يعرض 1 - 13 نتائج من 13 نتيجة بحث عن '"Dey, Pallab Kanti"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Report
  2. 2
    Report
  3. 3
    Report
  4. 4
    Report
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المؤلفون: Dey, Pallab Kanti

    وصف الملف: application/pdf

    Relation: mr:MR3923581; zbl:Zbl 07088776; reference:[1] Ayoub, R.: An Introduction to the Analytic Theory of Numbers.Mathematical Surveys 10, American Mathematical Society, Providence (1963). Zbl 0128.04303, MR 0160743, 10.1090/surv/010; reference:[2] Bourdon, A., Clark, P. L., Stankewicz, J.: Torsion points on CM elliptic curves over real number fields.Trans. Am. Math. Soc. 369 (1996), 8457-8496. Zbl 06790352, MR 3710632, 10.1090/tran/6905; reference:[3] Dey, P. K.: Elliptic curves with rank $0$ over number fields.Funct. Approximatio, Comment. Math. 56 (2017), 25-37. Zbl 06864143, MR 3629008, 10.7169/facm/1585; reference:[4] González-Jiménez, E.: Complete classification of the torsion structures of rational elliptic curves over quintic number fields.J. Algebra 478 (2017), 484-505. Zbl 1369.11040, MR 3621686, 10.1016/j.jalgebra.2017.01.012; reference:[5] Jeon, D., Kim, C. H., Park, E.: On the torsion of elliptic curves over quartic number fields.J. Lond. Math. Soc., II. Ser. 74 (2006), 1-12. Zbl 1165.11054, MR 2254548, 10.1112/S0024610706022940; reference:[6] Kamienny, S.: Torsion points on elliptic curves and $q$-coefficients of modular forms.Invent. Math. 109 (1992), 221-229. Zbl 0773.14016, MR 1172689, 10.1007/BF01232025; reference:[7] Kenku, M. A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields.Nagoya Math. J. 109 (1988), 125-149. Zbl 0647.14020, MR 0931956, 10.1017/S0027763000002816; reference:[8] Knapp, A. W.: Elliptic Curves.Mathematical Notes (Princeton) 40, Princeton University Press, Princeton (1992). Zbl 0804.14013, MR 1193029; reference:[9] Mazur, B.: Modular curves and the Eisenstein ideal.Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. Zbl 0394.14008, MR 0488287, 10.1007/BF02684339; reference:[10] Najman, F.: Complete classification of torsion of elliptic curves over quadratic cyclotomic fields.J. Number Theory 130 (2010), 1964-1968. Zbl 1200.11039, MR 2653208, 10.1016/j.jnt.2009.12.008; reference:[11] Najman, F.: Torsion of elliptic curves over quadratic cyclotomic fields.Math. J. Okayama Univ. 53 (2011), 75-82. Zbl 1222.11076, MR 2778886; reference:[12] Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$.Math. Res. Lett. 23 (2016), 245-272. Zbl 06609434, MR 3512885, 10.4310/MRL.2016.v23.n1.a12; reference:[13] Olson, L. D.: Points of finite order on elliptic curves with complex multiplication.Manuscr. Math. 14 (1974), 195-205. Zbl 0292.14015, MR 0352104, 10.1007/BF01171442; reference:[14] Washington, L. C.: Elliptic Curves. Number Theory and Cryptography.Chapman and Hall/CRC, Boca Raton (2008). Zbl 1200.11043, MR 2404461, 10.4324/9780203484029

  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المؤلفون: Baier, Stephan, Dey, Pallab Kanti

    المصدر: Research in Number Theory; 12/13/2019, Vol. 6 Issue 2, p1-12, 12p

  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المؤلفون: Dey, Pallab Kanti1 pallabdey@hri.res.in, Thangadurai, R.1 thanga@hri.res.in

    المصدر: American Mathematical Monthly. Dec2014, Vol. 121 Issue 10, p932-9365. 5p.

  13. 13
    Periodical

    المؤلفون: Baier, Stephan, Dey, Pallab Kanti

    المصدر: Research in Number Theory; March 2020, Vol. 6 Issue: 1