يعرض 1 - 20 نتائج من 384 نتيجة بحث عن '"Degraded soil"', وقت الاستعلام: 0.73s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
  8. 8
    Academic Journal

    المساهمون: Edafologia y Quimica Agricola, Escuela de Ingeniería Agraria y Forestal

    Relation: info:eu-repo/grantAgreement/AEI/ISGEOMIN - ESP2017-89045-R; info:eu-repo/grantAgreement/AEI/HYPOPROCKS-PDC2021-121352-100; Pereira, I., Alcalde-Aparicio, S., Ferrer-Julià, M., Carreño, M. F., & García-Meléndez, E. (2023). Monitoring sedimentary areas from mine waste products with Sentinel-2 satellite images: A case study in the SE of Spain. European Journal of Soil Science, 74( 1), e13336. https://doi.org/10.1111/ejss.13336; http://hdl.handle.net/10612/15394

  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    وصف الملف: 13 páginas; application/pdf

    Relation: Sustainability; 1. Hoang, A.T.; Nižeti´c, S.; Olcer, A.I.; Ong, H.C.; Chen, W.-H.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [CrossRef] [PubMed]; 2. Chofreh, A.G.; Goni, F.A.; Klemeš, J.J.; Moosavi, S.M.S.; Davoudi, M.; Zeinalnezhad, M. COVID-19 shock: Development of strategic management framework for global energy. Renew. Sustain. Energy Rev. 2021, 139, 110643. [CrossRef]; 3. Hoang, A.T.; Nguyen, T.H.; Nguyen, H.P. Scrap tire pyrolysis as a potential strategy for waste management pathway: A review. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1–18. [CrossRef]; 4. Gonçalves, J.O.; da Silva, K.A.; Rios, E.C.; Crispim, M.M.; Dotto, G.L.; de Almeida Pinto, L.A. Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int. J. Biol. Macromol. 2020, 142, 85–93. [CrossRef]; 5. Silva, L.F.; Lozano, L.P.; Oliveira, M.L.; da Boit, K.; Gonçalves, J.O.; Neckel, A. Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects. Mar. Pollut. Bull. 2021, 168, 112425. [CrossRef] [PubMed]; 6. Gonçalves, J.O.; Crissien, T.J.; Sampaio, C.H.; Oliveira, M.L.; Silva, L.F. The role of roots plants and soil characteristics in coal mining areas: Geochemical and nanomineralogy information still without details. J. Environ. Chem. Eng. 2021, 9, 106539. [CrossRef]; 7. Andrade, G.R.P.; Furquim, S.A.C.; Nascimento, T.T.V.; Brito, A.C.; Camargo, G.R.; de Souza, G.C. Transformation of clay minerals in salt-affected soils, Pantanal wetland, Brazil. Geoderma 2020, 371, 114380. [CrossRef]; 8. Bujor, L.; Benciu, F.; Vilcu, D.M.; Bogan, E.; Constantin, D.; Grigore, E. Evaluation of the Anthropic Impact on the Environmental– Soil Factor Case Study: Alba Iulia Forest District, Romania. Int. J. Acad. Res. Environ. Geogr. 2021, 8, 11–29.; 9. Zamulina, I.V.; Gorovtsov, A.V.; Minkina, T.M.; Mandzhieva, S.S.; Bauer, T.V.; Burachevskaya, M.V. The influence of long-term Zn and Cu contamination in Spolic Technosols on water-soluble organic matter and soil biological activity. Ecotoxicol. Environ. Saf. 2021, 208, 111471. [CrossRef] [PubMed]; 11. Bolaños-Guerrón, D.; Capa, J.; Flores, L.C. Retention of heavy metals from mine tailings using Technosols prepared with native soils and nanoparticles. Heliyon 2021, 7, e07631. [CrossRef] [PubMed]; 12. IUSS Working Group. WRB World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports N; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Volume 106, ISBN 978-92-5-108369-7.; 13. Asensio, V.; Guala, S.; Vega, F.A.; Covelo, E.F. A soil quality index for reclaimed mine soils. Environ. Toxicol. Chem. 2013, 32, 2240–2248. [CrossRef]; 14. Hafeez, F.; Spor, A.; Breuil, M.-C.; Schwartz, C.; Martin-Laurent, F.; Philippot, L. Distribution of bacteria and nitrogen-cycling microbial communities along constructed Technosol depth-profiles. J. Hazard. Mater. 2012, 231–232, 88–97. [CrossRef]; 15. Xunta de Galicia. 