يعرض 1 - 20 نتائج من 67 نتيجة بحث عن '"Demanda Química de Oxígeno (DQO)"', وقت الاستعلام: 0.73s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Dissertation/ Thesis
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
  6. 6
    Dissertation/ Thesis
  7. 7
    Dissertation/ Thesis

    المساهمون: Godínez Seoane, Carlos, Salar García, María José, Ingeniería Química y Ambiental

    وصف الملف: application/pdf

    Relation: Ferreño Tortosa, Francisco de Asís. Diseño de un equipo experimental para la captura de CO2 y producción de energía mediante células de combustible microbianas. Universidad Politécnica de Cartagena, 2023; http://hdl.handle.net/10317/12619

  8. 8
    Dissertation/ Thesis

    المساهمون: Meneses Jácome, Alexander, Ávila Rojas, Omar Alberto, Mendoza Castellanos, Luis Sebastián, Meneses Jácome, Alexander 0000326020, Mendoza Castellanos, Luis Sebastián 115302, Ávila Rojas, Omar Alberto 0000066086, Meneses Jácome, Alexander es&oi=ao, Mendoza Castellanos, Luis Sebastián S5TZbi8AAAAJ, Ávila Rojas, Omar Alberto es&oi=ao, Mendoza Castellanos, Luis Sebastián 0000-0001-8263-2551, Ávila Rojas, Omar Alberto 0000-0003-2872-5372, Mendoza Castellanos, Luis Sebastián 57193169160, Meneses Jácome, Alexander Alexander-Meneses-Jacome, Mendoza Castellanos, Luis Sebastián Sebastian_Mendoza6, Centro de Investigación en Biotecnología, Bioética y Ambiente - CINBBYA, Grupo de Investigaciones Clínicas, Meneses Jácome, Alexander alexander-meneses-jácome, Mendoza Castellanos, Luis Sebastián luis-sebastián-mendoza-castellanos

