يعرض 1 - 20 نتائج من 94 نتيجة بحث عن '"Diffusivity coefficient"', وقت الاستعلام: 0.64s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المساهمون: Institut Européen des membranes (IEM), Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), University of Toronto, University of Engineering and Technology Peshawar (UET), University of Melbourne, Shahrood University of Technology

    المصدر: ISSN: 0378-3812 ; Fluid Phase Equilibria ; https://hal.umontpellier.fr/hal-03762986 ; Fluid Phase Equilibria, 2023, 563, pp.113581. ⟨10.1016/j.fluid.2022.113581⟩.

  7. 7
  8. 8
    Conference

    المساهمون: Escola Politecnica da Universidade de Sao Paulo Sao Paulo, Paris-Saclay Food and Bioproduct Engineering (SayFood), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)

    المصدر: 12th International Conference on Simulation and Modelling in the Food and Bio-Industry (FOODSIM'2022)
    https://hal.science/hal-03634455
    12th International Conference on Simulation and Modelling in the Food and Bio-Industry (FOODSIM'2022), Apr 2022, Gand, Belgium

    جغرافية الموضوع: Gand, Belgium

    Relation: WOS: 000946551800019

  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المصدر: Biotechnology in the Agricultural and Agroindustrial Sector; Vol. 21 No. 2 (2023): July to December; 17-31 ; Biotecnología en el Sector Agropecuario y Agroindustrial; Vol. 21 Núm. 2 (2023): Julio a Diciembre; 17-31 ; 1909-9959 ; 1692-3561

