يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"Detección indirecta de enfermedades"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Leon Rueda, William Alfonso

    المساهمون: Ramírez Gil, Joaquín Guillermo, Gómez Caro, Sandra, Biogénesis, William Alfonso Leon Rueda 0000000310511093

    وصف الملف: 135 páginas; application/pdf

    Relation: Aasen, H., Honkavaara, E., Lucieer, A., & Zarco-Tejada, P. J. (2018). Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correctionworkflows. In Remote Sensing (Vol. 10, Issue 7, p. 1091). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs10071091; Abdulridha, J., Ampatzidis, Y., Kakarla, S. C., & Roberts, P. (2020). Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precision Agriculture, 21(5), 955–978. https://doi.org/10.1007/s11119-019-09703-4; Aggarwal, N., Srivastava, M., & Dutta, M. (2016). Comparative Analysis of Pixel-Based and Object-Based Classification of High Resolution Remote Sensing Images – A Review. International Journal of Engineering Trends and Technology, 38(1), 5–11. https://doi.org/10.14445/22315381/ijett-v38p202; Agilandeeswari, L., Prabukumar, M., Radhesyam, V., Phaneendra, K. L. N. B., & Farhan, A. (2022). Crop Classification for Agricultural Applications in Hyperspectral Remote Sensing Images. Applied Sciences, 12(3). https://doi.org/10.3390/app12031670; Agronet. (2018). Agronet. http://www.agronet.gov.co/estadistica/Paginas/default.aspx; Al-Saddik, H., Simon, J. C., & Cointault, F. (2017). Development of spectral disease indices for ‘flavescence dorée’ grapevine disease identification. Sensors (Switzerland), 17(12). https://doi.org/10.3390/s17122772; AlAfandy, K. A., Omara, H., Lazaar, M., & Al Achhab, M. (2019, October 23). Artificial neural networks optimization and convolution neural networks to classifying images in remote sensing: A review. ACM International Conference Proceeding Series. https://doi.org/10.1145/3372938.3372945; Albetis, J., Jacquin, A., Goulard, M., Poilvé, H., Rousseau, J., Clenet, H., Dedieu, G., & Duthoit, S. (2019). On the potentiality of UAV multispectral imagery to detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sensing, 11(1). https://doi.org/10.3390/rs11010023; Ali, M. M., Bachik, N. A., Muhadi, N. ‘Atirah, Tuan Yusof, T. N., & Gomes, C. (2019). Non-destructive techniques of detecting plant diseases: A review. In Physiological and Molecular Plant Pathology (Vol. 108). Academic Press. https://doi.org/10.1016/j.pmpp.2019.101426; Antunes, E., Vuppaladadiyam, A. K., Sarmah, A. K., Varsha, S. S. V., Pant, K. K., Tiwari, B., & Pandey, A. (2021). Application of biochar for emerging contaminant mitigation. In Advances in Chemical Pollution, Environmental Management and Protection (Vol. 7, pp. 65–91). Elsevier. https://doi.org/10.1016/bs.apmp.2021.08.003; Arneson, P. A. (2001). Plant Disease Epidemiology. The Plant Health Instructor,https://www.apsnet.org/edcenter/disimpactmngmnt/to. https://doi.org/10.1094/PHI-A-2001-0524-01; Ashourloo, D., Aghighi, H., Matkan, A. A., Mobasheri, M. R., & Rad, A. M. (2016). An Investigation Into Machine Learning Regression Techniques for the Leaf Rust Disease Detection Using Hyperspectral Measurement. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9), 4344–4351. https://doi.org/10.1109/JSTARS.2016.2575360; Ashraf, A., Rauf, A., Fahim Abbas, M., & Rehman, R. (2012). ISOLATION AND IDENTIFICATION OF VERTICILLIUM DAHLIAE CAUSING WILT ON POTATO IN PAKISTAN. J. Phytopathol, 24(2), 112–116; Baldi, P., & La Porta, N. (2020). Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. In Frontiers in Plant Science (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fpls.2020.570862; Barbedo, J. G. A. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3(2), 1–27. https://doi.org/10.3390/drones3020040; Behmann, J., Mahlein, A. K., Rumpf, T., Römer, C., & Plümer, L. (2015). A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. In Precision Agriculture. https://doi.org/10.1007/s11119-014-9372-7; Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation Measures for Models Assessment over Imbalanced Data Sets. Journal of Information Engineering and Applications.; Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. In ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2016.01.011; Blekos, K., Tsakas, A., Xouris, C., Evdokidis, I., Alexandropoulos, D., Alexakos, C., Katakis, S., Makedonas, A., Theoharatos, C., & Lalos, A. (2021). Analysis, Modeling and Multi-Spectral Sensing for the Predictive Management of Verticillium Wilt in Olive Groves. Journal of Sensor and Actuator Networks, 10(1), 15. https://doi.org/10.3390/jsan10010015; Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2), 59–107. https://doi.org/10.1080/07352681003617285; Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The balanced accuracy and its posterior distribution. Proceedings - International Conference on Pattern Recognition. https://doi.org/10.1109/ICPR.2010.764; Buja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De Bellis, L., Luvisi, A., & Maruccio, G. (2021). Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. Sensors (Basel, Switzerland), 21(6), 1–22. https://doi.org/10.3390/S21062129; Buriticá, P. (1999). Directorio de patógenos y enfermedades de las plantas de importancia económica en Colombia. http://www.buritica-antioquia.gov.co/presentacion.shtml; Calderón, R., Montes-Borrego, M., Landa, B. B., Navas-Cortés, J. A., & Zarco-Tejada, P. J. (2014). Detection of downy mildew of opium poppy using high-resolution multi-spectral and thermal imagery acquired with an unmanned aerial vehicle. Precision Agriculture, 15(6), 639–661. https://doi.org/10.1007/s11119-014-9360-y; Calderón, Rocío, Navas-Cortés, J. A., & Zarco-Tejada, P. J. (2015). Early detection and quantification of verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sensing. https://doi.org/10.3390/rs70505584; Campbell, J. B., & Wynne., R. H. (2011). Introduction to Remote Sensing FIFTH EDITION. In Uma ética para quantos? https://doi.org/10.1007/s13398-014-0173-7.2; Cockerton, H. M., Li, B., Vickerstaff, R. J., Eyre, C. A., Sargent, D. J., Armitage, A. D., Marina-Montes, C., Garcia-Cruz, A., Passey, A. J., Simpson, D. W., & Harrison, R. J. (2019). Identifying Verticillium dahliae resistance in strawberry through disease screening of multiple populations and image based phenotyping. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00924; Cortes, C., & Mohri, M. (2004). AUC optimization vs. Error rate minimization. Advances in Neural Information Processing Systems.; Couture, J. J., Singh, A., Charkowski, A. O., Groves, R. L., Gray, S. M., Bethke, P. C., & Townsend, P. A. (2018). Integrating Spectroscopy with Potato Disease Management. Plant Disease, 102(11), 2233–2240. https://doi.org/10.1094/pdis-01-18-0054-re; Dash, J. P., Watt, M. S., Pearse, G. D., Heaphy, M., & Dungey, H. S. (2017). Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 1–14. https://doi.org/10.1016/j.isprsjprs.2017.07.007; Duarte-Carvajalino, J. M., Alzate, D. F., Ramirez, A. A., Santa-Sepulveda, J. D., Fajardo-Rojas, A. E., & Soto-Suárez, M. (2018). Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing. https://doi.org/10.3390/rs10101513; Dung, J. K. S., Ingram, J. T., Cummings, T. F., & Johnson, D. A. (2012). Impact of seed lot infection on the development of black dot and verticillium wilt of potato in Washington. Plant Disease. https://doi.org/10.1094/PDIS-01-12-0061-RE; El Hoummaidi, L., Larabi, A., & Alam, K. (2021). Using unmanned aerial systems and deep learning for agriculture mapping in Dubai. Heliyon, 7(10). https://doi.org/10.1016/j.heliyon.2021.e08154; Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. In Biosensors. https://doi.org/10.3390/bios5030537; FAOSTAT. (2020). FAOSTAT: Statistical database. FAOSTAT: Statistical Database. https://www.fao.org/faostat/es/#home; Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2005.10.010; Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance measures for classification. Pattern Recognition Letters; Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28(2), 337–407; Galieni, A., D’Ascenzo, N., Stagnari, F., Pagnani, G., Xie, Q., & Pisante, M. (2021). Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography. In Frontiers in Plant Science (Vol. 11, p. 1975). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.609155; Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2012.12.002; Gholami, R., & Fakhari, N. (2017). Support Vector Machine: Principles, Parameters, and Applications. In Handbook of Neural Computation (pp. 515–535). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811318-9.00027-2; Gibson-Poole, S., Humphris, S., Toth, I., & Hamilton, A. (2017). Identification of the onset of disease within a potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras. Advances in Animal Biosciences, 8(2), 812–816. https://doi.org/10.1017/s204047001700084x; Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887; Gitelson, A. A., & Merzlyak, M. N. (1996). Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. Journal of Plant Physiology, 148(3–4), 494–500. https://doi.org/10.1016/S0176-1617(96)80284-7; Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochemistry and Photobiology, 74(1), 38. https://doi.org/10.1562/0031-8655(2001)0742.0.co;2; Gold, K. M., Townsend, P. A., Chlus, A., Herrmann, I., Couture, J. J., Larson, E. R., & Gevens, A. J. (2020). Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sensing, 12(2), 286. https://doi.org/10.3390/rs12020286; Gold, K. M., Townsend, P. A., Herrmann, I., & Gevens, A. J. (2020). Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning. Plant Science, 295, 110316. https://doi.org/10.1016/j.plantsci.2019.110316; Gold, K. M., Townsend, P. A., Larson, E. R., Herrmann, I., & Gevens, A. J. (2020). Contact reflectance spectroscopy for rapid, accurate, and nondestructive phytophthora infestans clonal lineage discrimination. Phytopathology, 110(4), 851–862. https://doi.org/10.1094/PHYTO-08-19-0294-R; Görlich, F., Marks, E., Mahlein, A. K., König, K., Lottes, P., & Stachniss, C. (2021). Uav-based classification of cercospora leaf spot using rgb images. Drones, 5(2), 34. https://doi.org/10.3390/drones5020034; Hamylton, S. M., Morris, R. H., Carvalho, R. C., Roder, N., Barlow, P., Mills, K., & Wang, L. (2020). Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2020.102085; Hasmadi, I., Pakhriazad, H., & Shahrin, M. (2009). Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geografia - Malaysian Journal of Society and Space; Honkavaara, E., Saari, H., Kaivosoja, J., Pölönen, I., Hakala, T., Litkey, P., Mäkynen, J., & Pesonen, L. (2013). Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sensing, 5(10), 5006–5039. https://doi.org/10.3390/rs5105006; Hopkins, D. W. (2001). What is a Norris Derivative? NIR News, 12(3), 3–5. https://doi.org/10.1255/nirn.611; Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X; Hussain, T. (2016). Potatoes: Ensuring Food for the Future. Advances in Plants & Agriculture Research, 3(6). https://doi.org/10.15406/apar.2016.03.00117; Imanian, K., Pourdarbani, R., Sabzi, S., García-Mateos, G., Arribas, J. I., & Molina Martínez, J. M. (2021). Identification of internal defects in potato using spectroscopy and computational intelligence based on majority voting techniques. Foods, 10(5). https://doi.org/10.3390/foods10050982; Jasiński, J., Pietrek, S., Walczykowski, P., & Orych, A. (2010). Acquisition of spectral reflectance characteristics of land cover features based on hyperspectral images . January; Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. https://doi.org/10.1016/j.rse.2008.06.006; Jing, R., Li, H., Hu, X., Shang, W., Shen, R., Guo, C., Guo, Q., & Subbarao, K. V. (2018). Verticillium wilt caused by verticillium dahliae and v. Nonalfalfae in potato in northern China. Plant Disease, 102(10), 1958–1964. https://doi.org/10.1094/PDIS-01-18-0162-RE; Johnson, D. A., & Cummings, T. F. (2015). Effect of extended crop rotations on incidence of black dot, Silver scurf, and verticillium wilt of potato. Plant Disease, 99(2), 257–262. https://doi.org/10.1094/PDIS-03-14-0271-RE; Johnson, D. A., Jeremiah, K., & Dung, S. (2010). Verticillium wilt of potato - The pathogen, disease and management. Canadian Journal of Plant Pathology. https://doi.org/10.1080/07060661003621134; Junges, A. H., Almança, M. A. K., Fajardo, T. V. M., & Ducati, J. R. (2020). Leaf hyperspectral reflectance as a potential tool to detect diseases associated with vineyard decline. Tropical Plant Pathology, 45(5), 522–533. https://doi.org/10.1007/s40858-020-00387-0; Kanti, M., Pradhan, R., & Sushan, S. (2010). Decision Tree Classification of Remotely Sensed Satellite Data using Spectral Separability Matrix. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/ijacsa.2010.010516; Klosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity, and management of verticillium species. Annual Review of Phytopathology, 47, 39–62. https://doi.org/10.1146/annurev-phyto-080508-081748; Kollist, H., Zandalinas, S. I., Sengupta, S., Nuhkat, M., Kangasjärvi, J., & Mittler, R. (2019). Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. In Trends in Plant Science (Vol. 24, Issue 1, pp. 25–37). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2018.10.003; Kong, W., Zhang, C., Huang, W., Liu, F., & He, Y. (2018). Application of hyperspectral imaging to detect Sclerotinia sclerotiorum on oilseed rape stems. Sensors (Switzerland), 18(1). https://doi.org/10.3390/s18010123; Kuang, B., Mahmood, H. S., Quraishi, M. Z., Hoogmoed, W. B., Mouazen, A. M., & van Henten, E. J. (2012). Sensing soil properties in the laboratory, in situ, and on-line. A review. In Advances in Agronomy (1st ed., Vol. 114, Issue October 2017). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394275-3.00003-1; Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05; Kuska, M. T., & Mahlein, A. K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology, 152(4), 987–992. https://doi.org/10.1007/s10658-018-1464-1; Larkin, R. P., Honeycutt, C. W., & Olanya, O. M. (2011). Management of Verticillium Wilt of Potato with Disease-Suppressive Green Manures and as Affected by Previous Cropping History. Plant Disease. https://doi.org/10.1094/pdis-09-10-0670; Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3–10. https://doi.org/10.1016/j.gsf.2015.07.003; Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01; León-Rueda, W. A., León, C., Caro, S. G., & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167. https://doi.org/10.1007/s40858-021-00460-2; Li, Haiyuan, Wang, Z., Hu, X., Shang, W., Shen, R., Guo, C., Guo, Q., & Subbarao, K. V. (2019). Assessment of resistance in potato cultivars to verticillium wilt caused by verticillium dahliae and verticillium nonalfalfae. Plant Disease, 103(6), 1357–1362. https://doi.org/10.1094/PDIS-10-18-1815-RE; Li, Hong, Yang, W., Lei, J., She, J., & Zhou, X. (2021). Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0249351; Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of Spatio-contextual information. European Journal of Remote Sensing, 47(1), 389–411. https://doi.org/10.5721/EuJRS20144723; Liao, P. S., Chen, T. S., & Chung, P. C. (2001). A fast algorithm for multilevel thresholding. Journal of Information Science and Engineering, 17(5), 713–727; Lillesand, T. M., & Kiefer, R. W. (2004). Remote sensing and image interpretation. In Remote sensing and image interpretation. https://doi.org/10.2307/634969; Liu, C., Sun, P. Sen, & Liu, S. R. (2016). A review of plant spectral reflectance response to water physiological changes. Chinese Journal of Plant Ecology, 40(1), 80–91. https://doi.org/10.17521/cjpe.2015.0267; Liu, L., Dong, Y., Huang, W., Du, X., Ren, B., Huang, L., Zheng, Q., & Ma, H. (2020). A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery. IEEE Access, 8, 52181–52191. https://doi.org/10.1109/ACCESS.2020.2980310; Liu, X. (2003). Supervised Classification and Unsupervised Classification. Cfa.Harvard.Edu.; Lizarazo, I., Rodriguez, J. L., Cristancho, O., Olaya, F., Duarte, M., & Prieto, F. (2023). Identification of symptoms related to potato Verticillium wilt from UAV-based multispectral imagery using an ensemble of gradient boosting machines. Smart Agricultural Technology, 3, 100138. https://doi.org/https://doi.org/10.1016/j.atech.2022.100138; Lizarazo Peña, P. A. (2020). Desarrollo , crecimiento y rendimiento de cultivares de papa diploide en ambientes contrastantes por altitud. In Universidad Nacional de Colombia. https://repositorio.unal.edu.co/bitstream/handle/unal/78234/1022359762.2020.pdf?sequence=1&isAllowed=y; Lowe, A., Harrison, N., & French, A. (2017). Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. In Plant Methods. https://doi.org/10.1186/s13007-017-0233-z; Lowe, B., & Kulkarni, A. (2015). Multispectral Image Analysis Using Random Forest. International Journal on Soft Computing. https://doi.org/10.5121/ijsc.2015.6101; Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. In International Journal of Remote Sensing. https://doi.org/10.1080/01431160600746456; Lu, J., Ehsani, R., Shi, Y., de Castro, A. I., & Wang, S. (2018). Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-21191-6; Lu, N., Zhou, J., Han, Z., Li, D., Cao, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T. (2019). Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 15(1), 17. https://doi.org/10.1186/s13007-019-0402-3; Mahlein, A. K. (2016). Plant disease detection by imaging sensors – Parallels and specific demands for precision agriculture and plant phenotyping. In Plant Disease (Vol. 100, Issue 2, pp. 241–254). https://doi.org/10.1094/PDIS-03-15-0340-FE; Mahlein, A. K., Kuska, M. T., Thomas, S., Bohnenkamp, D., Alisaac, E., Behmann, J., Wahabzada, M., & Kersting, K. (2017). Plant disease detection by hyperspectral imaging: from the lab to the field. Advances in Animal Biosciences. https://doi.org/10.1017/s2040470017001248; Mahlein, A. K., Oerke, E. C., Steiner, U., & Dehne, H. W. (2012). Recent advances in sensing plant diseases for precision crop protection. In European Journal of Plant Pathology. https://doi.org/10.1007/s10658-011-9878-z; Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019; Manici, L. M., & Cerato, C. (1994). Pathogenicity of Fusarium oxysporum f.sp. tuberosi isolates from tubers and potato plants. Potato Research, 37(2), 129–134. https://doi.org/10.1007/BF02358713; Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88. https://doi.org/10.1016/J.SJBS.2019.05.007; Mauromicale, G., Ierna, A., & Marchese, M. (2006). Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica, 44(1), 76–82. https://doi.org/10.1007/S11099-005-0161-4; Meng, R., Lv, Z., Yan, J., Chen, G., Zhao, F., Zeng, L., & Xu, B. (2020). Development of spectral disease indices for southern corn rust detection and severity classification. Remote Sensing, 12(19), 1–16. https://doi.org/10.3390/rs12193233; Mishra, P., Polder, G., & Vilfan, N. (2020). Close Range Spectral Imaging for Disease Detection in Plants Using Autonomous Platforms: a Review on Recent Studies. Current Robotics Reports, 1(2), 43–48. https://doi.org/10.1007/s43154-020-00004-7; Mohapatra, S. K., & Mohanty, M. N. (2022). Big data classification with IoT-based application for e-health care. Cognitive Big Data Intelligence with a Metaheuristic Approach, 147–172. https://doi.org/10.1016/B978-0-323-85117-6.00014-5; Mohseni-Dargah, M., Falahati, Z., Dabirmanesh, B., Nasrollahi, P., & Khajeh, K. (2022). Machine learning in surface plasmon resonance for environmental monitoring. In Artificial Intelligence and Data Science in Environmental Sensing (pp. 269–298). Academic Press. https://doi.org/10.1016/B978-0-323-90508-4.00012-5; Mosley, L. S. D. (2013). A balanced approach to the multi-class imbalance problem. In ProQuest Dissertations and Theses.; Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of Green-Red Vegetation Index for remote sensing of vegetation phenology. Remote Sensing, 2(10), 2369–2387. https://doi.org/10.3390/rs2102369; Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. In ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2010.11.001; Müller, A. C., & Guido, S. (2016). Introduction to Machine Learning with Python: a guide for data scientists. In Journal of Chemical Information and Modeling. https://doi.org/10.1017/CBO9781107415324.004; Mundt, C. C. (2019). The Study of Plant Disease Epidemics. HortScience, 44(7), 2065b – 2065. https://doi.org/10.21273/hortsci.44.7.2065b; Neupane, K., & Baysal-Gurel, F. (2021). Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review. In Remote Sensing (Vol. 13, Issue 19, p. 3841). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs13193841; Nieto, L. E. (1988). La Madurez Prematura de la Papa Causada por Verticillium spp. en Colombia. Revista ICA, 4, 334–340.; Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., & Barbano, P. E. (2005). Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2005.852470; Oerke, E. C. (2020). Remote Sensing of Diseases. Annual Review of Phytopathology, 58, 225–252. https://doi.org/10.1146/annurev-phyto-010820-012832; Oerke, E. C., Mahlein, A. K., & Steiner, U. (2014). Proximal sensing of plant diseases. In Detection and Diagnostics of Plant Pathogens (pp. 55–68). Springer Netherlands. https://doi.org/10.1007/978-94-017-9020-8_4; Pandala, S. R. (2022). lazypredict. Python Software Foundation. https://pypi.org/project/lazypredict/; Patrick, A., Pelham, S., Culbreath, A., Corely Holbrook, C., De Godoy, I. J., & Li, C. (2017). High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging. IEEE Instrumentation and Measurement Magazine, 20(3), 4–12. https://doi.org/10.1109/MIM.2017.7951684; Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html; Pourazar, H., Samadzadegan, F., Dadrass Javan, F., Giacomo, R., David, G., Gilbertson, J. K., Forum, P. O., Bouroubi, Y., Bugnet, P., Nguyen-xuan, T., Gosselin, C., Bélec, C., Longchamps, L., Vigneault, P., Ji, S., Zhang, C., Xu, A., Shi, Y., Duan, Y., … Gore, M. A. (2017). Pest Detection on UAV Imagery using a Deep Convolutional Neural Network. Remote Sensing, 52(19), 17–31. https://doi.org/10.3390/rs11192209; Powelson, M. L., & Rowe, R. C. (1993). Biology and management of early dying of potatoes. In Annual Review of Phytopathology (Vol. 31, pp. 111–126). Annual Reviews Inc. https://doi.org/10.1146/annurev.py.31.090193.000551; Puletti, N., Perria, R., & Storchi, P. (2014). Unsupervised classification of very high remotely sensed images for grapevine rows detection. European Journal of Remote Sensing, 47(1), 45–54. https://doi.org/10.5721/EuJRS20144704; Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-4257(94)90134-1; Rahman, H. ur, Jabbar Ch, N., Manzoor, S., Najeeb, F., Siddique, M. Y., & Khan, R. A. (2017). A comparative analysis of machine learning approaches for plant disease identification. Advancements in Life Sciences, 4(4), 120–126.; Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. In Journal of Plant Physiology (Vol. 176, pp. 47–54). Urban und Fischer Verlag GmbH und Co. KG. https://doi.org/10.1016/j.jplph.2014.11.008; Ramesh Reddy, D., Naga Santhosh, K., & Kodali, P. (2022). Convolutional Neural Networks for the Intuitive Identification of Plant Diseases. 5th International Conference on Inventive Computation Technologies, ICICT 2022 - Proceedings, 10, 941. https://doi.org/10.1109/ICICT54344.2022.9850695; Ramirez-Gil, J., Navas, J., & Gómez, S. (2019). Epidemiología e importancia económica de una alteración de origen desconocido en papa en la sabana occidente de Cundinamarca. XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS, 205–205.; Ramirez Gil, J., Garcia, C., Navas, J., Leon, J., & Gómez, S. (2019). Implicaciones epidemológicas y económicas de Verticillium sp., en una región productora de papa en Cundinamarca. XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS, 206–207.; Raymundo, R., Asseng, S., Prassad, R., Kleinwechter, U., Concha, J., Condori, B., Bowen, W., Wolf, J., Olesen, J. E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., Quiroz, R., Arora, V., Graham, W., & Porter, C. (2017). Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Research, 202, 57–76. https://doi.org/10.1016/j.fcr.2016.04.012; Ren, Y., Zhang, L., & Suganthan, P. N. (2016). Ensemble Classification and Regression-Recent Developments, Applications and Future Directions [Review Article]. In IEEE Computational Intelligence Magazine (Vol. 11, Issue 1, pp. 41–53). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MCI.2015.2471235; Rodríguez, J., Lizarazo, I., Prieto, F., & Angulo-Morales, V. (2021). Assessment of potato late blight from UAV-based multispectral imagery. Computers and Electronics in Agriculture, 184, 106061. https://doi.org/10.1016/j.compag.2021.106061; Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS proceeding. Third Earth Reserves Technology Satellite Symposium, Greenbelt: NASA SP-351, 30103017, 317. https://ui.adsabs.harvard.edu/abs/1974NASSP.351.309R/abstract; Rowe, R. C., & Powelson, M. L. (2002). Potato early dying: Management challenges in a changing production environment. In Plant Disease (Vol. 86, Issue 11, pp. 1184–1193). The American Phytopathological Society. https://doi.org/10.1094/PDIS.2002.86.11.1184; Salamí, E., Barrado, C., & Pastor, E. (2014). UAV flight experiments applied to the remote sensing of vegetated areas. In Remote