    Time: 2022

    وصف الملف: application/pdf

    Relation: Abdul Aziz, N. I. H., Hanafiah, M. M., & Mohamed Ali, M. Y. (2019). Sustainable biogas production from agrowaste and effluents – A promising step for small-scale industry income. Renewable Energy, 132, 363–369. https://doi.org/10.1016/j.renene.2018.07.149; Aguiar, S., Arboleda, L., & Uvidia, H. (2021). Aprovechamiento de residuos agroindustriales como alternativa en el mejoramiento de la calidad del ambiente. Revista Alfa, 5(15), 649–660. https://doi.org/10.33996/revistaalfa.v5i15.145; Angeladiki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, L., Guwy, A., Jenicek, P., Kalyuzhnui, S., & van Lier, J. (2007). Anaerobic Biodegradation, Activity and Inhibition (ABAI) Task Group Meeting 9th to 10th October 2006, in Prague.; Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., & van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. https://doi.org/10.2166/wst.2009.040; Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781. https://doi.org/10.1016/j.pecs.2008.06.002; Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773–786. https://doi.org/10.1016/j.biortech.2018.07.042; Caillet, H., Lebon, E., Akinlabi, E., Madyira, D., & Adelard, L. (2019). Influence of inoculum to substrate ratio on methane production in Biochemical Methane Potential (BMP) tests of sugarcane distillery waste water. Procedia Manufacturing, 35, 259–264. https://doi.org/10.1016/j.promfg.2019.05.037; Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de Potencial Bioquímico de Metano - PBM para el control del proceso de digestión anaerobia de residuos. Revista ION, 29(1), 95–108. https://doi.org/10.18273/revion.v29n1-2016008; Cardona Alzate, C. A., Serna-Loaiza, S., & Ortiz-Sanchez, M. (2020). Sustainable Biorefineries: What was Learned from the Design, Analysis and Implementation. Journal of Sustainable Development of Energy, Water and Environment Systems, 8(1), 88–117. https://doi.org/10.13044/j.sdewes.d7.0268; Carus, M., & Dammer, L. (2018). The Circular Bioeconomy—Concepts, Opportunities, and Limitations. Industrial Biotechnology, 14(2), 83–91. https://doi.org/10.1089/ind.2018.29121.mca; Centeno, M. (2011). Gestión y valorización energética de los lodos fisicoquímicos y biológicos generados en el tratamiento de efluentes industriales de la empresa Bio-D S.A. Universidad Autónoma de Bucaramanga.; Chen, Y., Cheng, J. J., & Creamer, K. S. (2008a). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057; Chen, Y., Cheng, J. J., & Creamer, K. S. (2008b). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057; Cirne, D. G., Paloumet, X., Björnsson, L., Alves, M. M., & Mattiasson, B. (2007). Anaerobic digestion of lipid-rich waste—Effects of lipid concentration. Renewable Energy, 32(6), 965–975. https://doi.org/10.1016/j.renene.2006.04.003; Coca, M. (n.d.). Planta de tratamiento de aguas residuales procedentes de la producción de biodiesel. Universidad de Valladolid.; Dahiya, S., Sarkar, O., Swamy, Y. V., & Venkata Mohan, S. (2015). Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresource Technology, 182, 103–113. https://doi.org/10.1016/j.biortech.2015.01.007; Demirel, B., & Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35(3), 992–998. https://doi.org/10.1016/j.biombioe.2010.12.022; Deublein, D., & Steinhauser, A. (2008). Biogas from Waste and Renewable Resources. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527621705 Facchin, V., Cavinato, C., Pavan, P., & Bolzonella, D. (2013). Batch and Continuous Mesophilic Anaerobic Digestion of Food Waste: Effect of Trace Elements Supplementation. Chemical Engineering Transactions, 32.; Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., Stockle, C., Amonette, J., & Garcia-Perez, M. (2016). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy, 95, 310–329. https://doi.org/10.1016/j.biombioe.2016.05.020; Ghaleb, A. A. S., Kutty, S. R. M., Ho, Y. C., Jagaba, A. H., Noor, A., Al-Sabaeei, A. M., Kumar, V., & Saeed, A. A. H. (2020). Anaerobic co-digestion for oily-biological sludge with sugarcane bagasse for biogas production under mesophilic condition. IOP Conference Series: Materials Science and Engineering, 991(1), 012084. https://doi.org/10.1088/1757-899X/991/1/012084; Hansen, T. L., Schmidt, J. E., Angelidaki, I., Marca, E., Jansen, J. la C., Mosbæk, H., & Christensen, T. H. (2004). Method for determination of methane potentials of solid organic waste. Waste Management, 24(4), 393–400. https://doi.org/10.1016/j.wasman.2003.09.009; Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., de Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J.