificial Wetlands Planted with Limonium Perezzi for Tannery Wastewater Treatment. Revista Facultad de Ingeniería, 31(60). https://www.redalyc.org/journal/4139/413972450005/html/; Samuelsson, O., Björk, A., & Carlsson, B. (2021). Model-based monitoring of diffuser fouling using standard sensors. Water Research X, 13, 100118. https://doi.org/10.1016/j.wroa.2021.100118; Sandoval Herazo, L. C., Marín-Muñiz, J. L., Alvarado-Lassman, A., Zurita, F., Marín-Peña, O., & Sandoval-Herazo, M. (2023). Full-Scale Constructed Wetlands Planted with Ornamental Species and PET as a Substitute for Filter Media for Municipal Wastewater Treatment: An Experience in a Mexican Rural Community. Water, 15(12), 2280. https://doi.org/10.3390/w15122280; Vera-Puerto, I., Campal, J., Martínez, S., Cortés-Rico, L., Coy, H., Tan, S., Arias, C. A., Baquero-Rodríguez, G., & Rosso, D. (2022). Effects of Environmental Conditions and Bed Configuration on Oxygen Transfer Efficiency in Aerated Constructed Wetlands. Water, 14(20), Article 20. https://doi.org/10.3390/w14203284; Vera-Puerto, I., Saravia, M., Olave, J., Arias, C., Alarcon, E., & Valdes, H. (2020). Potential Application of Chilean Natural Zeolite as a Support Medium in Treatment Wetlands for Removing Ammonium and Phosphate from Wastewater. Water, 12(4), 1156. https://doi.org/10.3390/w12041156; Zamora, S., Marín-Muñíz, J. L., Nakase-Rodríguez, C., Fernández-Lambert, G., & Sandoval, L. (2019). Wastewater Treatment by Constructed Wetland Eco-Technology: Influence of Mineral and Plastic Materials as Filter Media and Tropical Ornamental Plants. Water, 11(11), 2344. https://doi.org/10.3390/w11112344; http://hdl.handle.net/10654/45814; instname:Universidad Militar Nueva Granada; reponame:Repositorio Institucional Universidad Militar Nueva Granada; repourl:https://repository.unimilitar.edu.co
الاتاحة: http://hdl.handle.net/10654/45814
-
2
المساهمون: Baquero Rodríguez, Gustavo Andrés
مصطلحات موضوعية: TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES, Difusores de burbuja fina, Fine bubble diffusers, Fouling, Presión de descarga, Sludge activated, Lodos activados, Discharge pressure, Ensuciamiento, Oxygen transfer, AGUAS RESIDUALES, Transferencia de oxígeno, Ultrasound, Ultrasonido, Limpieza química, Chemical cleaning
وصف الملف: applicaction/pdf; application/pdf
-
3Dissertation/ Thesis
المساهمون: Baquero Rodríguez, Gustavo Andrés
مصطلحات موضوعية: AGUAS RESIDUALES, TRATAMIENTO TERRESTRE DE AGUAS RESIDUALES, LODOS ACTIVADOS, Fine bubble diffusers, Fouling, Chemical cleaning, Sludge activated, Discharge pressure, Oxygen transfer, Ultrasound, Difusores de burbuja fina, Ensuciamiento, Limpieza química, Presión de descarga, Transferencia de oxígeno, Ultrasonido
جغرافية الموضوع: Campus UMNG
وصف الملف: applicaction/pdf; application/pdf
Relation: Ahmad, A. L., Lah, N. F. C., Ismail, S., & Ooi, B. S. (2012). Membrane Antifouling Methods and Alternatives: Ultrasound Approach. Separation & Purification Reviews, 41(4), 318-346. https://doi.org/10.1080/15422119.2011.617804; Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1-2), 4-28. https://doi.org/10.1016/j.memsci.2007.06.002; American Society of Civil Engineers. (2007). Measurement of oxygen transfer in clean water ASCE standard, ASCE/EWRI 2-06. American Society of Civil Engineers. http://dx.doi.org/10.1061/9780784408483; Ang, W. S., Tiraferri, A., Chen, K. L., & Elimelech, M. (2011). Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. Journal of Membrane Science, 376(1-2), 196-206. https://doi.org/10.1016/j.memsci.2011.04.020; ASALE, R.