2008. Available online: https://www.xunta.gal/dog/Publicados/2008/20080125/Anuncio58E2_es.html (accessed on 10 October 2021).; 16. Macias, F. Recuperación de Suelos Degradados, Reutilización de Residuos Y Secuestro de Carbono. Una Alternativa Integral de Mejora de la Calidad Ambiental; Recursos Rurais Serie Cursos 1; Instituto de Biodiversidade Agraria e Desenvolvemento Rural (IBADER): Lugo, Spain, 2004; pp. 49–56.; 17. Macías, F.; Macías-García, F.; Bao, M.; Camps, M. Tecnosoles, Biocarbones Y Humedales Reactivos Diseñados, Formulados Y Elaborados “A la Carta Y a Imagen de Suelos Naturales” Para la Recuperación de Suelos, Aguas Y Ecosistemas Degradados O Contaminados; Laboratorio de Tecnología Ambiental, Instituto de Investigaciones Tecnológicas, USC. Dpto. Ingeniería Química, USC. Centro de Valorización Ambiental del Norte, Massey University: Palmerston, New Zealand, 2016.; 18. VATOP. 2020. Available online: https://cvatop.es/restauracion-mina-touro (accessed on 12 October 2021).; 19. Ruiz, F.; Perlatti, F.; Oliveira, D.P.; Ferreira, T.O. Revealing Tropical Technosols as an Alternative for Mine Reclamation and Waste Management. Minerals 2020, 10, 110. [CrossRef]; 20. Villenave, C.; Séré, G.; Schwartz, C.; Watteau, F.; Jimenez, A.; Cortet, J. Rapid Changes in Soil Nematodes in the First Years after Technosol Construction for the Remediation of an Industrial Wasteland. Eurasian Soil Sci. 2018, 51, 1266–1273. [CrossRef]; 21. Asensio, V.; Flórido, F.G.; Ruiz, F.; Perlatti, F.; Otero, X.L.; Oliveira, D.P.; Ferreira, T.O. The potential of a Technosol and tropical native trees for reclamation of copper-polluted soils. Chemosphere 2019, 220, 892–899. [CrossRef]; 22. FAO. World Reference Base for Soil Resources; FAO: Rome, Italy, 2006.; 23. Martinat, S.; Dvorak, P.; Frantal, B.; Klusacek, P.; Kunc, J.; Navratil, J.; Osman, R.; Tureckova, K.; Reed, M. Sustainable urban development in a city affected by heavy industry and mining? Case study of brownfields in Karvina, Czech Republic. J. Clean. Prod. 2016, 118, 78–87. [CrossRef]; 24. Kozłowski, M.; Otremba, K.; Tatu´sko-Krygier, N.; Komisarek, J.; Wiatrowska, K. The effect of an extended agricultural reclamation on changes in physical properties of technosols in post-lignite-mining areas: A case study from central Europe. Geoderma 2022, 410, 115664. [CrossRef]; 25. Forján, R.; Rodríguez-Vila, A.; Covelo, E.F. Increasing the Nutrient Content in a Mine Soil Through the Application of Technosol and Biochar and Grown with Brassica juncea L. Waste Biomass Valorization 2019, 10, 103–119. [CrossRef]; 26. Soria, R.; González-Pérez, J.A.; de la Rosa, J.M.; Emeterio, L.M.S.; Domene, M.A.; Ortega, R.; Miralles, I. Effects of technosols based on organic amendments addition for the recovery of the functionality of degraded quarry soils under semiarid Mediterranean climate: A field study. Sci. Total Environ. 2021, 151572. [CrossRef] [PubMed]; 27. Slukovskaya, M.V.; Vasenev, V.I.; Ivashchenko, K.V.; Morev, D.V.; Drogobuzhskaya, S.V.; Ivanova, L.A.; Kremenetskaya, I.P. Technosols on mining wastes in the subarctic: Efficiency of remediation under Cu-Ni atmospheric pollution. Int. Soil Water Conserv. Res. 2019, 7, 297–307. [CrossRef]; 28. Vidal-Beaudet, L.; Rokia, S.; Nehls, T.; Schwartz, C. Aggregation and availability of phosphorus in a Technosol constructed from urban wastes. J. Soils Sediments 2018, 18, 456–466. [CrossRef]; 29. Ahirwal, J.; Kumar, A.; Pietrzykowski, M.; Maiti, S.K. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: A case study from India. Environ. Sci. Pollut. Res. 2018, 25, 27992–28003. [CrossRef]; 30. Fourvel, G.J.; Vidal-Beaudet, L.; Le Bocq, A.; Thery, F.; Brochier, V.; Cannavo, P. Fertilidad de tecnosoles construidos con sedimentos de presas para el enverdecimiento urbano y la recuperación de tierras. J. Soils Sediments 2019, 19, 3178–3192. [CrossRef]; 31. Cortinhas, A.; Caperta, A.D.; Teixeira, G.; Carvalho, L.; Abreu, M.M. Harnessing sediments of coastal aquaculture ponds through technosols construction for halophyte cultivation using saline water irrigation. J. Environ. Manag. 2020, 261, 109907. [CrossRef]; 32. Ruiz, F.; Cherubin, M.R.; Ferreira, T.O. Soil quality assessment of constructed Technosols: Towards the validation of a promising strategy for land reclamation, waste management and the recovery of soil functions. J. Environ. Manag. 2020, 276, 111344. [CrossRef] [PubMed]; 33. Uzarowicz, Ł.; Woli ´nska, A.; Bło ´nska, E.; Szafranek-Nakonieczna, A.; Ku ´zniar, A.; Słodczyk, Z.; Kwasowski, W. Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Appl. Soil Ecol. 2020, 156, 103699. [CrossRef]; 34. Santorufo, L.; Joimel, S.; Auclerc, A.; Deremiens, J.; Grisard, G.; Hedde, M.; Nahmani, J.; Pernin, C.; Cortet, J. Early colonization of constructed technosol by microarthropods. Ecol. Eng. 2021, 162, 106174. [CrossRef]; 35. Pruvost, C.; Mathieu, J.; Nunan, N.; Gigon, A.; Pando, A.; Lerch, T.Z.; Blouin, M. Tree growth and macrofauna colonization in Technosols constructed from recycled urban wastes. Ecol. Eng. 2020, 153, 105886. [CrossRef]; 36. Foti, L.; Dubs, F.; Gignoux, J.; Lata, J.-C.; Lerch, T.Z.; Mathieu, J.; Nold, F.; Nunan, N.; Raynaud, X.; Abbadie, L.; et al. Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Sci. Total Environ. 2017, 598, 938–948. [CrossRef] [PubMed]; 37. Benhabylès, L.; Djebbar, R.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar and compost effects on the remediative capacities of Oxalis pes-caprae L. growing on mining technosol polluted by Pb and As. Environ. Sci. Pollut. Res. 2020, 27, 30133–30144. [CrossRef]; 38. Lebrun, M.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar Application Rate: Improving Soil Fertility and Linum usitatissimum Growth on an Arsenic and Lead Contaminated Technosol. Int. J. Environ. Res. 2021, 15, 125–134. [CrossRef]; 39. Bodlák, L.; K´rováková, K.; Kobesová, M.; Štástny, J.; Pecharov ˆ á, E. SOC content—An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecol. Eng. 2012, 43, 53–59. [CrossRef]; 40. Yin, N.; Zhang, Z.; Wang, L.; Qian, K. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ashreconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ. Sci. Pollut. Res. 2016, 23, 17840–17849. [CrossRef] [PubMed]; 41. Halecki, W.; Klatka, S. Aplication of Soil Productivity Index after Eight Years of Soil Reclamation with Sewage Sludge Amendments. Environ. Manag. 2021, 67, 822–832. [CrossRef]; 42. Forján, R.; Rodríguez-Vila, A.; Cerqueira, B.; Covelo, E.F. Effects of compost and technosol amendments on metal concentrations in a mine soil planted with Brassica juncea L. Environ. Sci. Pollut. Res. 2018, 25, 19713–19727. [CrossRef] [PubMed]; 43. Nandillon, R.; Lebrun, M.; Miard, F.; Gaillard, M.; Sabatier, S.; Villar, M.; Bourgerie, S.; Morabito, D. Capability of amendments (biochar, compost and garden soil) added to a mining technosol contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination. Environ. Monit. Assess. 2019, 191, 465. [CrossRef] [PubMed]; 44. Uzarowicz, Ł. Microscopic and microchemical study of iron sulphide weathering in a chronosequence of technogenic and natural soils. Geoderma 2013, 197, 137–150. [CrossRef]; 45. Séré, G.; Schwartz, C.; Ouvrard, S.; Renat, J.-C.; Watteau, F.; Villemin, G.; Morel, J.L. Early pedogenic evolution of constructed Technosols. J. Soils Sediments 2010, 10, 1246–1254. [CrossRef]; 46. Huot, H.; Simonnot, M.