-C., de Laclos, H. F., Ghasimi, D. S. M., Hack, G., Hartel, M., … Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. https://doi.org/10.2166/wst.2016.336; Jain, S., Jain, S., Wolf, I. T., Lee, J., & Tong, Y. W. (2015). A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renewable and Sustainable Energy Reviews, 52, 142–154. https://doi.org/10.1016/j.rser.2015.07.091; Jash, T., & Ghosh, D. N. (1996). Studies on the solubilization kinetics of solid organic residues during anaerobic biomethanation. Energy, 21(7–8), 725–730. https://doi.org/10.1016/0360-5442(95)00123-9; Jimenez, J. A., la Motta, E. J., & Parker, D. S. (2005). Kinetics of Removal of Particulate Chemical Oxygen Demand in the Activated-Sludge Process. Water Environment Research, 77(5), 437–446. https://doi.org/10.2175/106143005X67340; Kainthola, J., Kalamdhad, A. S., & Goud, V. v. (2019). A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochemistry, 84, 81–90. https://doi.org/10.1016/j.procbio.2019.05.023; Kallistova, A. Yu., Goel, G., & Nozhevnikova, A. N. (2014). Microbial diversity of methanogenic communities in the systems for anaerobic treatment of organic waste. Microbiology, 83(5), 462–483. https://doi.org/10.1134/S0026261714050142; Karim, K., Hoffmann, R., Thomas Klasson, K., & Al-Dahhan, M. H. (2005). Anaerobic digestion of animal waste: Effect of mode of mixing. Water Research, 39(15), 3597–3606. https://doi.org/10.1016/j.watres.2005.06.019; Kumar, A., & Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 197, 117253. https://doi.org/10.1016/j.energy.2020.117253; Kumar, S. (2011). Composting of municipal solid waste. Critical Reviews in Biotechnology, 31(2), 112–136. https://doi.org/10.3109/07388551.2010.492207; Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491–500. https://doi.org/10.1016/j.rser.2014.03.041; Lesteur, M., Bellon-Maurel, V., Gonzalez, C., Latrille, E., Roger, J. M., Junqua, G., & Steyer, J. P. (2010). Alternative methods for determining anaerobic biodegradability: A review. Process Biochemistry, 45(4), 431–440. https://doi.org/10.1016/j.procbio.2009.11.018; Li, D., Liu, S., Mi, L., Li, Z., Yuan, Y., Yan, Z., & Liu, X. (2015). Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresource Technology, 189, 319–326. https://doi.org/10.1016/j.biortech.2015.04.033; Li, R., Chen, S., Li, X., Saifullah Lar, J., He, Y., & Zhu, B. (2009). Anaerobic Codigestion of Kitchen Waste with Cattle Manure for Biogas Production. Energy & Fuels, 23(4), 2225–2228. https://doi.org/10.1021/ef8008772; Li, X., Li, L., Zheng, M., Fu, G., & Lar, J. S. (2009). Anaerobic Co-Digestion of Cattle Manure with Corn Stover Pretreated by Sodium Hydroxide for Efficient Biogas Production. Energy & Fuels, 23(9), 4635–4639. https://doi.org/10.1021/ef900384p; Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15(1), 821–826. https://doi.org/10.1016/j.rser.2010.07.042; Llabrés-Luengo, P., & Mata-Alvarez, J. (1988). Influence of temperature, buffer, composition and straw particle length on the anaerobic digestion of wheat straw—Pig manure mixtures. Resources, Conservation and Recycling, 1(1), 27–37. https://doi.org/10.1016/0921-3449(88)90005-5; Lombardi, L., & Francini, G. (2020). Techno-economic and environmental assessment of the main biogas upgrading technologies. Renewable Energy, 156, 440–458. https://doi.org/10.1016/j.renene.2020.04.083; Macherzyński, B. (2018). Biochemical Neutralization of Coke Excess Sewage Sludge During Anaerobic Digestion Process. Chemical and Biochemical Engineering Quarterly, 32(2), 239–246. https://doi.org/10.15255/CABEQ.2016.1041; Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. https://doi.org/10.1016/j.rser.2015.02.032; Mata-Alvarez, J. (2015). Biomethanization of the Organic Fraction of Municipal Solid Wastes. Water Intelligence Online, 4(0), 9781780402994–9781780402994. https://doi.org/10.2166/9781780402994; Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039; Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16. https://doi.org/10.1016/S0960-8524(00)00023-7; Merlin Christy, P., Gopinath, L. R., & Divya, D. (2014). A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34, 167–173. https://doi.org/10.1016/j.rser.2014.03.010; Meynell, P.-J. (1976). Methane : planning a digester. Prism Press.; Nakasima-López, M., Taboada-González, P., Aguilar-Virgen, Q., & Velázquez-Limón, N. (2017). Adaptación de Inóculos Durante el Arranque de la Digestión Anaerobia con Residuos Sólidos Orgánicos. Información Tecnológica, 28(1), 199–208. https://doi.org/10.4067/S0718-07642017000100020; Nguyen, L. N., Kumar, J., Vu, M. T., Mohammed, J. A. H., Pathak, N., Commault, A. S., Sutherland, D., Zdarta, J., Tyagi, V. K., & Nghiem, L. D. (2021). Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Science of The Total Environment, 765, 142753. https://doi.org/10.1016/j.scitotenv.2020.142753; Panichnumsin, P., Nopharatana, A., Ahring, B., & Chaiprasert, P. (2010). Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass and Bioenergy, 34(8), 1117–1124. https://doi.org/10.1016/j.biombioe.2010.02.018; Parkin, G. F., & Owen, W. F. (1986). Fundamentals of Anaerobic Digestion of Wastewater Sludges. Journal of Environmental Engineering, 112(5), 867–920. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(867); Pavlostathis, S. G., & Giraldo‐Gomez, E. (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control, 21(5–6), 411–490. https://doi.org/10.1080/10643389109388424; Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr., J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475–493. https://doi.org/10.1016/j.rser.2013.06.017; Reda, T., Plugge, C. M., Abram, N. J., & Hirst, J. (2008). Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proceedings of the National Academy of Sciences, 105(31), 10654–10658. https://doi.org/10.1073/pnas.0801290105; Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., & Liu, Y. (2018). A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresource Technology, 247, 1069–1076. https://doi.org/10.1016/j.biortech.2017.09.109; Rittmann, B. E., & McCarty, P. L. (n.d.). Environmental Biotechnology: Principles and Applications.; Rodriguez-Chiang, L., Llorca, J., & Dahl, O. (2016). Anaerobic co-digestion of acetate-rich with lignin-rich wastewater and the effect of hydrotalcite addition. Bioresource Technology, 218, 84–91. https://doi.org/10.1016/j.biortech.2016.06.074; Sánchez, E., Borja, R., Weiland, P., Travieso, L., & Martı́n, A. (2001). Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate. Process Biochemistry, 37(5), 483–489. https://doi.org/10.1016/S0032-9592(01)00240-0; Sánchez Ramírez, J., Ribes, J., Ferrer, J., & García-Usach, M. F. (2017). Obtención de los principales parámetros del agua residual urbana empleados en los modelos matemáticos de fangos activados a partir de una caracterización analítica simple. Ingeniería y Región, 17, 33. https://doi.org/10.25054/22161325.1534; SANGSRI, S., SIRIPATANA, C., RAKMAK, N., WADCHASIT, P., & JIJAI, S. (2021). Evaluating Biomethane Potential of Inocula from Different Active Biogas Digesters for Palm Oil Mill Effluent by BMP and SMA: Effect of Dilution and Sources. Walailak Journal of Science and Technology (WJST), 18(1). https://doi.org/10.48048/wjst.2021.6515; Sperling, M. (2005). Príncipios do tratamento biólogico de águas residuárias. Universidade Federal de Minas Gerais.; Stichting Toegepast Onderzoek Reiniging Afvalwater (STORA). (1985). Optimalisatie van de gistingsgasproductie.; Suhartini, S., Nurika, I., Paul, R., & Melville, L. (2021). Estimation of Biogas Production and the Emission Savings from Anaerobic Digestion of Fruit-based Agro-industrial Waste and Agricultural crops residues. BioEnergy Research, 14(3), 844–859. https://doi.org/10.1007/s12155-020-10209-5; Tambone, F., Genevini, P., D’Imporzano, G., & Adani, F. (2009). Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresource Technology, 100(12), 3140–3142. https://doi.org/10.1016/j.biortech.2009.02.012; Turovskiy, I. S., & Mathai, P. K. (2006). Wastewater Sludge Processing. John Wiley & Sons, Inc. https://doi.org/10.1002/047179161X; van Lier, J. (2014). Notas de curso; Vavilin, V. A., Fernandez, B., Palatsi, J., & Flotats, X. (2008). Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Management, 28(6), 939–951. https://doi.org/10.1016/j.wasman.2007.03.028; Vavilin, V. A., Rytov, S. v., Lokshina, L. Ya., Rintala, J. A., & Lyberatos, G. (2001). Simplified hydrolysis models for the optimal design of two-stage anaerobic digestion. Water Research, 35(17), 4247–4251. https://doi.org/10.1016/S0043-1354(01)00148-8; Venkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12. https://doi.org/10.1016/j.biortech.2016.03.130; Wang, K., Yin, J., Shen, D., & Li, N. (2014). Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresource Technology, 161, 395–401. https://doi.org/10.1016/j.biortech.2014.03.088; Westerholm, M., Isaksson, S., Karlsson Lindsjö, O., & Schnürer, A. (2018). Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production. Applied Energy, 226, 838–848. https://doi.org/10.1016/j.apenergy.2018.06.045; Xie, S., Wickham, R., & Nghiem, L. D. (2017). Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. International Biodeterioration & Biodegradation, 116, 191–197. https://doi.org/10.1016/j.ibiod.2016.10.037; Xu, F., Shi, J., Lv, W., Yu, Z., & Li, Y. (2013). Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Management, 33(1), 26–32. https://doi.org/10.1016/j.wasman.2012.08.006; Yu, M., Wu, C., Wang, Q., Sun, X., Ren, Y., & Li, Y.-Y. (2018). Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis. Bioresource Technology, 248, 187–193. https://doi.org/10.1016/j.biortech.2017.07.013; Yuan, H., & Zhu, N. (2016). Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renewable and Sustainable Energy Reviews, 58, 429–438. https://doi.org/10.1016/j.rser.2015.12.261; Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383–392. https://doi.org/10.1016/j.rser.2014.05.038; Zhang, L., Lee, Y.-W., & Jahng, D. (2011). Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 102(8), 5048–5059. https://doi.org/10.1016/j.biortech.2011.01.082; Zhao, J., Wang, D., Liu, Y., Ngo, H. H., Guo, W., Yang, Q., & Li, X. (2018). Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. Bioresource Technology, 249, 431–438. https://doi.org/10.1016/j.biortech.2017.10.050; http://hdl.handle.net/20.500.12749/20053; instname:Universidad Autónoma de Bucaramanga - UNAB; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  9. 9
    Dissertation/ Thesis

