-
1
المؤلفون: Silva, Duarte Gonçalves Lopes da
المساهمون: Oliveira, Luís, RUN
مصطلحات موضوعية: Analog computing, Differential equation solver, CMOS, Folded-Cascode, Integrator, Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10362/162021
-
2Conference
المؤلفون: Afendi, Meryem, Mammar, Amel, Laleau, Régine
المساهمون: Laboratoire d'Algorithmique Complexité et Logique (LACL), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Institut Polytechnique de Paris (IP Paris), Département Informatique (TSP - INF), Institut Mines-Télécom Paris (IMT)-Télécom SudParis (TSP), Architecture, Cloud continuum, formal Models, artificial intElligence and Services in distributed computing (ACMES-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom Paris (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom Paris (IMT)-Télécom SudParis (TSP), ANR-17-CE25-0005,DISCONT,Intégration correcte de modèles discrets et continus(2017)
المصدر: ICSOFT 2023 : 18th International Conference on Software Technologies ; 18th International Conference on Software Technologies (ICSOFT) ; https://hal.science/hal-04344606 ; 18th International Conference on Software Technologies (ICSOFT), Jul 2023, Rome, Italy. pp.71-83, ⟨10.5220/0012080900003538⟩
مصطلحات موضوعية: Cyber-Physical System EVENT-B Refinement Correctness Proof Ordinary Differential Equation Differential Equation Solver, Cyber-Physical System, EVENT-B, Refinement, Correctness Proof, Ordinary Differential Equation, Differential Equation Solver, [INFO]Computer Science [cs]
-
3Academic Journal
المؤلفون: Sayantan Auddy, Jakob Hollenstein, Matteo Saveriano, Antonio Rodríguez-Sánchez, Justus Piater
المساهمون: Auddy, Sayantan, Hollenstein, Jakob, Saveriano, Matteo, Rodríguez-Sánchez, Antonio, Piater, Justus
مصطلحات موضوعية: Continual learning, Hypernetwork, Learning from demonstration, Neural ordinary differential equation solver
Relation: volume:165; firstpage:104427; journal:ROBOTICS AND AUTONOMOUS SYSTEMS; https://hdl.handle.net/11572/378968; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85154601248
-
4Academic Journal
المؤلفون: Antoine, Xavier, Lorin, Emmanuel
المساهمون: Equations aux dérivées partielles (EDP), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre de Recherches Mathématiques Montréal (CRM), Université de Montréal (UdeM), Carleton University
المصدر: ISSN: 0885-7474.
مصطلحات موضوعية: Fractional linear systems, differential equation solver, iterative solver, gradient method, GMRES, fractional PDE Contents, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
-
5Academic Journal
المؤلفون: Yutai Chen, Huan Chen, Hansi Ma, Zhaojian Zhang, Wanlin Xie, Xin Li, Jian Chen, Junbo Yang
المصدر: Nanomaterials, Vol 12, Iss 3438, p 3438 (2022)
مصطلحات موضوعية: 4f system, analog optical computing, optical adder, optical differential equation solver, silicon-on-insulator, on-chip, Chemistry, QD1-999
Relation: https://www.mdpi.com/2079-4991/12/19/3438; https://doaj.org/toc/2079-4991; https://doaj.org/article/5526e5208453463cbcf66365245cb1ef
-
6Academic Journal
المؤلفون: Taufeq Mohammed Razakh, Beibei Wang, Shane Jackson, Rajiv K. Kalia, Aiichiro Nakano, Ken-ichi Nomura, Priya Vashishta
المصدر: SoftwareX, Vol 15, Iss , Pp 100789- (2021)
مصطلحات موضوعية: Molecular dynamics, Machine learning, Differential equation solver, Computer software, QA76.75-76.765
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Antoine, Xavier, Lorin, Emmanuel
المساهمون: Equations aux dérivées partielles (EDP), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), School of Mathematics and Statistics Carleton University, Carleton University, Centre de Recherches Mathématiques Montréal (CRM), Université de Montréal (UdeM)
المصدر: ISSN: 0885-7474.