-O.; Morel, J.L. Pedogenetic Trends in Soils Formed in Technogenic Parent Materials. Soil Sci. 2015, 180, 182–192. [CrossRef]; 47. Rennert, T.; Kaufhold, S.; Händel, M.; Schuth, S.; Meißner, S.; Totsche, K.U. Characterization of a Technosol developed from deposited flue-dust slurry and release of inorganic contaminants. J. Plant Nutr. Soil Sci. 2011, 174, 721–731. [CrossRef]; 48. Huot, H.; Simonnot, M.-O.; Watteau, F.; Marion, P.; Yvon, J.; De Donato, P.; Morel, J.L. Early transformation and transfer processes in a Technosol developing on iron industry deposits. Eur. J. Soil Sci. 2014, 65, 470–484. [CrossRef]; 49. Scalenghe, R.; Ferraris, S. The First Forty Years of a Technosol. Pedosphere 2009, 19, 40–52. [CrossRef]; 50. 5Hoang, A.T.; Nižeti´c, S.; Cheng, C.K.; Luque, R.; Thomas, S.; Banh, T.L.; Nguyen, X.P. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 2022, 287, 131959.; 51. Weiler, J.; Firpo, B.A.; Schneider, I.A. Technosol as an integrated management tool for turning urban and coal mining waste into a resource. Miner. Eng. 2020, 147, 106179. [CrossRef]; 52. Pereira, H.A.; Hernandes, P.R.T.; Netto, M.S.; Reske, G.D.; Vieceli, V.; Oliveira, L.F.S.; Dotto, G.L. Adsorbents for glyphosate removal in contaminated waters: A review. Environ. Chem. Lett. 2020, 19, 1525–1543. [CrossRef]; 53. Streit, A.F.; Collazzo, G.C.; Druzian, S.P.; Verdi, R.S.; Foletto, E.L.; Oliveira, L.F.; Dotto, G.L. Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 2021, 262, 128322. [CrossRef] [PubMed]; 54. Sellaoui, L.; Hessou, E.P.; Badawi, M.; Netto, M.S.; Dotto, G.L.; Silva, L.F.O.; Tielens, F.; Ifthikar, J.; Bonilla-Petriciolet, A.; Chen, Z. Trapping of Ag+ , Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chem. Eng. J. 2021, 420, 127712. [CrossRef]; 55. Ferrari, V.; Taffarel, S.R.; Espinosa-Fuentes, E.; Oliveira, M.L.; Saikia, B.K.; Oliveira, L.F. Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J. Clean. Prod. 2019, 208, 297–306. [CrossRef]; 56. Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F.O. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef]; 57. Rodriguez-Iruretagoiena, A.; de Vallejuelo, S.F.-O.; Gredilla, A.; Ramos, C.G.; Oliveira, M.L.S.; Arana, G.; de Diego, A.; Madariaga, J.M.; Silva, L.F. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 2015, 508, 374–382. [CrossRef] [PubMed]; 58. Sánchez-Peña, N.E.; Narváez-Semanate, J.L.; Pabón-Patiño, D.; Fernández-Mera, J.E.; Oliveira, M.; da Boit, K.; Tutikian, B.; Crissien, T.J.; Pinto, D.; Serrano, I.D.; et al. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 2018, 191, 1048–1055. [CrossRef] [PubMed]; 59. Sehn, J.L.; De Leão, F.B.; Da Boit, K.; Oliveira, M.; Hidalgo, G.E.; Sampaio, C.H.; Silva, L.F. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 2016, 147, 439–443. [CrossRef] [PubMed]; 60. Martinello, K.; Oliveira, M.; Molossi, F.A.; Ramos, C.G.; Teixeira, E.C.; Kautzmann, R.M.; Silva, L.F. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 2014, 470–471, 444–452. [CrossRef]; 13; 14; Gonçalves, J.O.; Fruto, C.M.; Barranco, M.J.; Oliveira, M.L.S.; Ramos, C.G. Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review. Sustainability 2022, 14, 993. https://doi.org/10.3390/su14020993; https://hdl.handle.net/11323/9209; https://doi.org/10.3390/su14020993; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal

    المصدر: International Journal of Environmental Research and Public Health; Volume 19; Issue 4; Pages: 2140

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Environmental Science and Engineering; https://dx.doi.org/10.3390/ijerph19042140