يعرض 1 - 20 نتائج من 32 نتيجة بحث عن '"Differential equation solver"', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1
  2. 2
    Conference

    المساهمون: Laboratoire d'Algorithmique Complexité et Logique (LACL), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Institut Polytechnique de Paris (IP Paris), Département Informatique (TSP - INF), Institut Mines-Télécom Paris (IMT)-Télécom SudParis (TSP), Architecture, Cloud continuum, formal Models, artificial intElligence and Services in distributed computing (ACMES-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom Paris (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom Paris (IMT)-Télécom SudParis (TSP), ANR-17-CE25-0005,DISCONT,Intégration correcte de modèles discrets et continus(2017)

    المصدر: ICSOFT 2023 : 18th International Conference on Software Technologies ; 18th International Conference on Software Technologies (ICSOFT) ; https://hal.science/hal-04344606 ; 18th International Conference on Software Technologies (ICSOFT), Jul 2023, Rome, Italy. pp.71-83, ⟨10.5220/0012080900003538⟩

    جغرافية الموضوع: Rome, Italy

  3. 3
    Academic Journal

    المساهمون: Auddy, Sayantan, Hollenstein, Jakob, Saveriano, Matteo, Rodríguez-Sánchez, Antonio, Piater, Justus

    Relation: volume:165; firstpage:104427; journal:ROBOTICS AND AUTONOMOUS SYSTEMS; https://hdl.handle.net/11572/378968; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85154601248

  4. 4
    Academic Journal

    المؤلفون: Antoine, Xavier, Lorin, Emmanuel

    المساهمون: Equations aux dérivées partielles (EDP), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre de Recherches Mathématiques Montréal (CRM), Université de Montréal (UdeM), Carleton University

    المصدر: ISSN: 0885-7474.

  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المؤلفون: Antoine, Xavier, Lorin, Emmanuel

    المساهمون: Equations aux dérivées partielles (EDP), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), School of Mathematics and Statistics Carleton University, Carleton University, Centre de Recherches Mathématiques Montréal (CRM), Université de Montréal (UdeM)

    المصدر: ISSN: 0885-7474.

  8. 8
    Dissertation/ Thesis

    المساهمون: González Mancera, Andrés Leonardo

    وصف الملف: 39 páginas; application/pdf

    Relation: Baydin, A. G., Pearlmutter, B. A., y Siskind, J. M. (2018). Automatic differentiation in machine learning: a survey. The Journal of Machine Learning Research, 18 , 1-43.; Cai, S., Mao, Z.,Wang, Z., Yin, M., y Karniadakis, G. E. (2021). Physics-informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, ppb-ppb.; Chiu, P. H., Wong, J. C., Ooi, C., Dao, M. H., y Ong, Y. S. (2022, 5). Can-pinn: A fast physics-informed neural network based on coupled-automatic–numerical differentiation method. Computer Methods in Applied Mechanics and Engineering, 395 , 114909. doi:10.1016/J.CMA.2022.114909; Cuomo, S., Schiano, V., Cola, D., Giampaolo, F., Rozza, G., Raissi, M., y Piccialli, F. (2022, 7). Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 2022 92:3 , 92 , 1-62. Descargado de https://link.springer.com/article/10.1007/s10915-022-01939-z doi:10.1007/S10915-022-01939-Z; Dumoulin, V., y Visin, F. (2016, 3). A guide to convolution arithmetic for deep learning. Descargado de https://arxiv.org/abs/1603.07285v2 doi:10.48550/arxiv.1603.07285; Fang, Z. (2022, 10). A high-efficient hybrid physics-informed neural networks based on convolutional neural network. IEEE Transactions on Neural Networks and Learning Systems, 33 , 5514-5526. doi:10.1109/TNNLS.2021.3070878; Gao, H., Sun, L., yWang, J. X. (2020, 4). Phygeonet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state pdes on irregular domain. Journal of Computational Physics, 428 . Descargado de https://arxiv.org/abs/2004.13145v2 doi:10.1016/j.jcp.2020.110079; Kolmogorov, A. N. (1991). The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Proceedings: Mathematical and Physical Sciences, 434 , 9-13. Descargado de http://www.jstor.org.ezproxy.uniandes.edu.co/stable/51980; Leiteritz, R., y Uger, D. P. (2021, 12). How to avoid trivial solutions in physics-informed neural networks. Descargado de https://arxiv.org/abs/2112.05620v1; Long, J., Shelhamer, E., y Darrell, T. (2015). Fully convolutional networks for semantic segmentation. En (p. 3431-3440). Descargado de http://arxiv.org/abs/1411.4038 doi:10.1109/CVPR.2015.7298965; Milano, M., y Koumoutsakos, P. (2002, 10). Neural network modeling for near wall turbulent flow. Journal of Computational Physics, 182 , 1-26. doi:10.1006/JCPH.2002.7146; Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., Facebook, Z. D., . . . Lerer, A. (2017). Automatic differentiation in pytorch.; Raissi, M., Perdikaris, P., y Karniadakis, G. E. (2017, 11). Physics informed deep learning: Data-driven solutions of nonlinear partial differential equations. Descargado de https://arxiv.org/abs/1711.10561v1 doi:10.48550/arxiv.1711.10561; Ren, P., Rao, C., Liu, Y., Wang, J., y Sun, H. (2021, 6). Phycrnet: Physics-informed convolutionalrecurrent network for solving spatiotemporal pdes. doi:10.1016/j.cma.2021.114399; Shi, P., Zeng, Z., y Liang, T. (2022, 1). Physics-informed convnet: Learning physical field from a shallow neural network. Descargado de https://arxiv.org/abs/2201.10967v2 doi:10.48550/arxiv.2201.10967; Waite, E. (2018). Pytorch autograd explained - in-depth tutorial. Descargado de https://www.youtube.com/watch?v=MswxJw-8PvE; Zhou, D. X. (2018, 5). Universality of deep convolutional neural networks. Applied and Computational Harmonic Analysis, 48 , 787-794. Descargado de https://arxiv.org/abs/1805.10769v2 doi:10.48550/arxiv.1805.10769; https://hdl.handle.net/1992/73874; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/

  9. 9
    Academic Journal
  10. 10
    eBook

    المؤلفون: Eriksson, Olle, author, Bergman, Anders, author, Bergqvist, Lars, author, Hellsvik, Johan, author

    المصدر: Atomistic Spin Dynamics : Foundations and Applications, 2017, ill.

  11. 11
  12. 12

    المساهمون: Vinod Kumar Mitruka, Tarun Kumar Mitruka

    Relation: Müller, Alexander; Vinod Kumar Mitruka, Tarun Kumar Mitruka, 2023, "Ikarus v0.3", https://doi.org/10.18419/darus-3303 , DaRUS, V1

  13. 13
  14. 14
    Academic Journal
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal
  19. 19
    Periodical
  20. 20
    Dissertation/ Thesis