مصطلحات موضوعية: Fractional linear systems, differential equation solver, iterative solver, gradient method, GMRES, fractional PDE Contents, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Relation: hal-03085997; https://hal.archives-ouvertes.fr/hal-03085997; https://hal.archives-ouvertes.fr/hal-03085997/document; https://hal.archives-ouvertes.fr/hal-03085997/file/paperHAL.pdf
-
8Dissertation/ Thesis
المؤلفون: Gómez Barrera, Daniel Fernando
المساهمون: González Mancera, Andrés Leonardo
مصطلحات موضوعية: Physics-informed neural networks, Partial differential equation solver, Pinns, Machine learning, Diffusion, Redes neurales de inferencia física, Solucionador de ecuaciones diferenciales parciales, Difusión, Ingeniería
وصف الملف: 39 páginas; application/pdf
Relation: Baydin, A. G., Pearlmutter, B. A., y Siskind, J. M. (2018). Automatic differentiation in machine learning: a survey. The Journal of Machine Learning Research, 18 , 1-43.; Cai, S., Mao, Z.,Wang, Z., Yin, M., y Karniadakis, G. E. (2021). Physics-informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, ppb-ppb.; Chiu, P. H., Wong, J. C., Ooi, C., Dao, M. H., y Ong, Y. S. (2022, 5). Can-pinn: A fast physics-informed neural network based on coupled-automatic–numerical differentiation method. Computer Methods in Applied Mechanics and Engineering, 395 , 114909. doi:10.1016/J.CMA.2022.114909; Cuomo, S., Schiano, V., Cola, D., Giampaolo, F., Rozza, G., Raissi, M., y Piccialli, F. (2022, 7). Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 2022 92:3 , 92 , 1-62. Descargado de https://link.springer.com/article/10.1007/s10915-022-01939-z doi:10.1007/S10915-022-01939-Z; Dumoulin, V., y Visin, F. (2016, 3). A guide to convolution arithmetic for deep learning. Descargado de https://arxiv.org/abs/1603.07285v2 doi:10.48550/arxiv.1603.07285; Fang, Z. (2022, 10). A high-efficient hybrid physics-informed neural networks based on convolutional neural network. IEEE Transactions on Neural Networks and Learning Systems, 33 , 5514-5526. doi:10.1109/TNNLS.2021.3070878; Gao, H., Sun, L., yWang, J. X. (2020, 4). Phygeonet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state pdes on irregular domain. Journal of Computational Physics, 428 . Descargado de https://arxiv.org/abs/2004.13145v2 doi:10.1016/j.jcp.2020.110079; Kolmogorov, A. N. (1991). The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Proceedings: Mathematical and Physical Sciences, 434 , 9-13. Descargado de http://www.jstor.org.ezproxy.uniandes.edu.co/stable/51980; Leiteritz, R., y Uger, D. P. (2021, 12). How to avoid trivial solutions in physics-informed neural networks. Descargado de https://arxiv.org/abs/2112.05620v1; Long, J., Shelhamer, E., y Darrell, T. (2015). Fully convolutional networks for semantic segmentation. En (p. 3431-3440). Descargado de http://arxiv.org/abs/1411.4038 doi:10.1109/CVPR.2015.7298965; Milano, M., y Koumoutsakos, P. (2002, 10). Neural network modeling for near wall turbulent flow. Journal of Computational Physics, 182 , 1-26. doi:10.1006/JCPH.2002.7146; Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., Facebook, Z. D., . . . Lerer, A. (2017). Automatic differentiation in pytorch.; Raissi, M., Perdikaris, P., y Karniadakis, G. E. (2017, 11). Physics informed deep learning: Data-driven solutions of nonlinear partial differential equations. Descargado de https://arxiv.org/abs/1711.10561v1 doi:10.48550/arxiv.1711.10561; Ren, P., Rao, C., Liu, Y., Wang, J., y Sun, H. (2021, 6). Phycrnet: Physics-informed convolutionalrecurrent network for solving spatiotemporal pdes. doi:10.1016/j.cma.2021.114399; Shi, P., Zeng, Z., y Liang, T. (2022, 1). Physics-informed convnet: Learning physical field from a shallow neural network. Descargado de https://arxiv.org/abs/2201.10967v2 doi:10.48550/arxiv.2201.10967; Waite, E. (2018). Pytorch autograd explained - in-depth tutorial. Descargado de https://www.youtube.com/watch?v=MswxJw-8PvE; Zhou, D. X. (2018, 5). Universality of deep convolutional neural networks. Applied and Computational Harmonic Analysis, 48 , 787-794. Descargado de https://arxiv.org/abs/1805.10769v2 doi:10.48550/arxiv.1805.10769; https://hdl.handle.net/1992/73874; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/
الاتاحة: https://hdl.handle.net/1992/73874
-
9Academic Journal
المصدر: Philosophical Transactions: Biological Sciences, 2007 Oct . 362(1486), 1831-1839.
URL الوصول: https://www.jstor.org/stable/20209987
-
10eBook
المؤلفون: Eriksson, Olle, author, Bergman, Anders, author, Bergqvist, Lars, author, Hellsvik, Johan, author
المصدر: Atomistic Spin Dynamics : Foundations and Applications, 2017, ill.