Sensing (Vol. 6, Issue 11, pp. 11051–11081). MDPI AG. https://doi.org/10.3390/rs61111051; Sami, K., KC, K., John, F., Scott, S., & Erdal, O. (2020). Remote Sensing in Agriculture ( Challenges and Opportunities ). Remote Sensing, 10, 83–87.; Sarić, R., Nguyen, V. D., Burge, T., Berkowitz, O., Trtílek, M., Whelan, J., Lewsey, M. G., & Čustović, E. (2022). Applications of hyperspectral imaging in plant phenotyping. In Trends in Plant Science (Vol. 27, Issue 3, pp. 301–315). Elsevier Current Trends. https://doi.org/10.1016/j.tplants.2021.12.003; Sarkar, S. K., Das, J., Ehsani, R., & Kumar, V. (2016). Towards autonomous phytopathology: Outcomes and challenges of citrus greening disease detection through close-range remote sensing. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 5143–5148. https://doi.org/10.1109/ICRA.2016.7487719; Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047; Seetha, M., Muralikrishna, Deekshatulu, B. L., Malleswari, B. L., Nagaratna, & Hegde, P. (2008). Artificial Neural Networks and Other Methods of Image Classification. Theoretical and Applied Information Technology; Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 1–18. https://doi.org/10.3390/agronomy10050641; Shammi, S., Sohel, F., Diepeveen, D., Zander, S., & Jones, M. G. K. (2022). A survey of image-based computational learning techniques for frost detection in plants. In Information Processing in Agriculture. Elsevier. https://doi.org/10.1016/j.inpa.2022.02.003; Shattock, R. (2002). Compendium of Potato Diseases, Second Edition. W.R. Stevenson. Plant Pathology, 51(4), 520–520. https://doi.org/10.1046/j.1365-3059.2002.06934.x; Shi, Y., Han, L., Kleerekoper, A., Chang, S., & Hu, T. (2022). Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery. Remote Sensing, 14(2), 396. https://doi.org/10.3390/rs14020396; Shin, M. Y., Gonzalez Viejo, C., Tongson, E., Wiechel, T., Taylor, P. W. J., & Fuentes, S. (2023). Early detection of Verticillium wilt of potatoes using near-infrared spectroscopy and machine learning modeling. Computers and Electronics in Agriculture, 204, 107567. https://doi.org/10.1016/J.COMPAG.2022.107567; Shruthi, U., Nagaveni, V., & Raghavendra, B. K. (2019). A Review on Machine Learning Classification Techniques for Plant Disease Detection. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, 281–284. https://doi.org/10.1109/ICACCS.2019.8728415; Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology, 102(4), 381–389. https://doi.org/10.1094/PHYTO-07-11-0216; Singh, A., & Kaur, H. (2021). Potato plant leaves disease detection and classification using machine learning methodologies. IOP Conference Series: Materials Science and Engineering, 1022(1). https://doi.org/10.1088/1757-899X/1022/1/012121; Singh, V., Sharma, N., & Singh, S. (2020). A review of imaging techniques for plant disease detection. In Artificial Intelligence in Agriculture (Vol. 4, pp. 229–242). KeAi Communications Co. https://doi.org/10.1016/j.aiia.2020.10.002; Stehman, S. V., & Foody, G. M. (2008). Accuracy Assessment. In The SAGE Handbook of Remote Sensing. https://doi.org/10.4135/9780857021052.n21; Stevens, A., & Ramirez Lopez, L. (2014). An introduction to the prospectr package. In R Package Vignette, Report No.: R Package Version 0.1 (Vol. 3, Issue August 2013, pp. 1–22). https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr.html; Stevenson, W., Loria, R., Franc, G., & Weingartner, D. (2001). Compendium of Potato Diseases, Second Edition. Phytopathological Society. https://doi.org/10.1046/j.1365-3059.2002.06934.x; Su, J., Yi, D., Coombes, M., Liu, C., Zhai, X., McDonald-Maier, K., & Chen, W. H. (2022). Spectral analysis and mapping of blackgrass weed by leveraging machine learning and UAV multispectral imagery. Computers and Electronics in Agriculture, 192. https://doi.org/10.1016/j.compag.2021.106621; Sugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., & Nuske, S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering. https://doi.org/10.1016/j.biosystemseng.2016.04.010; Sun, W., & Du, Q. (2019). Hyperspectral band selection: A review. In IEEE Geoscience and Remote Sensing Magazine (Vol. 7, Issue 2, pp. 118–139). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MGRS.2019.2911100; Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32–43. https://doi.org/10.1111/nph.12797; Tetila, E. C., Brandoli Machado, B., Belete, N. A. D. S., Guimaraes, D. A., & Pistori, H. (2017). Identification of Soybean Foliar Diseases Using Unmanned Aerial Vehicle Images. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2017.2743715; Thai, L. H., Hai, T. S., & Thuy, N. T. (2012). Image Classification using Support Vector Machine and Artificial Neural Network. International Journal of Information Technology and Computer Science. https://doi.org/10.5815/ijitcs.2012.05.05; Tripathi, K., Vyas, R. G., & Gupta, A. K. (2019). Document Classification Using Artificial Neural Network. Asian Journal of Computer Science and Technology, 8(2), 55–58.; Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information (Switzerland), 10(11). https://doi.org/10.3390/info10110349; van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., & the scikit-image contributors. (2014). scikit-image: image processing in {P}ython. PeerJ, 2, e453. https://doi.org/10.7717/peerj.453; Vishnoi, V. K., Kumar, K., & Kumar, B. (2021). Plant disease detection using computational intelligence and image processing. In Journal of Plant Diseases and Protection (Vol. 128, Issue 1, pp. 19–53). Springer. https://doi.org/10.1007/s41348-020-00368-0; Wan, L., Li, Y., Cen, H., Zhu, J., Yin, W., Wu, W., Zhu, H., Sun, D., Zhou, W., & He, Y. (2018). Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sensing, 10(9), 1484. https://doi.org/10.3390/rs10091484; Wang, C. ling, Shen, S. he, Zhang, S. yu, Li, Q. zhen, & Yao, Y. bi. (2015). Adaptation of potato production to climate change by optimizing sowing date in the Loess Plateau of central Gansu, China. Journal of Integrative Agriculture, 14(2), 398–409. https://doi.org/10.1016/S2095-3119(14)60783-8; Wang, J., Lu, S., Wang, S. H., & Zhang, Y. D. (2021). A review on extreme learning machine. Multimedia Tools and Applications, 1–50. https://doi.org/10.1007/s11042-021-11007-7; Wei, X., Johnson, M. A., Langston, D. B., Mehl, H. L., & Li, S. (2021). Identifying optimal wavelengths as disease signatures using hyperspectral sensor and machine learning. Remote Sensing, 13(14), 2833. https://doi.org/10.3390/rs13142833; Xu, M., Watanachaturaporn, P., Varshney, P. K., & Arora, M. K. (2005). Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97(3), 322–336. https://doi.org/10.1016/j.rse.2005.05.008; Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. In Journal of Sensors. Hindawi Limited. https://doi.org/10.1155/2017/1353691; Yan, Z., Ma, L., He, W., Zhou, L., Lu, H., Liu, G., & Huang, G. (2022). Comparing Object-Based and Pixel-Based Methods for Local Climate Zones Mapping with Multi-Source Data. Remote Sensing, 14(15). https://doi.org/10.3390/rs14153744; Yang, C. M., Cheng, C. H., & Chen, R. K. (2007). Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Science. https://doi.org/10.2135/cropsci2006.05.0335; Yeom, J., Jung, J., Chang, A., Ashapure, A., Maeda, M., Maeda, A., & Landivar, J. (2019). Comparison of vegetation indices derived from UAV data for differentiation of tillage effects in agriculture. Remote Sensing, 11(13). https://doi.org/10.3390/rs11131548; Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. In Precision Agriculture (Vol. 13, Issue 6, pp. 693–712). Springer. https://doi.org/10.1007/s11119-012-9274-5; Zhang, H., Xu, F., Wu, Y., Hu, H. hai, & Dai, X. feng. (2017). Progress of potato staple food research and industry development in China. In Journal of Integrative Agriculture (Vol. 16, Issue 12, pp. 2924–2932). Elsevier. https://doi.org/10.1016/S2095-3119(17)61736-2; Zheng, H., Li, W., Jiang, J., Liu, Y., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Zhang, Y., & Yao, X. (2018). A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing, 10(12). https://doi.org/10.3390/rs10122026; Zhou, X., Huang, W., Zhang, J., Kong, W., Casa, R., & Huang, Y. (2019). A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. International Journal of Applied Earth Observation and Geoinformation, 76, 128–142. https://doi.org/https://doi.org/10.1016/j.jag.2018.10.012; https://repositorio.unal.edu.co/handle/unal/84484; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/