    وصف الملف: application/pdf

    Relation: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2205/1831; AADIL, RANA-MUHAMMAD; ZENG, XIN-AN; HAN, ZHONG; SUN, DA-WEN. Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, v. 141, n. 3, 2013, p. 3201-3206. https://doi.org/10.1016/j.foodchem.2013.06.008; AGUIRRE-GARCÍA, M.; CORTÉS-ZAVALETA, ORLENDA; RUIZ-ESPINOSA, HECTOR; OCHOA-VELASCO, CARLOS-ENRIQUE; RUIZ-LÓPEZ, IRVING-ISRAEL. The role of coupled water and solute diffusion and product shrinkage during osmotic dehydration. Journal of Food Engineering, v. 331, 2022, p. 111121. https://doi.org/10.1016/j.jfoodeng.2022.111121; ALARCON, ANGELA; PALACIOS, LAURA; OSORIO, CORALIA.; NARVÁEZ, PAULO-CÉSAR; HEREDIA, FRANCISCO; ORJUELA, ALVARO; HERNANZ, DOLORES. Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, v. 340, 2021, p. 128183. https://doi.org/10.1016/j.foodchem.2020.128183; AREDO, VICTOS; ARTEAGA, ANA; BENITES, CKISTHIAN; GERÓNIMO, WAGNER. Comparación entre el secado convectivo y osmoconvectivo en la pérdida de vitamina C de Aguaymanto (Physalis peruviana) con y sin pre-tratamiento de NaOH. Agroindustrial Science, v. 2, n. 2, 2012, p. 126-131. https://doi.org/10.17268/agroind.science.2012.02.01; AZUARA, EBNER; GARCIA, HUGO; BERISTAIN, CÉSAR-IGNACIO. Effect of centrifugal force on osmotic dehydration of potatoes and apples. Food Research International, v. 29, n. 2, 1996, p. 195-199. https://doi.org/10.1016/0963-9969(96)00033-6; AZUARA, EBNER; CORTÉS, RAÚL; GARCIA, HUGO; BERISTAIN, CÉSAR-FIGNACIO. Kinetic model for osmotic dehydration and its relationship with Fick’s Second Law. International Journal of Food Science and Technology, v. 27, 1992, p. 409-418.https://doi.org/10.1111/j.1365-2621.1992.tb01206.x; BARMAN, NIRMALI; BADWAIK, LAXMIKANT. Effect of ultrasound and centrifugal force on carambola (Averrhoa carambola L.) slices during osmotic dehydration. Ultrasonics Sonochemistry, v. 34, 2017, p. 37-44.http://dx.doi.org/10.1016/j.ultsonch.2016.05.014; BAZALAR-PEREDA, MAYRA; NAZARENO, MÓNICA; VITURRO, CARMEN. Nutritional and antioxidant properties of Physalis peruviana L. fruits from the argentinean northern andean region. Plant Foods for Human Nutrition, v. 74, n. 1, 2019, p. 68-75.http://dx.doi.org/10.1007/s11130-018-0702-1; BOZKIR, HAMZA; ERGÜN, AHSEN-RAYMAN; SERDAR, EMINE; METIN, GÜLHAN; BAYSAL, TANER. Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry, v. 54, 2019, p. 135-141.https://doi.org/10.1016/j.ultsonch.2019.02.006; BRAND-WILLAMS, WENDY; CUVELIER, MARIE-ELISABETH; BERSET, CLAUDETTE. Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenchaft und Technologie, v. 28, n. 1, 1995, p. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5; BROCHIER, BETHANINA; MESQUITA, JULIANA.; ZAPATA-NOREÑA, ACIANO-PELAYO. Study of osmotic dehydration of kiwi fruit using sucrose solution. Brazilian Journal of Food Technology, v. 22, 2019. p. e2018146.https://doi.org/10.1590/1981-6723.14618; CHU, YUANMING; WEI, SAICHAO; DING, ZHAOYANG; MEI, JUN; XIE, JING. Application of ultrasound and curing agent during osmotic dehydration to improve the quality properties of freeze-dried yellow peach (Amygdalus persica) slices. Agriculture, v. 11, 2021, p. 1069.https://doi.org/10.3390/agriculture11111069; CICHOWSKA, JOANA; WITROWA-RAJCHERT, DOROTA; STASIAK-RÓŻAŃSKA, LIDIA; FIGIEL, ADAM. Ultrasound-assisted osmotic dehydration of apples in polyols and dihydroxyacetone (DHA) solutions. Molecules, v. 24, 2019, p. 3429.http://dx.doi.org/10.3390/molecules24193429; El-BELTAGI, HOSSAM; MOHAMED, HEBA; SAFWAT, GEHAN; GAMAL, MOHAMMED; MEGAHED, BASMA. Chemical Composition and Biological Activity of Physalis peruviana L., Gesunde Pflanzen, v. 71, 2019. p. 