-
11
المؤلفون: Rajiv K. Kalia, Priya Vashishta, Beibei Wang, Shane Jackson, Aiichiro Nakano, Taufeq Mohammed Razakh, Ken-ichi Nomura
المصدر: SoftwareX, Vol 15, Iss, Pp 100789-(2021)
مصطلحات موضوعية: Conservation law, Neural network software, Artificial neural network, Automatic differentiation, business.industry, Differential equation, Control engineering, Solver, Molecular dynamics, Differential equation solver, Computer Science Applications, QA76.75-76.765, Software, Machine learning, Boundary value problem, Computer software, business
-
12
المساهمون: Vinod Kumar Mitruka, Tarun Kumar Mitruka
مصطلحات موضوعية: Engineering, Differential Equation Solver, Partial Differential Equation, Solver, Numerical Simulation
Relation: Müller, Alexander; Vinod Kumar Mitruka, Tarun Kumar Mitruka, 2023, "Ikarus v0.3", https://doi.org/10.18419/darus-3303 , DaRUS, V1
الاتاحة: https://doi.org/10.18419/darus-3889
-
13
المساهمون: Müller, Alexander
مصطلحات موضوعية: Engineering, Differential Equation Solver, Numerical Simulation
الاتاحة: https://doi.org/10.18419/darus-3303
-
14Academic Journal
المؤلفون: Hasbun, Javier E.
المصدر: Georgia Journal of Science
مصطلحات موضوعية: Classical Mechanics, Newtonian mechanics, Euler, Cromer, differential equation solver
-
15Academic Journal
المؤلفون: Wu, Jiayang, Xu, Xingyuan, Nguyen, Thach G., Chu, Sai Tak, Little, Brent E., Morandotti, Roberto, Mitchell, Arnan, Moss, David J., Moss, DJ (reprint author), Swinburne Univ Technol, Ctr Microphoton, Hawthorn, Vic 3122, Australia.
مصطلحات موضوعية: Optical Parametric Oscillators, Optical Kerr Effect, Nonlinear Optics, Integrated Optics, Engineering, Electrical & Electronic, Science & Technology, Technology, Physical Sciences, FREQUENCY COMB GENERATION, TRUE-TIME-DELAY, SILICON-NITRIDE MICRORESONATORS, RADIOFREQUENCY SPECTRUM ANALYZER, DIFFERENTIAL-EQUATION SOLVER, WHISPERING-GALLERY MODES, ENTANGLED QUANTUM STATES, BILLION QUALITY-FACTOR, MICRORING RESONATOR, MICROWAVE PHOTONICS, Optics, Physics, Applied
Relation: IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS; http://ir.opt.ac.cn/handle/181661/30020
-
16
المؤلفون: Gillies, Kendall
المساهمون: Ghosh, Bijoy K., Howle, Victoria E., Martin, Clyde F.
المصدر: IndraStra Global.
مصطلحات موضوعية: Smoothing splines, Ordinary differential equation solver, Control theoretic smoothing splines
وصف الملف: application/pdf
-
17
المؤلفون: Friedman, Daniel, Sinervo, Barry
مصطلحات موضوعية: baseball, Buyer-Seller, cellular automata, Defect, Cooperate, Tit-for-Tat, Differential Equation solver for Continuous Evolutionary Games, Hawk Dove, RPS
Relation: https://zenodo.org/communities/dryad; https://doi.org/10.7291/D1MW2X; oai:zenodo.org:5001310
الاتاحة: https://doi.org/10.7291/D1MW2X
-
18Academic Journal
المؤلفون: 袁驷, 徐永君, Williams FW, Yuan, S (reprint author), Tsing Hua Univ, Dept Civil Engn, Beijing 100084, Peoples R China.
مصطلحات موضوعية: Stress Intensity Factors, Finite Element Method Of Lines, Sub-region Generalized Variational Principle, Ordinary Differential Equation Solver, Complete Eigen-solutions, Boundary-value Odes, V-notched Plates, Collocation Software, Multi-materials, Materials Science, Mechanics, Multidisciplinary, stress intensity factor, 应力强度因子
Relation: Acta Mechanica Solida Sinica; Yuan S,Xu YJ,Williams FW. Computation of stress intensity factors by the sub-region mixed finite element method of lines[J]. Acta Mechanica Solida Sinica,2007,20(2):149-162.; http://dspace.imech.ac.cn/handle/311007/33965
-
19Periodical
المؤلفون: Katona, E., Kuczmann, M.
المصدر: Przegląd Elektrotechniczny.
-
20Dissertation/ Thesis
المؤلفون: Jeong, Yeonjoo
المساهمون: Lu, Wei, Dreslinski Jr, Ronald, Guo, L Jay, Zhang, Zhengya
مصطلحات موضوعية: Neuromorphic computing, Memristor array demonstration for K-means clustering, Hardware-based Partial Differential Equation Solver, Second order memristor based spiking neural network, Large size memristor array, Internal device dynamics for temporal data learning, Electrical Engineering, Engineering
وصف الملف: application/pdf
Relation: https://hdl.handle.net/2027.42/147610; orcid:0000-0001-5855-5066; Jeong, YeonJoo; 0000-0001-5855-5066