-, & RAE. (2021). Diccionario de la lengua española. «Diccionario de la lengua española» - Edición del Tricentenario. https://dle.rae.es/ultrasonido; ASCE. (2018). Standard Guidelines for In-Process Oxygen Transfer Testing (2.a ed.). American Society of Civil Engineers. https://doi.org/10.1061/9780784401149; Baquero-Rodríguez, G. A., Lara-Borrero, J. A., Nolasco, D., & Rosso, D. (2018). A Critical Review of the Factors Affecting Modeling Oxygen Transfer by Fine-Pore Diffusers in Activated Sludge. Water Environment Research, 90(5), 431-441. https://doi.org/10.2175/106143017X15131012152988; Brepols, C., Drensla, K., Trimborn, M., Engelhardt, N., & Janot, A. (2008). Strategies for chemical cleaning in large scale membrane bioreactors. Water Sci. Technol., 457-463. https://doi.org/10.2166/wst.2008.112; Chai, X., Kobayashi, T., & Fujii, N. (1999). Ultrasound-associated cleaning of polymeric membranes for water treatment. Separation and Purification Technology, 15(2), 139-146. https://doi.org/10.1016/S1383- 5866(98)00091-4; Chen, J. P., Kim, S. L., & Ting, Y. P. (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science, 219(1), 27-45. https://doi.org/10.1016/S0376-7388(03)00174-1; De Souza, Nigel. P., & Basu, O. D. (2013). Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment. Journal of Membrane Science, 436, 28-35. https://doi.org/10.1016/j.memsci.2013.02.014; Drews, A. (2010). Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures. Journal of Membrane Science, 363(1-2), 1-28. https://doi.org/10.1016/j.memsci.2010.06.046; enel codensa. (2020). Tarifas de energía eléctrica reguladas por la comisión de regulación de energia y gas (CREG) Enero de 2020. https://www.enel.com.co/content/dam/enel-co/espa%C3%B1ol/personas/1- 17-1/2020/Tarifario-enero-2020.pdf; Garrido-Baserba, M., Asvapathanagul, P., Park, H.-D., Kim, T.-S., Baquero-Rodriguez, G. A., Olson, B. H., & Rosso, D. (2018). Impact of fouling on the decline of aeration efficiency under different operational conditions at WRRFs. Science of The Total Environment, 639, 248-257. https://doi.org/10.1016/j.scitotenv.2018.05.036; Hendricks, D. (2011). Fundamentals of Water Treatment Unit Processes—Physical, Chemical, and Biological. IWA Publishing.; Holenda, B., Domokos, Fazakas, & Rédey. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. 32, 1270-1278. https://doi.org/10.1016/j.compchemeng.2007.06.008; Jenkins, T. E. (2014). Aeration Control System Design: A Practical Guide to Energy and Process Optimization (1a. ed.). WILEY.; Jiang, L.-M., Chen, L., Zhou, Z., Sun, D., Li, Y., Zhang, M., Liu, Y., Du, S., Chen, G., & Yao, J. (2020). Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant. Bioresource Technology, 123197. https://doi.org/10.1016/j.biortech.2020.123197; Jolly, M., Green, S., Wallis-Lage, C., & Buchanan, A. (2010). Energy saving in activated sludge plants by the use of more efficient fine bubble diffusers. Water and Environment Journal, 24(1), 58-64. https://doi.org/10.1111/j.1747-6593.2009.00164.x; Judd, S. (2011). The MBR Book: Principles and Applications of Membrane Bioreactors for Water (2a. ed.). https://www.elsevier.com/books/the-mbr-book/judd/978-0-08-096682-3; Kabsch-Korbutowicz, M., Biłyk, A., & Mołczan, M. (2006). The effect of feed water pretreatment on ultrafiltration membrane performance. Polish Journal of Environmental Studies, 15(5), 719-725.; Kim, Y., & Boyle, W. C. (1993). Mechanisms of Fouling in Fine‐Pore Diffuser Aeration. Journal of Environmental Engineering, 119(6), 1119-1138. https://doi.org/10.1061/(ASCE)0733-9372(1993)119:6(1119); Kobayashi, T., Kobayashi, T., Hosaka, Y., & Fujii, N. (2003). Ultrasound-enhanced membrane-cleaning processes applied water treatments: Influence of sonic frequency on filtration treatments. Ultrasonics, 41(3), 185-190. https://doi.org/10.1016/S0041-624X(02)00462-6; Koros, W. J., Ma, Y. H., & Shimidzu, T. (1996). Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure and Applied Chemistry, 68(7), 1479-1489. https://doi.org/10.1351/pac199668071479; Kyllönen, H., Pirkonen, P., & Nyström, M. (2005). Membrane filtration enhanced by ultrasound: A review. Desalination, 181(1-3), 319-335. https://doi.org/10.1016/j.desal.2005.06.003; Kyllönen, H., Pirkonen, P., Nyström, M., Nuortila-Jokinen, J., & Grönroos, A. (2006). Experimental aspects of ultrasonically enhanced cross-flow membrane filtration of industrial wastewater. Ultrasonics Sonochemistry, 13(4), 295-302. https://doi.org/10.1016/j.ultsonch.2005.04.006; Lenntech. (1998, 2021). Glosario del agua. https://www.lenntech.es/glosario-agua.htm; Li, J., Sanderson, R. D., & Jacobs, E. P. (2002). Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent. Journal of Membrane Science, 205(1), 247-257. https://doi.org/10.1016/S0376-7388(02)00121-7; Liu, C. Y., Caothien, S., Hayes, J., Caothuy, T., & Otoyo, T. (2001). Membrane Chemical Cleaning: From Art to Science.; López Vázquez, C. M., Buitrón Méndez, G., García, H. A., & Cervantes Carrillo, F. J. (2017). Biological Wastewater Treatment: Principles, Modeling and Design. Water Intelligence Online, 16, 9781780409146. https://doi.org/10.2166/9781780409146; Luján-Facundo, M. J., Mendoza-Roca, J. A., Cuartas-Uribe, B., & Álvarez-Blanco, S. (2013). Ultrasonic cleaning of ultrafiltration membranes fouled with BSA solution. Separation and Purification Technology, 120, 275-281. https://doi.org/10.1016/j.seppur.2013.10.018; Manahan, S. E. (2007). Introducción a la química ambiental (1a.20 ed.). Reverte SA.; Maskooki, A., Kobayashi, T., Mortazavi, S. A., & Maskooki, A. (2008). Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes. Separation and Purification Technology, 59(1), 67-73. https://doi.org/10.1016/j.seppur.2007.05.028; Metcalf, E., Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., & Burton, F. (2013). Wastewater Engineering: Treatment and Resource Recovery (Edición: 5). McGraw-Hill Education.; Mueller, J. A., Boyle, W. C., & Pöpel, H. J. (2002). Aeration: Principles and practice (Vol. 11). CRC Press.; Muthukumaran, S., Kentish, S. E., Stevens, G. W., Ashokkumar, M., & Mawson, R. (2007). The application of ultrasound to dairy ultrafiltration: The influence of operating conditions. Journal of Food Engineering, 81(2), 364-373. https://doi.org/10.1016/j.jfoodeng.2006.11.008; Muthukumaran, S, Yang, K., Seuren, A., Kentish, S., Ashokkumar, M., Stevens, G. W., & Grieser, F. (2004). The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separation and Purification Technology, 39(1), 99-107. https://doi.org/10.1016/j.seppur.2003.12.013; Muthukumaran, Shobha, Kentish, S. E., Stevens, G. W., & Ashokkumar, M. (2011). APPLICATION OF ULTRASOUND IN MEMBRANE SEPARATION PROCESSES: A REVIEW. Reviews in Chemical Engineering, 22(3), 155-194. https://doi.org/10.1515/REVCE.2006.22.3.155; Naik, K. S., & Stenstrom, M. K. (2012). Instructions for DO Parameter Estimation Program 3.0.3* (DOPar3) [Instructions for use]. http://www.seas.ucla.edu/stenstro/DOPar3-0-3.zip; Peirce, J. J., Weiner, R. F., & Vesilind, P. A. (1998). Chapter 8—Wastewater Treatment. En Environmental Pollution and Control (pp. 105-123). 