    المساهمون: Vargas Verdesoto, Rafael Eduardo

    Relation: Muñoz Gualotuña, Gabriela Alejandra (2022). Evaluación in vitro de la capacidad de remoción orgánica en efluentes de una planta procesadora de aceite de palma aplicando bacterias Gram negativas autóctonas. Carrera de Ingeniería en Biotecnología. Universidad de las Fuerzas Armadas ESPE. Matriz Sangolquí; 052627; http://repositorio.espe.edu.ec/handle/21000/33886

  10. 10
    Dissertation/ Thesis
  11. 11
  12. 12
    Dissertation/ Thesis

    المؤلفون: Diaz Silva, Cristian Andrés

    المساهمون: Toloza Cetina, Edgar William

    جغرافية الموضوع: Socorro

    وصف الملف: PDF

    Relation: Lizarazo, Jenny, y Martha Orjuela. Sistemas de plantas de tratamiento de aguas residuales en Colombia. Bogotá: Universidad Nacional, 2013.; McGraw-Hill . "Tratamiento de aguas residuales: principios y aplicaciones",. McGraw-Hill , 2010.; Miniserio de Ambiente y Desarrollo Sostenible. GOV.CO. 21 de Enero de 2022. el sistema se dio la implementación de planes de gestión de devolución de productos pos consumo. (Ministerios de Ambiente y Desarrollo Sostenible, 2017). (último acceso: MARZO de 2023).; Noyola, Adalberto, Juan Manuel Morgan, y Leonor Patricia Guereca. Sección de tecnologías para el tratamiento de aguas residuales municipales. Universidad Nacional Autónoma de México, 2013.; Oakley, Stewart, y Louis Salguero. Tratamiento de Aguas Residuales Domésticas en Centroamérica. 2011.; Suarez, Claudia. Tratamiento de aguas residuales municipales en el Valle del Cauca. Cali: Universidad del Valle, 2011.; https://hdl.handle.net/10901/28702

  13. 13
  14. 14
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    وصف الملف: 10 p.; application/pdf

    Relation: Revista EIA; Aguirre, P. (2004). Mecanismos de eliminación de la materia orgánica y de los nutrientes en humedales construidos de flujo subsuperficial, pp. 17-29. En: García, J.; Morató, J. y Bayona, J. M. Nuevos criterios para el diseño y operación de humedales construidos. Una alternativa de bajo coste para el tratamiento de aguas residuales. Barcelona: CPET y UPC, 2004. 100 p.; Armstrong W.; Armstrong, J. and Beckett, P. M. (1990). Measuring and modelling of oxygen release from roots of Phragmites australis. In: Constructed wetlands in water pollution control, Cooper P. F. and Findlater B. C. (eds,).; Axler, R.; Henneck, J. and McCarthy, B. (2001). “Residential subsurface flow treatment wetlands in northern Minnesota”. Water Science and Technology, vol. 44, No. 11-12, pp. 345-352.; Ayaz, S. C. and Akca, L. (2001). “Treatment of wastewater by natural systems”. Environment International, vol. 26, No. 3 (Jaunuary), pp. 189-195.; Barrett, E. C.; Sobsey, M. D.; House, C. H. and White, K. D. (2001). “Microbial indicator removal in onsite constructed wetlands for wastewater treatment in the Southeastern US”. Water Science and Technology, vol. 44, No. 11-12, pp. 177-182.; https://repository.eia.edu.co/handle/11190/171; Montoya, J. I., Ceballos, L., Casas, J. C., y Morati, J. (2010). Estudio comparativo de la remoción de materia orgánica en humedales construidos de flujo horizontal subsuperficial usando tres especies de macrófitas, Revista EIA, 7 (14), 75-84. doi: http://hdl.handle.net/11190/171

  18. 18
    Dissertation/ Thesis
  19. 19
  20. 20
    Dissertation/ Thesis

    المساهمون: Zambrano Vinueza, Mayra Paola, Cepeda Godoy, Carlos Ramiro

    وصف الملف: application/pdf

    Relation: UDCTFC;96T00709; Villagómez Galán, Gabriel Alejandro. (2021). “Rediseño de un sistema de tratamiento de aguas residuales para el taller artesanal de terminados de cuero ‘América’ de la parroquia Pishilata-Tungurahua”. Escuela Superior Politécnica de Chimborazo. Riobamba.; http://dspace.espoch.edu.ec/handle/123456789/16797