113-122.https://doi.org/10.1007/s10343-019-00456-8; ENCINA, CHRISTIAN; UREÑA, MILBER. Determinación de la máxima retención se ácido ascórbico de la conserva de aguaymanto (Physalis Peruviana) en almíbar aplicando el método superficie de respuesta. Tau alimentario, v. 3, 2007, p. 1-40.; FENG, XINXIN; SUN, JIE; LIU, BANGDI; ZHOU, XINQUN; JIANG, LIHUA; JIANG, WEIBO. Effect of gradient concentration pre-osmotic dehydration on keeping air-dried apricot antioxidant activity and bioactive compounds. Journal of Food Processing and Preservation, 2022, p. e16688. https://doi.org/10.1111/jfpp.16688; FISCHER, GERHARD; MELGAREJO, LUZ-MARINA. The ecophysiology of cape gooseberry (Physalis peruviana l.) - an andean fruit crop. a review. Revista colombiana de ciencias Hortícolas, v. 14, n. 1, 2020, p. 76-89.https://doi.org/10.17584/rcch.2020v14i1.10893; GHELLAM, MOHAMED; ZANNOU, OSCAR; GALANAKIS, CHARIS; ALDAWOUD, TURKI; IBRAIM, SALAM; KOCA, ILKAY. Vacuum-assisted osmotic dehydration of autumn olive berries: Modeling of mass transfer kinetics and quality assessment. Foods, v. 10, n. 10, 2021, p. 2286. https://doi.org/10.3390%2Ffoods10102286; GIANNAKOUROU, MARIA; DERMESONLOUOGLOU, EFIMIA; TAOUKIS, PETROS. Osmodehydrofreezing: An integrated process for food preservation during frozen storage. Foods, v. 9, 2020, p. 1042.http://dx.doi.org/10.3390/foods9081042; GOULA, ATHANASIA; KOKOLAKI, MARIA; DAFTSIOU, ELENI. Use of ultrasound for osmotic dehydration. The case of potatoes. Food and Bioproducts Processing, v. 105, 2017, p. 157-170.https://doi.org/10.1016/j.fbp.2017.07.008; GUINÉ, RAQUEL; GONÇALVES, FERNANDO; OLIVEIRA, SOLANGE.; CORREIA, PAULA. Evaluation of phenolic compounds, antioxidant activity and bioaccessibility in Physalis Peruviana L. International Journal of Fruit Science, 2020, p. S470-S490.https://doi.org/10.1080/15538362.2020.1741056; KHUWIJITJARU, PRAMOTE; SOMKANE, SUPAWADEE; NAKAGAWA, KYUYA; MAHAYOTHEE, BUSARAKORN. Osmotic Dehydration, Drying Kinetics, and Quality Attributes of Osmotic Hot Air-Dried Mango as Affected by Initial Frozen Storage. Foods, v. 11, n. 3, 2022, p. 489.https://doi.org/10.3390/foods11030489; KOWALSKA, HANNA; MARZEC, AGATA; DOMIAN, EWA; MASIARZ, EWELINA; CIURZYŃSKA, AGNIESZKA; GALUS, SABINA; MAŁKIEWICZ, ALEKSANDRA; LENART, ANDRZEJ; KOWALSKA, JOLANTA. Physical and sensory properties of japanese quince chips obtained by osmotic dehydration in fruit juice concentrates and hybrid drying. Molecules, v. 25, n. 23, 2020, p. 5504.https://doi.org/10.3390/molecules25235504; LE, DUNG; KONSUE, NATTAYA. Mass transfer behavior during osmotic dehydration and vacuum impregnation of “phulae” pineapple and the effects on dried fruit quality. Current Research in Nutrition and Food Science, v. 9, n. 1, 2021.http://dx.doi.org/10.12944/CRNFSJ.9.1.29; LI, LU; YU, YANGYANG; XU, YUJUAN; WU, JIJUN; YU, YUANSHAN; PENG, JIAN; AN, KEJING; ZOU, BO; YANG, WANYUAN. Effect of ultrasound-assisted osmotic dehydration pretreatment on the drying characteristics and quality properties of Sanhua plum (Prunus salicina L.). LWT – Food Science and Technology, v. 138, 2021, p. 110653. https://doi.org/10.1016/j.lwt.2020.110653; LI, LINLIN; ZHANG, MIN; WANG, WEIQIN. Ultrasound-assisted osmotic dehydration pretreatment before pulsed fluidized bed microwave freeze-drying (PFBMFD) of Chinese yam. Food Bioscience, v. 35, 2020, p. 100548.https://doi.org/10.1016/j.fbio.2020.100548; MEHTA, ARYAN; SINGH, AMANJEET; SINGH, AKHAND-PRATAP; PRABHAKAR, PRAMOD; KUMAR, NITIN. Ultrasonic induced effect on mass transfer characteristics during osmotic dehydration of aonla (Phyllanthus emblica L.) slices: A mathematical modeling approach. Journal of Food Process Engineering, v. 44, n. 12, 