4a. ed. https://doi.org/10.1016/B978-0-7506-9899-3.X5000-7; Qasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443, 143-164. https://doi.org/10.1016/j.desal.2018.04.007; Qasim, S. R., & Zhu, G. (2018). Wastewater Treatment and Reuse, Theory and Design Examples (Vol. 1). 1a. ed. https://doi.org/10.1201/b22368; Rieth, M. G., Boyle, W. C., & Ewing, L. (1990). Effects of Selected Design Parameters on the Fouling Characteristics of Ceramic Diffusers. Research Journal of the Water Pollution Control Federation, 62(7), 877-886. https://doi.org/10.2307 / 25043930; Rosso, D. (Ed.). (2018). Aeration, Mixing, and Energy: Bubbles and Sparks (1a ed.). IWA Publishing.; Rosso, D., Larson, L. E., & Stenstrom, M. K. (2008). Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Science and Technology, 57(7), 973-978. https://doi.org/10.2166/wst.2008.218; Rosso, D., & Stenstrom, M. K. (2006). Economic Implications of Fine-Pore Diffuser Aging. Water Environment Research, 78(8), 810-815. https://doi.org/10.2175/106143006X101683; Rosso, D., & Stenstrom, M. K. (2007). Energy-saving benefits of denitrification. 3, 29-38.; Schmit, F. L., Redmon, D. T., & Ewing, L. (1985). In place gas cleaning of diffusion elements (Patent N.o US4889620A). https://patents.google.com/patent/US4889620A/enSGS; SGS Colombia SAS. (2018). Informe de muestreo de agua residual no doméstica (EHS-LAB-I-F-09-05; p. 10). SGS Colombia SAS.; Shu, L., Xing, W., & Xu, N. (2007). Effect of Ultrasound on the Treatment of Emulsification Wastewater by Ceramic Membranes* *Supported by the Special Funds for Major State Basic Research Program of China (973 Program, No.2003CB615707) and the National Natural Science Foundation of China (No.20436030). Chinese Journal of Chemical Engineering, 15(6), 855-860. https://doi.org/10.1016/S1004-9541(08)60014-2; Sui, P., Wen, X., & Huang, X. (2008). Feasibility of employing ultrasound for on-line membrane fouling control in an anaerobic membrane bioreactor. Desalination, 219(1), 203-213. https://doi.org/10.1016/j.desal.2007.02.034; Trägårdh, G. (1989). Membrane cleaning. Desalination, 71(3), 325-335. https://doi.org/10.1016/0011- 9164(89)85033-7; U.S. EPA. (1985). Fine pore (fine bubble) Aeration systems (625/8-85/010). Environmental Protection Agency United States.; U.S. EPA. (1989). Desing Manual: Fine Pore Aeration Systems. Center for Environmental Research Informantion. https://nepis.epa.gov/; U.S. EPA. (1999). Wasterwater Technology Fact Sheet—Fine Bubble Aeration. Environmental Protection Agency. EPA 832-F-99-065; Von Sperling, M. (2007). Basic principles of wastewater treatment (Vol. 2). IWA Publishing.; Wan, M.-W., Yang, H.-L., Chang, C.-H., Reguyal, F., & Kan, C.-C. (2012). Fouling Elimination of PTFE Membrane under Precoagulation Process Combined with Ultrasound Irradiation. Journal of Environmental Engineering, 138(3), 337-343. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000406; Wang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276-307. https://doi.org/10.1016/j.memsci.2014.05.060; Xu, M., Wen, X., Huang, X., Yu, Z., & Zhu, M. (2013). Mechanisms of membrane fouling controlled by online ultrasound in an anaerobic membrane bioreactor for digestion of waste activated sludge. Journal of Membrane Science, 445, 119-126. https://doi.org/10.1016/j.memsci.2013.06.006; http://hdl.handle.net/10654/38966; instname:Universidad Militar Nueva Granada; reponame:Repositorio Institucional Universidad Militar Nueva Granada; repourl:https://repository.unimilitar.edu.co
الاتاحة: http://hdl.handle.net/10654/38966