2021, p. e13887. https://doi.org/10.1111/jfpe.13887; MESIAS, MARTA; DELGADO-ANDRADE, CRISTINA; GÓMEZ-NARVÁEZ, FAVER; CONTRERAS-CALDERÓN, JOSÉ; MORALES, FRANCISCO. Formation of acrylamide and other heat-induced compounds during panela production. Foods, v. 9, n. 4, 2020, p. 531.https://doi.org/10.3390%2Ffoods9040531; MUÑOZ, PATRICIO; PARRA, FELIPE; SIMIRGIOTIS, MARIO; SEPÚLVEDA-CHAVERA, GERMÁN; PARRA, CLAUDIO. Chemical characterization, nutritional and bioactive properties of Physalis peruviana fruit from high areas of the Atacama Desert. Foods, v. 10, n. 11, 2021, p. 2699.https://doi.org/10.3390/foods10112699; NAHIMANA, HILAIRE; ZHANG, MIN; MUJUMDAR, ARUN; DING, ZHANSHENG. Mass transfer modeling and shrinkage consideration during osmotic dehydration of fruits and vegetables. Food Reviews International, v. 27, n. 4, 2011, p. 331-356.https://doi.org/10.1080/87559129.2010.518298; PANDISELVAM, RAVI; TAK, YAMINI; OLUM, EMINE; SUJAYASREE, O. J.; TEKGÜL, YELIZ; ÇALIŞKAN-KOÇ, GÜLŞAH; KAUR, MANPREET; NAYI, PRATIK; KOTHAKOTA, ANJINEYULU; KUMAR, MANOJ. Advanced osmotic dehydration techniques combined with emerging drying methods for sustainable food production: Impact on bioactive components, texture, color, and sensory properties of food. Journal of Texture Studies, 2021, p. 1-26. https://doi.org/10.1111/jtxs.12643; PANTELIDOU, DIMITRA; GEROGIANNIS, KONSTANTINOS; GOULA, ATHANASIA; GONAS, CHRISTOS. Ultrasound-assisted osmotic dehydration as a method for supplementing potato with unused chokeberries phenolics. Food Bioprocess Technology, v. 14, 2021, p. 2231–2247.https://doi.org/10.1007/s11947-021-02720-0; PRITHANI, RASHMI; DASH, KSIROD-KUMAR. Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science and Emerging Technologies, v. 64, 2020, p. 102407.https://doi.org/10.1016/j.ifset.2020.102407; RAHAMAN, ABDUL; ZENG, XIN-AN; KUMARI, ANKITA; RAFIQ, MUHAMMAD; SIDDEEG, AZHARI; MANZOOR, MUHAMMAD-FAISAL; BALOCH, ZULQARNAIN; AHMED, ZAHOOR. Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrasonics Sonochemistry, v. 58, 2019, p. 104643.https://doi.org/10.1016/j.ultsonch.2019.104643; RASTOGI, NAVIN-KUMAR; SHARMA, RICHA.; NIRANJAN, KESHAVAN; KNORR, DIETRICH. Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends in Food Science and Technology, v. 13, n. 2, 2002, p. 48–59.https://doi.org/10.1016/S0924-2244(02)00032-8; REZENDE, FERNANDA; GOMES, JEFFERSON-LUIZ. Osmotic dehydration: More than water loss and solid gain. Critical Reviews in Food Science and Nutrition, 2021, Online.https://doi.org/10.1080/10408398.2021.1983764; SEPÚLVEDA, ELENA; SAENZ, CARMEN. El Capulí: Un fruto exótico con posibilidades agroindustriales. Revista Alimentos, v. 19, n. 2, 1994, 59-63.; SHARMA, MAANAS; DASH, KSHIROD. Effect of ultrasonic vacuum pretreatment on mass transfer kinetics during osmotic dehydration of black jamun fruit. Ultrasonics Sonochemistry, v. 58, 2019, p. 104693.https://doi.org/10.1016/j.ultsonch.2019.104693; SULISTYAWATI, ITA; VERKERK, RUUD; FOGLIANO, VINCENZO; DEKKER, MATTHIJS. Modelling the kinetics of osmotic dehydration of mango: Optimizing process conditions and pre-treatment for health aspects. Journal of Food Engineering, v. 280, 2020, p. 109985.https://doi.org/10.1016/j.jfoodeng.2020.109985; UNITED STATES OF AMERICA. ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS (AOAC). Official Methods of Analysis, 15 th edition. Maryland (USA): 1995.; WU, XIAO-FEI; ZHANG, MIN; MUJUMDAR, ARUN; YANG, CHAO-HUI. Effect of ultrasound-assisted osmotic dehydration pretreatment on the infrared drying of Pakchoi Stems. Drying Technology, v. 38, n. 15, 2020, p. 2016-2026.https://doi.org/10.1080/07373937.2019.1608232; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2205

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 4 (2021); 38-41 ; Новые огнеупоры; № 4 (2021); 38-41 ; 1683-4518 ; 10.17073/1683-4518-2021-4

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1604/1335; Голышев, А. А. Формирование металлокерамических покрытий B4C‒Ti‒6AL‒4V методом SLM / А. А. Голышев, А. М. Оришич, А. А. Филиппов // Металловедение и термическая обработка металлов. ― 2020. ― Т. 785, № 11. ― С. 39‒43.; Фомин, В. М. Создание металлокерамических структур на основе Ti, Ni, WC и B4C с применением технологии лазерной наплавки и холодного газодинамического напыления / В. М. Фомин, А. А. Голышев, В. Ф. Косарев [и др.] // Физическая мезомеханика. ― 2019. ― Т. 22, № 4. ― С. 5‒15.; Stolin, A. M. Deposition of protective coatings by electric arc cladding with SHS electrodes / A. M. Stolin, P. M. Bazhin, M. V. Mikheyev [et al.] // Welding International. ― 2015. ― Vol. 29, № 8. ― Р. 657‒660.; Леонтьев, Л. Б. Управление формированием композиционных износостойких металлокерамических покрытий на поверхностях трения деталей / Л. Б. Леонтьев, Н. П. Шапкин, А. Л. Леонтьев [и др.] // Фундаментальные исследования. ― 2012. ― № 11-3. ― С. 630‒635.; Дорохов, А. С. Повышение износостойкости покрытий, полученных при ТВЧ-борировании с модификацией интерметаллидами систем Fе‒Al и Ni‒Al / А. С. Дорохов, В. Ф. Аулов, В. П. Лялякин [и др.] // Технология машиностроения. ― 2020. ― № 2. ― С. 23‒33.; Руденская, Н. А. Эффекты упрочнения металлокерамических покрытий в процессе их формирования / Н. А. Руденская, Г. П. Швейкин, В. А. Гулецкий // Доклады Академии наук. ― 2010. ― Т. 433, № 6. ― С. 776‒779.; Гальченко, Н. К. Особенности формирования структуры и свойства металлокерамических покрытий, полученных нитридо-плазменной технологией / Н. К. Гальченко, В. П. Самарцев, С. И. Белюк [и др.] // Проблемы черной металлургии и материаловедения. ― 2010. ― № 1. ― С. 60‒64.; Сухочев, Г. А. Технологическое обеспечение качества нанесения защитных покрытий комбинированной обработкой / Г. А. Сухочев, О. Н. Кириллов, Д. М. Небольсин [и др.] // Упрочняющие технологии и покрытия. ― 2010. ― Т. 68, № 8. ― С. 39‒44.; Kolomeychenko, A. V. The microstructure of composite cermet coatings produced by carbo-vibroarc surfacing / A. V. Kolomeychenko, N.V. Titov, V.V. Vinogradov [et al.] // Welding International. ― 2017. ― Vol. 31, № 9. ― Р. 739‒742. https://doi.org/10.1080/09507116.2017.1318494.; Sharifullin, S. N. Surface hardening of cutting elements agricultural machinery vibro arc plasma / S. N. Sharifullin, N. R. Adigamov, N. N. Adigamov [et al.] // Journal of Physics: Conference Series. ― 2016. ― Vol. 669, № 1. ― Article № 012049.; Щицын, В. Ю. Технология вибродугового упрочнения с использованием ферродобавок применительно к условиям Республики Куба / В. Ю. Щицын, Э. С. Э. Кастелл, А. А. Волков // Вестник ФГОУ ВПО «МГАУ имени В. П. Горячкина». ― 2018. ― № 5. ― С. 35‒39.; Шарифуллин, С. Н. Трибологические исследования поверхностей деталей из стали 65Г, упрочненных плазменными методами / С. Н. Шарифуллин, Н. Р. Адигамов, Е. Ю. Кудряшова [и др.] // Технический сервис машин. ― 2019. ― Т. 136, № 3. ― С. 120‒127.; Titov, N. V. Investigation of the hardness and wear resistance of working sections of machines hardened by vibroarc surfacing using cermet materials / N. V. Titov, A. V. Kolomeichenko, V. N. Logachev [et al.] // Welding International. ― 2015. ― Vol. 29, № 9. ― Р. 737‒739.; Титов, Н. В. Особенности строения композиционных металлокерамических покрытий, формируемых с использованием многокомпонентных паст на железной основе / Н. В. Титов, А. В. Коломейченко, П. М. Бажин [и др.] // Композиты и наноструктуры. ― 2019. ― Т. 11, № 2. ― С. 64‒68.; Коломейченко, А. В. Повышение износостойкости металлокерамических покрытий, нанесенных методом карбовибродугового упрочнения / А. В. Коломейченко, И. Н. Кравченко, М. Н. Ерофеев [и др.] // Проблемы машиностроения и автоматизации. ― 2019. ― № 4. ― С. 69‒74.; Байков, В. И. Теплофизика. Термодинамика, статистическая физика, физическая кинетика. Т. 1. / В. И. Байков, Н. В. Павлюкевич, А. К. Федотов [и др.]; под ред. О. Г. Пенязькова. ― Минск : Институт тепло- и массообмена имени А. В. Лыкова НАН Беларуси, 2013. ― 400 с.; Пономарев, С. В. Теоретические и практические аспекты теплофизических измерений : монография / С. В. Пономарев, С. В. Мищенко, А. Г. Дивин; в 2-х кн. Кн. 1. ― Тамбов : Изд-во Тамбовского государственного технического университета, 2006. ― 204 с.; Вакулин, А. А. Теплофизика и теоретическая теплотехника : уч. пособие / А. А. Вакулин. ― Тюмень : Изд-во Тюменского государственного университета, 2019. ― 196 с.; Титов, Н. В. Теплофизические характеристики многокомпонентных паст для нанесения упрочняющих покрытий / Н. В. Титов, А. В. Коломейченко, В. Л. Басинюк [и др.] // Клеи. Герметики. Технологии. ― 2020. ― № 12. ― С. 2‒7. DOI:10.31044/1813-7008-2020-0-12-2-7.; Ивченко, Г. И. Математическая статистика : учебник / Г. И. Ивченко, Ю. И. Медведев. ― М. : Книжный дом «ЛИБРОКОМ», 2014. ― 352 с.; Горяинов, В. Б. Математическая статистика / В. Б. Горяинов, И. В. Павлов, Г. М. Цветкова [и др.]. ― М. : Изд-во МГТУ им. Н. Э. Баумана, 2001. ― 424 с.; https://newogneup.elpub.ru/jour/article/view/1604

  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المصدر: Revista Engenharia na Agricultura - Reveng

    وصف الملف: application/pdf

    Relation: MOREIRA, R. V. et al. Drying kinetics of peeled coffee submitted to different temperatures and relative humidity of the air of drying after partial drying. Revista Engenharia na Agricultura, Viçosa, MG, v. 28, p. 460-476, 2020. DOI:10.13083/reveng.v29i1.8217.; http://repositorio.ufla.br/jspui/handle/1/47991

  18. 18
  19. 19
    Academic Journal
  20. 20
    Academic Journal